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1 Introduction to the UFO system

The universal functional optimization (UFQO) system is an interactive modular system for solving both
dense medium-size and sparse large-scale optimization problems. The UFO system can be used for the
following applications:

1. Formulation and solution of particular optimization problems that are described in Chapter 2.

2. Preparation of specialized optimization routines (or subroutines) based on methods described in
Chapter 3.

3. Designing and testing new optimization methods. The UFO system is a very useful tool for the
development of optimization algorithms.

The special realization of the UFO system described in the subsequent text makes this system portable
and extensible and we continue with its further development.

1.1 Philosophy of the UFO system

The UFO system is an open software system for solving a broad class of optimization problems. An
optimization problem solution is processed in three phases. In the first phase the optimization problem is
specified and an optimization method is selected. This can be done in three different ways:

1. The full dialogue mode: The problem specification and the method selection are realized by using a
conversation between the user and the UFO system.

2. The batch mode: The problem specification and the method selection are realized by using the UFO
control language, which is a generalization and enlargement of the batch editing language (BEL) (see
Appendix B). An input file written in the UFO control language has to be prepared and stored.

3. The combined mode: Only a part of the specification is written in the input file. The rest of the
specification is obtained as in the dialogue mode. This possibility is usually the best one since the
problem functions can be defined beforehand by using a convenient text editor.

The first phase is realized by using the UFO control language preprocessor (UFOCLP). This preprocessor
consists of the BEL interpreter controlled by input template UZDCLP.I (see Appendix B.7). The BEL
interpreter is written in Fortran 77 and its output is a Fortran 77 source program (P.FOR in the MS DOS
and Windows versions or P.F in the UNIX and LINUX systems). This conception is very advantageous
for the following reasons:

1. Fortran 77 (full ANSI norm) is a sufficiently high and portable programming language. Fortran
77 is very suitable for numerical computations, and a large number of subroutines realizing various
numerical methods is available in this language.

2. A source program, generated by the UFO control language preprocessor, calls for necessary modules
only and its specification is very easy. Moreover, its global declarations are determined by the
problem size, which decreases storage requirements. This overcomes an impossibility of dynamical
declarations in Fortran 77.

3. The UFO system is open. When a new class of optimization problems or optimization methods is
included, one only needs to change some system templates and prepare new modules. The UFO
source program is composed of individual modules by using specifications given by the user. This
fact allows us to create a great number of various optimization methods and their modifications.



In the second phase, the UFO source program P.FOR (or P.F) is compiled by using a suitable Fortran 77
compiler and a final executable program is linked by using library modules. In the third phase, the final
executable program is started and thus results which can be viewed by using extensive output means are
obtained.

The above conception is enabled by a special form of source modules. These modules usually consist of
two parts, the interface template and the Fortran 77 realization. The interface template is used by the UFO
preprocessor only and it serves for the UFO source program generation (the part of the source program
corresponding to a given module is coded in the template). These templates also contain knowledge bases
for automatic selection of the optimization method. If the UFO system is extended then usually only
templates, which do not need to be compiled, are changed. Besides interface templates, which are a part
of source modules, special templates controlling the UFO preprocessor exist. A batch input file written in
the UFO control language is the first of these special templates.

The UFO macroprocessor works in two passes. In the first pass, the file P.TMP is created. This file
is a predecessor of the UFO source program. It contains macroinstructions and macrovariables which are
processed in the second pass. The source program P.FOR (or P.F) is the result of the second pass.

1.2 Execution of the UFO system

The UFO system contains three basic procedures GENER, COMPIL and UF0GO. The UFO preprocessor is
called if the statement

GENER input_name

is typed. Then the source program, written in Fortran 77, is obtained. Furthermore, the compilation of
the source program, followed by its loading and executing, is started if the statement

COMPIL output_name
is typed. Finally, all the UFO system phases are performed if the statement
UFOGO problem name

is typed. Here input_name is the first part of the batch file name input_name.UFO that is used as a batch in-
put for the source program generation, output_name is the first part of the text file name output_name.0UT
that is used as a text output from the UFO system and problem name is the first part of both the batch
file name problem name.UFO and the text file name problem name.QUT. All these names have to be typed
with capital letters in the UNIX and LINUX versions. If GENER and UFOGO statements do not contain a
file name specification, then a full dialogue mode is considered (the batch file name is STANDARD.UFO in
this case) and the standard text file name is P.0OUT. If COMPIL statement does not contain a file name
specification, then the standard text file name is P.0UT. The UF0GO statement has the same meaning as
two consecutive statements GENER and COMPIL.
First we show how the batch mode proceeds. We suppose that the model function has the form

fF(x) = 100(3:% — x2)2 + (21 — 1)2

(the Rosenbrock function) and the starting point is 1 = —1.2 and x2 = 1.0. If we prepare the batch input
file P.UFO of the form

$REM : model specifications
$SET (INPUT)
X(1)=-1.2D0; X(2)= 1.0DO
$ENDSET
$SET (FMODELF)
FF=1.0D2#* (X (1) **2-X(2) ) *#*2+ (X (1) -1.0D0) **2
$ENDSET
$NF=2



$REM : the default method is used

$REM : print specifications

$MOUT=1

$NOUT=1

$REM : the batch mode is used

$BATCH

$REM : the standard form of the source program is used
$STANDARD

and type the statement UFOGO P, then the following results appear in the output file P.0OUT

CLASS = VM - LI1 UPDATE = B MODEL = FF HESF =D NF = 2
0 NIT= 40 NFV= 138 NFG= 0 NDC= 0 NCG= 0 F= .504D-13 G= .828D-05
FF = .5038712822D-13

X

.1000000098D+01 .1000000177D+01

(in a PC computer). Batch files are written in the UFO control language. This language is described in
Section 4.1 and in Appendix B. Here we note that a certain experience with the UFO control language
can be obtained by using the demo-files PROBO1.UFO,..., PROB20.UF0. These demo-files contain 20 test
problems described in Chapter 7. We can solve them by using the statements UFOGO PROBO1,..., UFOGO
PROB20.

Besides the batch mode, we can use the full dialogue mode. The full dialogue mode is started if we use
the statement UFOGO (without a batch input file specification). Full dialogue modes (text and graphic) are
described in Sections 4.3 and 4.4. An example which demonstrates the text dialogue mode applied to the
Rosenbrock function is given in Appendix A.

Besides basic output files, the UFO system produces additional files which can contain some useful
information. A list of the most important UFO files follows:

P.UFO - Batch input file.

P.TMP - Temporary file containing a source program ancestor generated in the first pass of the UFO
preprocessor.

P.FOR - UFO source program generated in the second pass of the UFO preprocessor (the UNIX
and LINUX versions use file P.F in this case).

P.OUT - Text output file.

P.DAT - Stored values of problem variables.

P.DIM - Dimensions of basic problem vectors and matrices.

P.SIF - Messages of the SIF decoder.

P.I - Template given by the SIF decoder.

1.3 The UFO versions for PC computers

There are four UFO versions for PC computers. The MS DOS version UFOD1 requires the Microsoft
Fortran Power Station compiler version 1 and it uses the DOS graphic system for the graphic dialogue
(Section 4.4) and the graphic screen output (Section 5.3). The Windows 2000 version UFOW4 (which can
be used also in other Windows systems) requires the Microsoft Visual Fortran compiler version 4 and it
uses the QuickWin graphic system with simplified control (the mouse cannot be used). The Windows 2000
version UFOW6 (which can be used also in other Windows systems) requires the Digital Visual Fortran
compiler version 6 and it uses the QuickWin graphic system with simplified control (the mouse cannot
be used). The LINUX version UFOLS8 requires SUSE LINUX version 8.0 system with GNU Fortran 77
compiler, but it does not contain graphical possibilities at present. Of course, the UFO system can also
be used for PC computers with other compilers. In this case, the UNIX version of the UFO system can
be applied with procedures GENER, COMPIL and UFOGO modified for the compiler used.



The MS DOS and Windows 2000 versions are distributed by using the files UFOD1.ZIP, UFOW4.ZIP and
UFOW6.ZIP (page http://www.cs.cas.cz/ luksan/ufodis.html), which contain templates *.I, sam-
ple input files *.UF0, sample output files *.0UT, batch procedures *.BAT, programs *.EXE and other
important files together with the subdirectory LIB, which contains libraries *.LIB. The installation of
the UFO system is carried out by putting the *.ZIP file into the directory UFO and by using the rou-
tine PKUNZIP. Furthermore, paths and settings in procedures SET1.BAT, SET4.BAT and SET6.BAT have
to be arranged to correspond to directories used. More information concerning installation are given
in text files UFOD1.TXT, UFOW4.TXT and UFOW6.TXT. If connection to the CUTE test environment is re-
quired, then the subdirectory SIF has to be created and the *.SIF files from the CUTE collection (page
http://www.cse.clrc.ac.uk/nag/cuter/) have to be copied into this subdirectory.

The MS DOS and Windows 2000 versions of the UFO system are provided with the special UFO
environment, which makes the use of the UFO system easy. The UFO environment is called by using
the statement UFO (procedure UF0.BAT) and controlled by using the pull-down menu. The main menu is
activated by pressing key <F10>. The UFO environment contains a text editor whose control is similar to
commonly used text editors under the MS DOS system. All significant statements of the source program
editor are available from the UFO environment menu.

Since the UFO environment menu is clearly understandable we do not describe it (the description is
given in [264]). We only show the usual way for operating input files. When the batch mode input file is
prepared by using the text editor we press key <F10> and find the command Run! in the UFO environment
menu. This command starts the UFO preprocessor and its action corresponds to the statement UFOGO (with
the input file which is loaded in the text editor). An easier possibility is pressing keys <Alt-1>. Similarly,
pressing keys <Alt-9> has the same effect as the statement GENER (with the input file which is loaded
in the text editor). Furthermore, if the source program P.FOR is loaded in the text editor, pressing keys
<Alt-3> has the same effect as the statement COMPIL and pressing keys <Alt-5> causes an exit from the
UFO environment.

The PC LINUX version is distributed by using the file ufol8.tar.gz (page http://www.cs.cas.cz
/~luksan/ufodis.html), which contains source modules *.F, templates *.I, sample input files *.UFO,
sample output files *.0UT, library ufolib.a, batch procedures gener, compil, ufogo, program ufobel
and other important files. The installation of the UFO system is carried out by putting this file into the
directory ufo and typing gunzip *.gz and tar xvf *.tar. If connection to the CUTE test environment
is required, then the subdirectory ufo/sif has to be created and the *.SIF files from the CUTE collection
(page http://wuw.cse.clrc.ac.uk/nag/cuter/) have to be copied into this subdirectory.

1.4 The UFO versions for UNIX workstations

The UNIX versions of the UFO system will be distributed by the file ufo.tar.gz. The installation
of the UFO system is carried out by putting this file into the directory ufo, typing gunzip *.gz, tar
xvf *.tar and using the statements instal SGI, instal DIG, instal SUN and instal HP, for Silicon
Graphic, Digital Equipment, Sun and Hewlett Packard workstations with standard operation systems,
respectively (the Fortran 77 compiler is assumed). For other workstations or operation systems, the
procedure INSTAL. SGI should be changed to INSTAL . XXX containing relevant statements and the statement
instal XXX should be used. The UNIX versions of the UFO system do not contain graphical possibilities
at present.

1.5 Distribution of the UFO system

The UFO system is intended for the academic use. The full UNIX version of the UFO system (with
source modules) is not freely distributed at present. The following free versions of the UFO system for PC
computers can be downloaded from page http://www.cs.cas.cz/ luksan/ufodis.html.

UFOW6 . ZIP - Windows version. It requires Digital Visual Fortran compiler, version 6.
UFOL6.ZIP - LINUX version. It requires GNU Fortran 95 compiler.



The installation of the UFO UNIX version ufosgi is carried out by the same way as the installation of
the UFO LINUX version ufol8.

1.6 Suggestions for beginners

If we want to solve a particular optimization problem, then the best way to understanding the UFO system
is to find a similar problem in the list of sample problems (Chapter 7). This sample problem can be solved
by typing UFOGO PROBxx (xx is the number of the sample problem). After solving the sample problem,
we can modify the batch input file PROBxx.UFO to describe our problem. Basic suggestions concerning
the description of optimization problems are given in Chapter 2 and the most important features of the
UFO control language are described in Chapter 4. Optimization methods need not be selected by the
user, the system automatically chooses a suitable method. On the other hand, if the user is familiar
with optimization methods, then the method can be selected by using suggestions given in Chapter 3.
Information about output possibilities can be found in Chapter 5 and special tools of the UFO system are
described in Chapter 6.

The following list refers to basic problems solved by the UFO system and to sections containing more
detailed description.

Minimization of a general objective function: Sections 2.2 — 2.3.

Minimization of a linear objective function: Section 2.2.

Minimization of a quadratic objective function: Section 2.2.

Minimization of a partially separable function (the sum of approximating functions): Sections 2.4 — 2.6.
Minimization of the sum of squares (or powers) of approximating functions: Sections 2.4 — 2.6.
Minimization of the maximum of approximating functions: Sections 2.4 — 2.6.

Minimization of the sum of absolute values of approximating functions: Sections 2.4 — 2.6.
Optimization of systems described by ordinary differential equations: Sections 2.7 — 2.11.

Solution of systems of nonlinear functional equations: Section 2.15.

Solution of systems of ordinary differential equations: Section 2.16.

Moreover, all optimization problems can contain box constraints (Section 2.1) and general linear or non-
linear constraints (Sections 2.12 — 2.14).

1.7 Authors of the UFO system

The UFO system was developed in the Institute of Computer Science, Czech Academy of Sciences, Prague.
In addition, the UFO system contains two direct solvers for sparse linear systems based on UMFPACK code
of T.A.Davis [63] and MA27 code of I.S.Duff [74]. Moreover, some modules for solving ordinary differential
equations are based on subroutines proposed in the book of E.Hairer, S.P.Norsett and G.Wanner [105] (they
were quite rewritten).

The following table contains names of individual authors, their letter codes introduced in source modules
and their contribution in percent.

Author code contribution
L.Luksan LU 73.83
M.Tuma TU 9.35
J.Vlcek VL 4.16
N.Ramesovda RA 3.94
M.Siska SI 3.18
J.Hartman HA 1.58
C.Matonoha MA 1.17
T.A.Davis DA 1.72
1.S.Duff DU 1.07



2 Problems solved using the UFO system

The most general problem which can be solved by using the UFO system is a minimization of an objective
function F : R™ — R over a set X C R"™. The objective function can have several forms determined using
the macrovariable SMODEL:

$MODEL="FF’ -
$MODEL="FL’ -
$MODEL="FQ’ -
$MODEL="AF" -
$MODEL="AQ’ -
$MODEL="AP’ -
$MODEL="AA’ -

General optimization. In this case

F(z) = +f"(x)
where ff': R" — R is a real valued, so-called model function

Linear optimization. In this case

Pla) =% (/7 + ) gf )

where fF, giF7 1 < i < n, are real coeflicients.

Quadratic optimization. In this case
n 1 n
F(z) =+ (f"+> (s + 3 > hijw)w:)
i=1 j=1

where fF, gF' 1 <i<n, hf‘;, 1 <i,5 < n, are real coefficients.

Sum of functions minimization. In this case

F(x) =) fi'(x)
k=1

where f,f :R" — R, 1 <k <nyu, are real valued, so-called approximating functions.

Sum of squares minimization. In this case

where f,? :R" — R, 1 <k <nyk, are real valued, so-called approximating functions.

Sum of powers minimization. In this case
1 &
F(z)==> Ifi'@]"
p k=1

where f,f : R — R, 1 <k < nyu, are real valued, so-called approximating functions
and 1 < r < oo is a real exponent.

Sum of absolute values minimization. In this case

F(z) = |fi'@)]
k=1

where f,? :R" — R, 1 <k <nyk, are real valued, so-called approximating functions.
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$MODEL="AM’ -
$MODEL="DF’ -
$MODEL="DQ’ -
$MODEL="NE’ -
$MODEL="DE’ -

Minimization of maximum (minimax). In this case

F(x) = .
(v) = max |fi ()]
where f,f :R" — R, 1 <k <nyk, are real valued, so-called approximating functions.

Minimization of the general integral criterion with respect to the state equations. In
this case

tmas
Fla)= | [ yale ta)ta) dia + f7 (0, yale, t500) £1°7)
trmin
and
d x,t .
%AA) = fE(xa yA(J), tA)MfA), yA(a:, t?'m) _ fy(l‘)

where f4 : R"tme+l . Ris a real valued, smooth, so-called subintegral function, f¥ :
R"me+l _ R is a real valued, smooth, so-called terminal function, f¥ : Rntne+l
R"™® is a real valued, smooth, so-called state function and fY : R® — R"F is a real
valued, smooth, so-called initial function.

Minimization of the sum of square integral criterion with respect to the state equa-
tions. In this case

1 t;’:aw ng 1 ne o
Fla)=5 | Y wlta) (@ ta) =yl (ta)* dta+ 5 Y wf (! (x.887) — yf)?
ATt =1 i=1
and
dyA(x,tA)

dt :fE(fE,yA(fE,tA),tA), yA(xﬂt%in):fY(x)
A

where fF : RMtnetl . R"E is a real valued, smooth, so-called state function and
f¥Y : R — R"® is a real valued, smooth, so-called initial function.

Solving a system of nonlinear functional equations

[@) =0, 1<k<na
where ng = n (SMODEL='NE’ is equivalent to SMODEL="AQ’ if n4 = n).

Solving an initial value problem for a system of ordinary differential equations. In
this case

dya(ta)

7 = fFyalta),ta), y* (™) = ypin
A

where fF: R*e+l — R"E is a real valued, smooth, so-called state function.

The model function f¥ : R — R can have several types of Hessian matrices specified by the macrovari-

able $HESF:
$HESF="D’
$HESF="S’

$SHESF="N"

- Dense Hessian matrix.
- Sparse Hessian matrix with a general pattern.
- Hessian matrix is not used.

The default option is $HESF="D’. The approximating functions f,f : R - R, 1 <k < ny, can have
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several types of Jacobian matrices specified by the macrovariable $JACA:

$JACA="D’ - Dense Jacobian matrix.
$JACA="S - Sparse Jacobian matrix with a general pattern.
$JACA="N’ - Jacobian matrix is not used.

If the approximating functions are used then we can choose several types of the Hessian matrix represen-
tation. These types are again specified by the macrovariable $HESF":

$HESF="D’ - Dense Hessian matrix.

$HESF="S’ - Sparse Hessian matrix with a general pattern.
$HESF="B’ - Sparse Hessian matrix with a partitioned pattern.
$HESF="N’ - Hessian matrix is not used.

If $JACA="D’, then it must be either $HESF="D’ or $HESF="N". If $JACA="S’, then we can specify
all types of Hessian matrices (SHESF="D’, $HESF="S’, $HESF="B’, $SHESF="N’"). The representation
$HESF="B’ usually leads to more expensive matrix operations. Therefore, we recommend to prefer the
choice $HESF="S’ against the choice SHESF="B".

The subintegral function, the terminal function, the state function and the initial function, which
appear in the case of dynamical systems optimization, are considered to be dense. Therefore we cannot
use the specifications $HESF="S’ or $HESF="B’ in this case.

The set X C R™ can be the whole R™ (unconstrained case) or defined by box constraints

sz < if el

z, < 2f if iel
L o< gy <2V if iels
L z; if iel;

where Iy UI, UI3UI5 C {i € N : 1 <i<n}, or by general linear constraints

n

ck < Zggixi it kel
i=1
n
Zg%mi < Y if kel
i=1
n

et < Zg,ga:i < Y if kelLs
i=1
n

ck = Zggixi if kelLs
i=1

where gkci, 1<k<ng, 1 <i<n, are real coefficients and L1 ULy ULz ULs C{k € N:1<k<mn¢}, or
by general nonlinear constraints

k< fS(2) it keN;

) < & if ke Ny
k< S < & if keNs
ck S (x) if ke Ns
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where fkc : R" — R, 1 < k < ng, are real valued, smooth, so-called constraint functions and Ny U Ny U
N3UN; C {ke€ N:1<k<nc}. The constraint functions fkc :R" - R, 1 < k < ng, can have several
types of Jacobian matrices specified by the macrovariable $JACC:

$JACC="D’ - Dense Jacobian matrix.
$JACC="S’ - Sparse Jacobian matrix with a general pattern.

If $JACC="D’, then it must be $HESF="D’ or $HESF="N". If $JACC=’S’, then it must be $SHESF="S’
or SHESF="N".

There are several limitations in the current version of the UFO system:

1. Minimization of dynamical systems is not implemented in the sparse case.

2. Usually the UFO system serves for local optimization. Global optimization can be used only for
small-size (n < 100) dense problems that are unconstrained or contain box constraints.

These limitations will be consecutively removed in subsequent versions of the UFO system.

In the rest of this report we will use the notation NF, NA, NC instead of n, na, nc and X, F(X),
FF(X), GF(X), HF(X), FA(KA;X), GA(KA;X), FC(KC;X), GC(KC;X) instead of z, F(x), fF(z), g¥'(z),
RE(x), fA(x), g (z), £ (x), g¢ (z). This notation corresponds to names of variables and fields in the UFO
system, which is listed in Section 2.16.

2.1 Specification of variables and the box constraints

First we must specify the number of variables using the statement $NF=number_of_variables. If there are
no box constraints we set $SKBF=0. In the opposite case we set SKBF=1 or $KBF=2. If $SKBF=1 or
$KBF=2, then

X(1) - unbounded ,FIX(T) =0
XLI) < X(I) i IX(D) = 1

X(I) <XUu@I) ifIX(I) =2
XL(I) < X <XU(I) ,ifIX(I)=3
X - constant CAIX(I) =5

where 1<I<NF. The option $KBF=2 must be chosen if IX(I)=3 for at least one index 1<I<NF. Then two
different fields XL(I) and XU(I), 1<I<NF are declared. In the opposite case we set $KBF=1 and only one
common field XL(I)=XU(I), 1<I<NF is declared.

The initial values of variables X(I), 1<I<NF, types of box constraints IX(I), 1<I<NF, and lower and
upper bounds XL(I) and XU(I), 1<I<NF, can be specified using macrovariable $INPUT. The default
values are IX(I)=0 and XL(I)=XU(I)=0, 1<I<NF. For example:

$KBF=2; $NF=4

$SET(INPUT)
X(l)le
X (2)=x9; IX(2)=1; XL(2)=x%
X (3)=x3; IX(3)=3; XL(3)=x%; XU(3)=xY{
X(4)=x4; IX(4)=5

$ENDSET

The UFO system allows us to use a scaling of variables (for instance if the values of variables differ
very much in their magnitude). We set the option SNORMEF:

$NORMF=1 - Scaling parameters XN(I), 1<I<NF, are determined automatically so that
X(I)/XN(I)=1, 1<I<NEF, for the initial values of variables.
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$NORMF=2 - Scaling parameters must be specified by the user by means of the macrovariable
$INPUT.

The scaling of variables is recommended only in exceptional cases since it increases the computational time
and storage requirements. The scaling of variables is suppressed if SNORMF=0 (this value is default).
The scaling of variables is not permitted in the case of general constraints (if $KBC>0).

2.2 Specification of the model function (dense problems)

If the macrovariable $MODEL is not specified or if $MODEL="FF’, then the objective function is defined
by the formula

F(X) = 4+ FF(X) if $IEXT = 0 (minimization)
or
F(X) = — FF(X) if $IEXT = 1 (maximization)

Option $IEXT=0 is default.

The model function FF(X) must be defined by the user either directly in the full dialogue mode, or
by using corresponding macrovariables in the batch (or mixed) mode. The value of the model function is
specified by using the macrovariable SFMODELF:

$SET(FMODELF)

FF = value FF(X)

(for given values of variables X(I), 1<I<NF)
$ENDSET

The first derivatives of the model function are specified by using the macrovariable §GMODELF:

$SET(GMODELF)
GF(1) = derivative OFF (X)/0X(1)
GF(2) = derivative OFF(X)/0X(2)
GF(NF) = derivative OFF(X)/0X(NF)
(for given values of variables X(I), 1<I<NF)
$ENDSET
The second derivatives of the model function are specified by using the macrovariable SHMODELF. If
$HESF="D’, the Hessian matrix is assumed to be dense and we specify only its upper half:

$SET(HMODELF)
HF(1) = derivative 9*FF(X)/0X(1)?
HF(2) = derivative 9*FF(X)/0X(1)0X(2)
HF(3) = derivative 0?°FF(X)/0X(2)?
HF(4) = derivative 0°FF(X)/0X(1)0X(3)
HF(5) = derivative 9*FF(X)/0X(2)0X(3)
HF(6) = derivative 9*FF(X)/0X(3)?

HF(NF#(NF+1)/2) = derivative 9?°FF(X)/0X(NF)?
(for given values of variables X(I), 1<I<NF)
$ENDSET

If the macrovariables $§GMODELF or $HMODELF are not defined, we suppose that the first or the
second derivatives of the model function are not given analytically. In this case, they are computed nu-
merically by using the UFO system routines whenever it is required. If it is advantageous to compute the

first derivatives of model function FF(X) together with its value, we can replace the set of macrovariables
$FMODELF, $GMODELF by the common macrovariable SFGMODELF. Similarly we can replace the set
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of macrovariables $FMODELF, $GMODELF, $SHMODELF by the common macrovariable $FGHMOD-
ELF.

To improve the efficiency of the computation, we can specify additional information about the model
function FF(X). The first piece of information, useful for an automatic choice of the optimization method,
is the computational complexity specified by the macrovariable $KCF:

$KCF=1 - Evaluation of the model function FF(X) is very easy (it requires O(n) simple oper-
ations at most).

$KCF=2 - Evaluation of the model function FF(X) is of medium complexity (it requires O(n)
complicated operations at least and O(n?) simple operations at most).

$KCF=3 - Evaluation of the model function FF(X) is extremely difficult (it requires O(n?)

complicated or O(n?) simple operations at least).

The option $KCF=2 is default. An additional useful piece of information is the analytical complexity
(differentiability and conditioning), which is specified by the macrovariable $KSF:

$KSF=1 - The model function FF(X) is smooth and well-conditioned.
$KSF=2 - The model function FF(X) is smooth but ill-conditioned.
$KSF=3 - The model function FF(X) is nonsmooth.

The option $KSF=1 is default. Other specifications which can improve the computational efficiency and
robustness of optimization methods are a lower bound of the objective function values and an upper
bound of the stepsize. Both these values depend on the definition of the objective function and can be
specified by the statements $FMIN=Ilower_bound (for the objective function) and $XMAX=upper_bound
(for the stepsize). We recommend a definition of $FMIN whenever it is possible and a definition of $XMAX
whenever the objective function contains exponentials.

If SMODEL="FL’, we suppose the model function to be linear of the form

NF
FF(X) =FF + ) GF(I) * X(I)
=1
In this case we need not specify the value and the first derivatives of the model function by the macrovari-
ables $FMODELF and $GMODELF as in the general case. Instead, we must specify the coefficients FF
(constant value) and GF(I), 1<I<NF, (constant gradient) by using the macrovariable $INPUT:

$ADD(INPUT)
FF = constant value
GF(1) = constant derivative OFF(X)/0X(1)
GF(2) = constant derivative OFF(X)/0X(2)
GF(NF) = constant derivative OFF(X)/0X(NF)
$ENDADD

If SMODEL="FL’, we usually assume that either box constraints or general linear constraints are given.
In this case the optimization problem is the linear programming problem.
If SMODEL="FQ’, we suppose the model function to be quadratic of the form

NF 1 NF NF
FF(X) = FF + Y GF(I) « X(I) + 3 > THF(K) «X(I) + X(J)
I=1 I=1J=1

where K=MAX(I,J)«(MAX(I,J)-1)/2+MIN(I,J). In this case we need not specify the value, the first and
second derivatives of the model function by the macrovariables $SFMODELF, $§GMODELF and $HMOD-
ELF as in the general case. The coefficients FF (constant value) and GF(I), 1<I<NF, (constant gradient)
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are specified in the same way as in the linear case. The coefficients HF(K), I <K<NFx%(NF+1)/2, (the con-
stant Hessian matrix) must be specified by using the macrovariable $INPUT. If $HESF="D’, the Hessian
matrix is assumed to be dense and we specify only its upper half:

$ADD(INPUT)

HF(1) = constant derivative 9°FF(X)/0X(1)?
HF(2) = constant derivative 9?°FF(X)/9X(1)9X(2)
HF(3) = constant derivative 9°FF(X)/0X(2)?
HF(4) = constant derivative 9°FF(X)/0X(1)0X(3)
HF(5) = constant derivative 9°FF(X)/0X(2)0X(3)
HF(6) = constant derivative 9°FF(X)/0X(3)?

HF(NF*(NF+1)/2) = constant derivative 0°FF(X)/0X(NF)?
$ENDADD

If SMODEL="FQ’, we usually assume that either box constraints or general constraints are given. In this
case the optimization problem is the quadratic programming problem.

If the model function is linear or quadratic, then the options $KCF and $KSF need not be defined
since they are not used.

2.3 Specification of the model function (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Hessian matrix HF. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $SHESF="S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Hessian matrix is specified by using the macrovariable $INPUT. Two integer vectors IH and
JH are used where TH(I), 1<I<NF+1, are pointers and JH(K), 1<K<M, are indices of nonzero elements.
Only the upper half of the Hessian matrix is assumed and the nonzero elements are ordered in rows. The
number of nonzero elements must be specified using the statement $M=number_of_elements. The number
of nonzero elements could be greater than is required (twice say) since it is used for the declaration of
working fields. For example, if we have the Hessian matrix

hlla h125 hl&) 07 hﬂ)
h21a h22) 0; h’24a 0
HF = | Y}, 0, AL, 0, K,
Oa tha Oa h£‘4, 07
hE, 0, hE, 0, hE

then we have to set:

$NF=5
$M=20 (the minimum required value is M=10)
$ADD(INPUT)
IH(1)=1; H(2)=5; [H(3)=7
IH(4)=9; IH(5 ):10 IH(6)=11
JH(1)=1; JH(2)=2; JH(3)=3; JH(4)=5; JH(5)=2
TH(6)=4; JH(7)=3: JH(8)=5; JH(9)—4: JH(10)=5
$ENDADD

All diagonal elements of the sparse Hessian matrix are assumed to be nonzero.

As in the case of the dense problem, the second derivatives of the model function can be specified by
using the macrovariable SHMODELF. If $HESF="S’, only nonzero elements of the upper half (including
the diagonal) of the Hessian matrix are specified. For the above example the specification has the form:
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$SET(HMODELF)
HF (1)=nhf}; HF(2)=hf,; HF(3)=h;; HF (4)=h1
HF (5)=hi,; HF(6)=hi,; HF(7)=hL,; HF (8)=hi;
HF(9)=hl,; HF(10)=hi;

$ENDSET

If the model function is quadratic (i.e. if SMODEL="FQ’) and if $SHESF="S’, then the coefficients
HF(K), 1<K<M, (constant sparse Hessian matrix) must be specified by using the macrovariable $INPUT.
If the matrix given in the above example is the constant sparse Hessian matrix, we use the following
specification:

$ADD
HF

INPUT)

1)=h{}; HF (2)=hi5; HF(3)=h{3; HF (4)=h{;

HF(5)=hZy; HF(6)=h%,; HF(7)=hly: HF(8)=hi
HF(9)=h1}; HF(10)=hi;

$ENDADD

=~ o~

2.4  Objective functions for discrete approximation
If we set SMODEL="AF’, then we suppose that the objective function F(X) has this form:

NA
F(X)= )  FA(KA;X) if SKBA =0
KA=1
or

NA
F(X)= ) AW(KA) * (FA(KA; X) — AM(KA)) if $SKBA =1
KA=1
where FA(KA;X), 1<KA<NA, are approximating functions. This form of the objective function is very
useful in large-scale optimization when the approximating functions FA(KA;X), I<KA<NA, are assumed
to have sparse gradients.
If we set SMODEL="AP’, then we suppose that the objective function F(X) has this form:

NA
F(X) = 1 > [FA(KA; X)| # +R if SKBA =0
R
KA=1
or
1 NA
F(X) == > [AW(KA) * (FA(KA; X) — AM(KA))| #+R  if SKBA = 1

R KA=1

where FA(KA;X), 1I<KA<NA, are approximating functions, and R>1 is a real exponent. The value of the
exponent is specified by the choice SREXP=R (default value is REXP=2). Since the most used value of
the exponent is R=2, and since the computations are the simplest and the most efficient for such a choice,
we can use the specification SMODEL="AQ’ in this case (minimization of the sum of squares). Moreover,
$MODEL="AQ’ is formally set whenever we choose $SMODEL="AP’ and $REXP=2.

If we set SMODEL="AA’, then we suppose that the objective function F(X) has this form:

NA
F(X)= Y |FA(KA;X)| if $SKBA =0
KA=1
or
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NA
F(X) = Z |AW(KA) * (FA(KA; X) — AM(KA))| if $JKBA =1
KA=1
where FA(KA;X), 1<KA<NA, are approximating functions.
If we set SMODEL="AM’, then we suppose that the objective function F(X) has the form:

F(X) = _max  (+FA(KA;X)) if SIEXT = -1

F(X) = _max (FAKA;X)|) if SIEXT =0

F(X) = | max (—=FA(KA; X)) if $TEXT = +1

for SKBA=0, or

F(X) = _max  (+AW(KA)« (FAKA; X) - AM(KA))) if SIEXT = ~1

F(X) = _max  ([AW(KA) « (FA(KA:X) — AM(KA)))) if SIEXT =0

F(X) = 1§%<n£%(NA (—AW(KA) x (FA(KA; X) — AM(KA))) if $IEXT = +1
for $KBA=1, where FA(KA;X), 1<KA<NA, are approximating functions. The default value is $IEXT=0
(the minimax or the Chebyshev approximation).

The option $KBA serves as a decision between a simple objective function and a more complicated
one. The simple objective function uses no additional fields while the more complicated one uses two
additional fields at most, AM and AW. Vector AM usually contains frequently used observations which
can be included into the functions FA(KA;X), I<KA<NA, in the case of the simple objective function.
Observations AM(KA), I<KA<NA, are specified by using the macrovariable SINPUT. Their default values
are AM(KA)=0, I<KA<NA. Vector AW serves for possible scaling specified by the option SNORMA:

$NORMA=0 - No scaling is performed. In this case AW(KA)=1, I<KA<NA.

$NORMA=1 - Scaling parameters are determined automatically so that AW(KA)=|AM(KA)|,
1<KA<NA.

$NORMA=2 - Scaling parameters must be specified by the user by means of the macrovariable
$INPUT.

The number of approximating functions NA must be specified, in all the above cases, by using the
statement $NA=number_of_functions.

2.5 Specification of the approximating functions (dense problems)

The approximating functions FA(KA;X), 1<KA<NA, must be defined by the user either directly in the
full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the approximating functions are specified by using the macrovariables SFMODELA or SFMODELAS:

$SET(FMODELA)

FA = value FA(KA;X)

(for a given index KA and given values of variables X(I), 1<I<NF)
$ENDSET

or
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$SET(FMODELAS)
AF(1) = value FA(1;X)
AF(2) = value FA(2;X)
AF(NA) = value FA(NA;X)
$SENDSET

The first derivatives of the approximating functions are specified by using the macrovariables §GMODELA
or §GMODELAS:

$SET(GMODELA)

GA(1) = derivative OFA(KA;X)/0X(1)

GA(2) = derivative OFA(KA;X)/0X(2)

GA(NF) = derivative OFA(KA;X)/0X(NF)

(for a given index KA and given values of variables X(I), 1<I<NF)
$SENDSET

or

$SET(GMODELAS)
AG(1) = derivative OFA(1;X)/0X(1)
AG(2) = derivative OFA(1;X)/0X(2)
AG(NF) = derivative OFA(1;X)/0X(NF)
AG(NF+1) = derivative 0FA(2;X)/9X(1)
AG(NF+2) = derivative 0FA(2;X)/0X(2)
AG(NA«NF) = derivative OFA(NA;X)/0X(NF)
$SENDSET

The second derivatives of the approximating functions are specified by using the macrovariables $HMOD-
ELA or SHMODELAS. If $JACA="D’, the Hessian matrices are assumed to be dense and we specify only
their upper half:

$SET(HMODELA)
HA(1) = derivative 0?FA(KA;X)/0X(1)?
HA(2) = derivative 0?FA(KA;X)/0X(1)0X(2)
HA(3) = derivative 9*FA (KA;X)/0X(2)?
HA(4) = derivative 9*FA (KA;X)/0X(1)0X(3)
HA(5) = derivative 9*FA (KA;X)/0X(2)0X(3)
HA(6) = derivative 0?FA(KA;X)/0X(3)?

HA(NFx(NF+1)/2) = derivative 9*FA(KA;X)/0X(NF)?
(for a given index KA and given values of variables X(I), 1<I<NF)

$SENDSET
or
$SET(HMODELAS)
AH(1) = derivative 9?FA(1;X)/0X(1)?
AH(2) = derivative 0?FA(1;X)/0X(1)0X(2)
AH(3) = derivative 9*FA(1;X)/0X(2)?
AH(4) = derivative 9*FA(1;X)/0X(1)0X(3)

19



AH(5) = derivative 9*FA(1;X)/0X(2)0X(3)
AH(6) = derivative 0?FA(1;X)/0X(3)?

AH
AH
AH
AH
AH(NA*NF*(NF+1)/2) = derivative 9?°FA(NA;X)/0X(NF)?

$ENDSET

NFx
NFx
NFx
NFx*

NF+1)/2) = derivative 9?°FA(1;X)/0X(NF)?
NF+1)/2+1) = derivative 92FA(2;X)/0X(1)?
NF+1)/2+2) = derivative 92FA(2;X)/0X(1)0X(2)
NF+1)/2+3) = derivative 9?FA(2;X)/0X(2)?

AA,_\/_\
Py

If the macrovariables $§GMODELA and $§GMODELAS or $SHMODELA and $HMODELAS are not
defined, we suppose that the first or the second derivatives of the approximating functions are not given
analytically. In this case, they are computed numerically by using the UFO system routines, whenever they
are required. If it is advantageous to compute the first derivatives of approximating functions FA(KA;X),
1<KA<NA, together with their values, we can replace the set of macrovariables $FMODELA, $GMOD-
ELA by the common macrovariable SFGMODELA and the set of macrovariables SFMODELAS, $GMOD-
ELAS by the common macrovariable SFGMODELAS. Similarly we can replace the set of macrovariables
$FMODELA, $SGMODELA, $HMODELA by the common macrovariable SFGHMODELA and the set of
macrovariables SFMODELAS, SGMODELAS, $SHMODELAS by the common macrovariable $FGHMOD-
ELAS.

To improve the efficiency of the computation, we can specify additional information about the approx-
imating functions FA(KA;X), 1<KA<NA. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCA:

$KCA=1 - Evaluations of the approximating functions FA (KA;X), 1<KA<NA, are very easy (they
require O(n) simple operations at most).
$KCA=2 - Evaluations of the approximating functions FA(KA;X), 1<KA<NA, are of medium

complexity (they at least require O(n) complicated operations and O(n?) simple opera-
tions at most).

$KCA=3 - Evaluations of the approximating functions FA(KA;X), 1<KA<NA, are extremely dif-
ficult (they at least require O(n?) complicated or O(n?) simple operations).

The option $KCA=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable $KSA:

$KSA=1 - The approximating functions FA(KA;X), 1<KA<NA, are smooth and well-conditioned.
$KSA=2 - The approximating functions FA(KA;X), 1<KA<NA, are smooth but ill-conditioned.
$KSA=3 - The approximating functions FA(KA;X), 1<KA<NA, are nonsmooth.

The option $KSA=1 is default.
If some of the approximating functions are linear and have the form

NF
FA(KA; X) = Y AG((KA — 1) «NF +1) * X(I)

=1
we can specify them separately. Then the number of linear approximating functions must be specified
by using the statement $NAL=number_of_linear_functions (default value is $NAL=0). We always sup-
pose that the first NAL approximating functions are linear. Then the coeflicients AG((KA-1)«xNF+1I),
1<KA<NAL, 1<I<NF, are specified by using the macrovariable $INPUT, and the macrovariables $FMOD-
ELA or $FMODELAS, $SGMODELA or $GMODELAS, $HMODELA or SHMODELAS are used only for
the specification of the nonlinear approximating functions FA(KA;X), NAL<KA<NA.
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2.6 Specification of the approximating functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix AG. This possibility decreases the computational time and storage requirements for large-
scale optimization problems. In this case we use the option $JACA=’S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors IAG
and JAG are used where TAG(KA), 1<KA<NA+1, are pointers and JAG(K), 1<K<TIAG(NA+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the approximating functions.
The number of nonzero elements must be specified by using the statement $MA=number_of_elements. For
example, if we have the gradients

GA(1;X) = [gf1,0 ,0 , gi4],
GA(2;X) = [0 ,935,0 , g34],
GA(3;X) =0 ,0 ,g%3,0 |,
GA(4;X) = [g41, 945, 945, 0 ],

GA(5;X) = [0 ,0 , g2y, gyl

and the Jacobian matrix

gﬁ )0 )0 7gﬁl
0 ’gé42 )0 7g§1
0

AG(X) = ’0 7gé43 70
ga 9 ,gz}} 0
0 50 » 953 y 954
then we have to set:
$NA=5
$MA=10
$ADD(INPUT)
TAG(1)=1; TAG(2)=3; IAG(3)=5
TAG(4)=6; ( )=9; IAG(6)=11
JAG(1)=1; JAG(2)=4; JAG(3):2 AG(4)=4; JAG(5)=3
JAG(6):1; G(7)=2; JAG(8)=3; JAG(9)=3; JAG(10)=4
$SENDADD

As in the case of the dense problem, the first derivatives of the approximating functions can be specified
by using the macrovariables §GMODELA or SGMODELAS. If $JACA=’S’, only nonzero elements of the
gradients are specified. There are two possibilities distinguished by the macrovariable SARED (the default
value is SARED="N’). If $ARED="N’, indices of nonzero elements remains unchanged. If SARED="Y", in-
dices of nonzero elements are replaced by indices of elements of reduced gradients. If KA-th approximating
function depends on LA variables, we use indices 1,2, ..., LA.

For the above example the specifications have the form:
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$SET(GMODELA)

IF (KA.EQ.1) THEN
GA(1) = OFA(1;X)/9X(1)
GA(4) = OFA(1;X)/9X(4)
ELSE IF (KA.EQ.2) THEN
GA(2) = OFA(2:X)/0X(2)
GA(4) = OFA(2:X)/0X(4)
ELSE IF (KA.EQ.3) THEN
GA(3) = OFA(3;X)/0X(3)
ELSE IF (KA.EQ.4) THEN
GA(1) = OFA(4;X)/0X(1)
GA(2) = OFA(4;X)/9X(2)
GA(3) = OFA(4;X)/0X(3)
ELSE
GA(3) = OFA(5:X)/0X(3)
GA(4) = OFA(5:X)/0X(4)
ENDIF

$ENDSET
if $ARED="N",

$SET(GMODELA)
IF (KA.EQ.1) THEN

GA(1) = OFA(1;X)/0X(1)
GA(2) = OFA(1;X)/0X(4)
ELSE IF (KA.EQ.2) THEN
GA(1) = OFA(2:X)/0X(2)
GA(2) = OFA(2:X)/9X(4)
ELSE IF (KA.EQ.3) THEN
GA(1) = OFA(3;X)/0X(3)
ELSE IF (KA.EQ.4) THEN
GA(1) = OFA(4;X)/0X(1)
GA(2) = OFA(4;X)/0X(2)
A(3) = OFA(4;X)/0X(3)

GA(1) = OFA(5:X)/0X(3)
GA(2) = OFA(5:X)/0X(4)
ENDIF

$ENDSET
if $ARED="Y" or
$SET(GMODELAS)
AG( ) = OFA(1:X)/0X

AG(2) = OFA(1;X)/0X
AG(3) = OFA(2:X)/0X
AG(4) = OFA(2:X)/0X
AG(5) = OFA(3:X)/0X
AG(6) = OFA(4:X)/0X
AG(7) = OFA(4:X)/0X
AG(8) = OFA(4:X)/0X
AG(9) = 8FA(5 X)/8X
AG(10) = OFA(5:X)/OX (4)

$ENDSET



in both cases.

As in the case of the dense problem, the second derivatives of the approximating functions can be
specified by using the macrovariables SHMODELA or SHMODELAS. If $JACA="S’, only nonzero elements
of the Hessian matrices are specified. The use of macrovariable SBHMODELA is allowed only if SARED="Y".
For the above example the specifications have the form:

$SET(HMODELA)
IF (KA.EQ.1) THEN
HA( ) = 92FA(1;X)/9X(1)?
) = 92FA(1;X)/9X(1)9X(4)
) = 92FA(1;X) /X (4)?

ELSE IF (KA.EQ.2) THEN
HA(1) = 9?FA(2;X)/0X(2)?
HA(2
HA(3) = 9?FA(2;X)/0X(4)2

ELSE IF (KA.EQ.3) THEN
HA(1) = 92FA(3;X)/0X(3)?
ELSE IF (KA.EQ.4) THEN
= 9?FA(4:X) /90X (
O2FA (4:X) /X (
92FA(4:X) /OX(
92FA(4:X) /OX(
(4;X)/0X(
(4:X)/0X(

HA(2
HA(3
(1
(2) = 92FA(2:X)/0X(2)9X(4)
3
(1

HA
HA
A

)

02FA(4;X)/0X
02FA(4;X)/0X

Y

4;X
4;X
4;X
4;X
X
X
X

(1) =
(2)
(3)
HA(4)
HA(5)
HA(6)

ELSE
HA(1) = 0?FA(5;X)/0X(3)?
HA(2) = 0?FA(5;X)/0X(3)0X(4)
HA(3) = 0?FA(5;X)/0X(4)?
ENDIF
$ENDSET

if SARED="Y" or

$SET(HMODELAS)
AH( ) = 92FA(1;X) /X (1)?
= 9?FA(1;X)/0X(1)0X (4)
= O?FA(1;X)/0X(4)?
92FA(2:X)/9X(2)?
92FA(2:X) /X (
(2;X)/0X(
(3;X)/0X(
(4;X)/0X(
(4;X)/0X(

Y

)OX(4)
)2
)

02FA(2;X)/0X
02FA(3;X)/0X
92FA(4;X)/0X(1)?
)/0X

2

1
1
4
2
2
4
3
1
1

0°FA
O°FA

X(2)

2
9X(3)
0X(3)

)0
(4:X)/0X(2)
2FA(4;X)/0X (1)
92FA(4;X)/0X(2)
52FA(4;X)/0X(3)
92FA(5;X)/0X(3)

(5;:X)/0X(3)0
(5:X)/OX(4)?

)

2
X(4)

O2FA(5:X)/0X
O2FA (5:X)/0X

)

)

AH(2) =
AH(3) =
AH(4) =
AH(5)
AH(6)
AH(7)
AH(8)
AH(9)
AH(10)
AH(L1)
AH(12)
AH(13)
AH(14)
AH(15)
AH(16)
$ENDSET
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in both cases. Note that the dimensions of arrays HA or AH must be specified by the statement
$MHA=dimension_of HA or $MAH=dimension_of_AH.

If some of the approximating functions are linear (i.e. if SNAL>0) and if $JACA="S’, then the coeffi-
cients AG(K), 1<K<TIAG(NAL+1)—1 (constant part of the sparse Jacobian matrix), must be specified by
using the macrovariable SINPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

$ADD(INPUT)
AG(1)=gf}; AG(2)=gi; AG(3)=g3h; AG(4)=gsy
AG(5)=gs3; AG(6)=g31: AG(T)=g15; AG(8)=g33
AG(9)=giy; AG(10)=gZ}

$ENDADD

There is another possibility which can be useful when all approximating functions are linear. It is based
on the usage of special procedure UKMAI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMATI1 is formally called by using the statement

CALL $UKMATI(K,LGAKI) or  $SETAG(K,I,GAKI)

where K is an index of a given approximating function (a row of the Jacobian matrix), I is an index
of a given variable (a column of the Jacobian matrix), and GAKI is the numerical value of the element
OFA (K;X)/0X(I). For the example given above we can write:

$ADD(INPUT)
$SETAG(1,1,04%)
$SETAG(1, 4,9144)
$SETAG(2, 2,g2 )
$SETAG(2, 4,92 )
$SETAG(3,3,95%)
$SETAG(4,1,94)
$SETAG(4,2,g42)
$SETAG (4, 3,943)
$SETAG(5, 3,g5 )
$SETAG(5,4,92,)

$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields TAG and
JAG beforehand.

If we use the option $JACA="S’, then we can specify a form of the objective function sparse Hessian
matrix. There are four possibilities:

$HESF="D’ - Dense Hessian matrix.

$HESF="B’ - Partitioned sparse Hessian matrix. This matrix is a sum of simple Hessian matrices
which correspond to the individual approximating functions. Only nonzero blocks are
stored.

$HESF='"S’ - General sparse Hessian matrix (the same as the model function Hessian matrix
corresponding to the option $HESF="S’).

$SHESF="N’ - Hessian matrix is not used.

This specification only serves for an internal realization of optimization methods and has no influence on
the user’s input. The default option is $HESF="D".
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2.7 Objective functions for optimization of dynamical systems

If we set SMODEL="DF’, then we suppose that the objective function F(X) has this form:

TAMAX
F(X) = / FA(X, YA(TA), TA) dTA + FF(X, YA(TAMAX), TAMAX)
TAMIN

where FA(X,YA(TA),TA) is a smooth subintegral function and FF(X,YA(TAMAX),TAMAX) is a smooth
terminal function. At the same time

dYA(KE; TA)
dTA
where FE(KE;X,YA(TA),TA), 1<KE<NE, are smooth state functions and FY(KE;X), 1<KE<NE, are

smooth initial functions.
If we set $SMODEL="DQ’, then we suppose the objective function F(X) has the form:

= FE(KE; X, YA(TA), TA), YA(KE; TAMIN) = FY(KE; X)

1 TAMAX NE
F(X) == / WE(KE; TA) % (YA(KE; TA) — YE(KE; TA))? dTA
2 JramiNn (52,
1 NE
+3 D EW(KE) « (YA(KE; TAMAX) — EY(KE))”
KE=1

At the same time

dYA(KE; TA)
dTA

where FE(KE;X,YA(TA),TA), 1I<KE<NE, are smooth state functions and FY(KE;X), 1<KE<NE, are
smooth initial functions.

= FE(KE; X, YA(TA), TA), YA(KE; TAMIN) = FY(KE; X)

In all the above cases, the statement $NE=number_of_differential_equations must be used for the speci-
fication of number of differential equations NE. Moreover, values TAMIN and TAMAX have to be specified
by using the macrovariable SINPUT.

$ADD(INPUT)
TA = initial (minimum) value of the independent variable (TA = TAMIN)
TAMAX = maximum value of the independent variable

$ENDADD

2.8 Specification of the state functions

The state functions FE(KE;X,YA(TA),TA), 1<KE<NE, must be defined by the user either directly in the
full dialogue mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of
the state functions are specified by using the macrovariables $SFMODELE or $SFMODELES:

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$ENDSET

or

$SET(FMODELES)
EF(1) = value FE(1;X,YA(TA),TA)
EF(2) = value FE(2;X,YA(TA),TA)
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EF(NE) = value FE(NE;X,YA(TA),TA)
$ENDSET

The first derivatives of the state functions according to the variables are specified by using the macrovari-
ables SGMODELE or $GMODELES:

$SET(GMODELE)

GE(1) = derivative OFE(KE;X,YA(TA),TA)/0X(1)

GE(2) = derivative OFE(KE;X,YA(TA),TA)/0X(2)

GE(NF) = derivative OFE(KE;X,YA(TA),TA)/0X(NF)

(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$ENDSET

or

$SET(GMODELES)
EG(1) = derivative OFE(1;X,YA(TA),TA)/0X(1)
EG(2) = derivative OFE(1;X,YA(TA),TA)/0X(2)
EG(NF) = derivative OFE(1;X,YA(TA),TA)/0X(NF)
EG(NF+1) = derivative OFE(2;X,YA(TA),TA)/0X(1)
EG(NF+2) = derivative OFE(2;X,YA(TA),TA)/0X(2)
EG(NE«NF) = derivative 9FE(NE;X,YA(TA),TA)/0X (NF)
$ENDSET

The first derivatives of the state functions according to the state variables are specified by using the
macrovariables SDMODELE or $DMODELES:

$SET(DMODELE)

DE(1) = derivative OFE(KE;X,YA(TA),TA)/0YA(1)

DE(2) = derivative OFE(KE;X,YA(TA),TA)/0YA(2)

DE(NE) = derivative OFE(KE;X,YA(TA),TA)/0YA(NE)

(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$SENDSET

or

$SET(DMODELES)
ED(1) = derivative OFE(1;X,YA(TA),TA)/0YA(1)
ED(2) = derivative OFE(1;X,YA(TA),TA)/0YA(2)
ED(NE) = derivative 9FE(1;X,YA(TA),TA)/OYA(NE)
ED(NE+1) = derivative OFE(2;X,YA(TA),TA)/0YA(1)
ED(NE+2) = derivative OFE(2;X,YA(TA),TA)/0YA(2)
ED(NE+NE) = derivative FE(NE;X,YA(TA),TA) /YA (NE)
$ENDSET
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If it is advantageous to compute the first derivatives of the state functions FE(KE;X,YA(TA),TA),
1<KE<NE, together with their values, we can replace the set of macrovariables SFMODELE, $GMOD-
ELE, $DMODELE by the common macrovariable SFGDMODELE and the set of macrovariables SFMOD-
ELES, SGMODELES, $DMODELES by the common macrovariable $FGDMODELES. Partially we can
replace the macrovariables $FMODELE, $§GMODELE or $FMODELE, $DMODELE or $SGMODELE,
$DMODELE by the common macrovariables SFGMODELE or $FDMODELE or $GDMODELE, re-
spectively. Similarly we can replace the macrovariables $SFMODELES, $SGMODELES or $FMODELES,
$DMODELES or $GMODELES, $DMODELES by the common macrovariables $FGMODELES or $FD-
MODELES or $§GDMODELES, respectively.

If SMODEL="DQ’, we have to define the functions WE(KE;TA) and YE(KE;TA), 1<KE<NE, for
a given index KE and a given time TA. These functions can be specified by using the macrovariable
$SFMODELE together with the state function FE(KE;X,YA(TA),TA):

$SET(FMODELE)
FE = value FE(KE;X,YA(TA),TA)
WE = value WE(KE;TA)
YE = value YE(KE;TA)
(for a given index KE, a given vector of variables X,

a given vector of state variables YA(TA) and a given time TA)
$SENDSET

The default values WE(KE;TA)=1 and YE(KE;TA)=0 cannot be specified, they are supposed automati-
cally.

2.9 Specification of the initial functions

The initial functions FY(KE;X), 1<KE<NE, must be defined by the user either directly in the full dialogue
mode or by using corresponding macrovariables in the batch (or mixed) mode. The values of the initial
functions are specified by using the macrovariables $FMODELY or $FMODELYS:

$SET(FMODELY)

FE = value FY(KE;X)

(for a given index KE and a given vector of variables X)
$ENDSET

or

$SET(FMODELYS)
EF(1) = value FY(1;X)
EF(2) = value FY(2;X)
EF(NE) = value FY(NE;X)
$ENDSET

The first derivatives of the initial functions according to the variables are specified by using the macrovari-
ables SGMODELY or $GMODELYS:

$SET(GMODELY)
GE(1) = derivative 0FY(KE;X)/0X(1)
GE(2) = derivative OFY(KE;X)/0X(2)
GE(NF) = derivative OFY(KE;X)/0X(NF)
(for a given index KE and a given vector of variables X)
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$ENDSET
or

$SET(GMODELYS)
EG(1) = derivative 0FY(1;X)/0X(1)
EG(2) = derivative 0FY(1;X)/0X(2)
EG(NF) = derivative 0FY(1;X)/0X(NF)
EG(NF+1) = derivative 0FY(2;X)/0X(1)
EG(NF+2) = derivative 0FY(2;X)/0X(2)
EG(NE«NF) = derivative 0FY(NE;X)/0X(NF)
$SENDSET

If it is advantageous to compute the first derivatives of initial functions FY(KE;X), I<KE<NE, together
with their values, we can replace the set of macrovariables SFMODELY, $§GMODELY by the common
macrovariable SFGMODELY and the set of macrovariables SFMODELYS, $GMODELYS by the common
macrovariable $FGMODELYS.

If the initial values YA(KE;TAMIN), 1<KE<NE, do not depend on the variables X(I), 1<I<NF, they
can be specified by using the macrovariable SINPUT:

$ADD(INPUT)
YA(1) = initial value YA(1,TAMIN)
YA(2) = initial value YA(2,TAMIN)
YA(NE) = initial value YA(NE,TAMIN)
$ENDADD

2.10 Specification of the subintegral function

If SMODEL="DF", the subintegral function FA(X,YA(TA),TA) must be defined by the user either directly
in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The
value of the subintegral function is specified by using the macrovariable $FMODELA:

$SET(FMODELA)
FA = value FA(X,YA(TA),TA)
(for a given vector of variables X, a given vector of state variables YA(TA)

and a given time TA)
$SENDSET

The first derivatives of the subintegral function according to the variables are specified by using the
macrovariable $§GMODELA:

$SET(GMODELA)
GA(1) = derivative OFA(X,YA(TA),TA)/0X(1)
GA(2) = derivative OFA(X,YA(TA),TA)/0X(2)
GA(NF) = derivative OFA(X,YA(TA),TA)/0X(NF)
(for a given vector of variables X, a given vector of state variables YA(TA)

and a given time TA)
$ENDSET
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The first derivatives of the subintegral function according to the state variables are specified by using the
macrovariable $DMODELA:

$SET(DMODELA)
DA(1) = derivative OFA(X,YA(TA),TA)/0YA(1)
DA(2) = derivative OFA(X,YA(TA),TA)/0YA(2)
DA(NE) = derivative OFA(X,YA(TA),TA)/0YA(NE)
(for a given vector of variables X, a given vector of state variables YA (TA)
and a given time TA)
$ENDSET

If it is advantageous to compute the first derivatives of subintegral function FA(X,YA(TA),TA) together
with its value, we can replace the set of macrovariables SFMODELA, $§GMODELA, $DMODELA by
the common macrovariable SFGDMODELA. Partially we can replace the macrovariables $FMODELA,
$GMODELA or $SFMODELA, $SDMODELA or $§GMODELA, $DMODELA by the common macrovariables
$FGMODELA or $FDMODELA or $§GDMODELA, respectively.

If $MODEL="DQQ’ and the objective function contains an integral part, then we have to set $MOD-
ELA="YES’ and define the functions WE(KE;TA) and YE(KE;TA), 1<KE<NE, by using the macrovari-
able $SFMODELE.

2.11 Specification of the terminal function

If SMODEL="DF", the terminal function FF(X,YA(TAMAX),TAMAX) must be defined by the user either
directly in the full dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode.
The value of the terminal function is specified by using the macrovariable $FMODELF:

$SET(FMODELF)
FF = value FF(X,YA(TAMAX),TAMAX)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$SENDSET

The first derivatives of the terminal function according to the variables are specified by using the macrovari-
able SGMODELF:

$SET(GMODELF)
GF(1) = derivative OFF(X,YA(TAMAX),TAMAX)/0X(1)
GF(2) = derivative OFF(X,YA(TAMAX),TAMAX)/0X(2)
GF(NF) = derivative OFF(X,YA(TAMAX),TAMAX)/0X(NF)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)
$ENDSET

The first derivatives of the terminal function according to the state variables are specified by using the
macrovariable $DMODELF":

$SET(DMODELF)
DF(1) = derivative OFF(X,YA(TAMAX),TAMAX)/0YA(1)
DF(2) = derivative OFF(X,YA(TAMAX),TAMAX)/0YA(2)
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DF(NE) = derivative OFF(X,YA(TAMAX),TAMAX)/0YA(NE)
(for a given vector of variables X, a given vector of state variables YA(TAMAX)
and a given time TAMAX)

$ENDSET

If it is advantageous to compute the first derivatives of terminal function FF(X,YA(TAMAX),TAMAX)
together with its value, we can replace the set of macrovariables SFMODELF, $GMODELF, $DMODELF
by the common macrovariable $FGDMODELF. Partially we can replace the macrovariables $FMODELF,
$GMODELF or $SFMODELF, $DMODELF or §GMODELF, $DMODELF by the common macrovariables
$FGMODELF or $FDMODELF or $§GDMODELF, respectively.

If SMODEL="DQ’ and the objective function contains a terminal part, then we have to set $MOD-
ELF="YES’ and define the coefficients EW(KE) and EY(KE), 1<KE<NE, by using the macrovariable
$INPUT:

$SADD(INPUT)
EW(1) = value EW(1); EY(1) = value EY(1)
EW(2) = value EW(2); EY(2) = value EY(2)
EW(NE) = value EW(NE); EY(NE) = value EY(NE)
$ENDADD

2.12  Optimization with general constraints

If there are no general constraints we set $KBC=0. In the opposite case we set $KBC=1 or $KBC=2. If
$KBC=1 or $KBC=2, then

FC(KC;X) - unbounded ,fIC(KC) =0
CL(KC) < FC(KC;X) ,if IC(KC) = 1

C(KC;X) < CU(KC) , if IC(KC) = 2
CL(KC) < FC(KC;X) < CU(KC) ,if IC(KC) =3
CL(KC) = FC(KC;X) = CU(KC) ,If IC(KC) =5

where 1<KC<NC. The option $KBC=2 must be chosen if IC(KC)=3 for at least one index 1<KC<NC.
Then two different fields CL(K) and CU(KC), 1<KC<NC are declared. In the opposite case we set
$KBC=1 and only one common field CL(KC)=CU(KC), 1<KC<NC is declared. The number of constraints
NC must be specified by using the statement $NC=number_of_functions.

The types of general constraints IC(KC), 1<KC<NC, and lower and upper bounds CL(KC) and
CU(KC), 1<KC<NC, can be specified by using the macrovariable $INPUT. The default values are
IC(KC)=3 and CL(KC)=CU(KC)=0, 1<KC<NC. For example:

$KBC=2; $NC=3

$ADD(INPUT)
IC(1)=1; CL(1 ):cl
IC(2)=1; CL(2)=c
IC(3)=3; CL(S):cé; CU(3)=
$ENDADD

2.13  Specification of the constraint functions (dense problems)

The constraint functions FC(KC;X), 1<KC<NC, must be defined by the user either directly in the full
dialogue mode, or by using corresponding macrovariables in the batch (or mixed) mode. The values of the
constraint functions are specified by using the macrovariables $FMODELC or $SFMODELCS:
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$SET(FMODELC)

FC = value FC(KC;X)

(for a given index KC and given values of variables X(I), 1<I<NF)
$ENDSET

or

$SET(FMODELCS)
CF(1) = value FC(1;X)
CF(2) = value FC(2;X)
CF(NC) = value FC(NC;X)
$ENDSET

The first derivatives of the constraint functions are specified by using the macrovariables §GMODELC or
$GMODELCS:

$SET(GMODELC)

GC(1) = derivative OFC(KC;X)/9X(1)

GC(2) = derivative OFC(KC;X)/9X(2)

GC(NF) = derivative 0FC(KC;X)/0X(NF)

(for a given index KC and given values of variables X(I), 1<I<NF)
$ENDSET

or

$SET(GMODELCS)
CG(1) = derivative OFC(1;X)/0X(1)
CG(2) = derivative OFC(1;X)/9X(2)
CG(NF) = derivative 9FC(1;X)/0X(NF)
CG(NF+1) = derivative 0FC(2;X)/0X(1)
CG(NF+2) = derivative 0FC(2;X)/0X(2)
CG(NC«NF) = derivative 9FC(NC;X)/0X(NF)
$ENDSET

The second derivatives of the constraint functions are specified by using the macrovariables SHMODELC
or SHMODELCS. If $JACC="D’, the Hessian matrices are assumed to be dense and we only specify their
upper half:

$SET(HMODELC)
HC(1) = derivative 9?FC(KC;X)/0X(1)?
HC(2) = derivative 9°FC(KC;X)/0X(1)0X(2)
HC(3) = derivative 9°FC(KC;X)/0X(2)?
HC(4) = derivative 9*FC(KC;X)/0X(1)0X(3)
HC(5) = derivative 9?FC(KC;X)/0X(2)0X(3)
HC(6) = derivative 9?FC(KC;X)/0X(3)?

HC(NFx(NF+1)/2) = derivative 0°FC(KC;X)/0X(NF)?
(for a given index KC and given values of variables X(I), 1<I<NF)
$ENDSET

or
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$SET(HMODELCS)

CH(1) = derivative 9?°FC(1;X)/0X(1)?

CH(2) = derivative 9*FC(1;X)/0X(1)0X(2)

CH(3) = derivative 9?°FC(1;X)/0X(2)?

CH(4) = derivative 9?°FC(1;X)/0X(1)0X(3)

CH(5) = derivative 9?FC(1;X)/0X(2)0X(3)

CH(6) = derivative 9?°FC(1;X)/0X(3)?
CH(NF*(NF+1)/2) = derivative 9°FC(1;X)/0X(NF)?
CH(NF=*

CH

CH

CH(NC*NFx(NF+1)/2) = derivative 9?°FC(NC;X)/0X(NF)?2
$ENDSET

NFx
NFx

AA,_\/_\
Py

)
NF+1)/2+1) = derivative 92FC(2;X)/0X(1)?
NF+1)/2+2) = derivative 92FC(2;X)/0X(1)0X(2)
NF+1)/2+3) = derivative 92FC(2;X)/0X(2)?

If the macrovariables $§GMODELC and $GMODELCS or SHMODELC and $HMODELCS are not
defined, we suppose that the first or the second derivatives of the constraint functions are not given ana-
lytically. In this case, they are computed numerically, by using the UFO system routines whenever they
are required. If it is advantageous to compute the first derivatives of constraint functions FC(KC;X),
1<KC<NC, together with their values, we can replace the set of macrovariables SFMODELC, $GMOD-
ELC by the common macrovariable SFGMODELC and the set of macrovariables $FMODELCS, $GMOD-
ELCS by the common macrovariable SFGMODELCS. Similarly we can replace the set of macrovariables
$FMODELC, $GMODELC, $SHMODELC by the common macrovariable SFGHMODELC and the set of
macrovariables $FMODELCS, $SGMODELCS, $SHMODELCS by the common macrovariable $FGHMOD-
ELCS.

To improve the efficiency of the computation, we can specify some additional information about the
constraint functions FC(KC;X), 1I<KC<NC. The first piece of information, useful for an automatic choice
of the optimization method, is the computational complexity specified by the macrovariable $KCC:

$KCC=1 - Evaluations of the constraint functions FC(KC;X), 1<KC<NC, are very easy (they
require O(n) simple operations at most).
$KCC= 2 - Evaluations of the constraint functions FC(KC;X), 1<KC<NC, are of medium com-

plexity (they at least require O(n) complicated operations and O(n?) simple opera-
tions at most).

$KCC= 3 - Evaluations of the constraint functions FC(KC;X), 1<KC<NC, are extremely diffi-
cult (they at least require O(n?) complicated or O(n?) simple operations).

The option $KCC=2 is default. An additional useful piece of information is the analytical complexity
(conditioning) which is specified by the macrovariable $KSC:

$KSC=1 - The constraint functions FC(KC;X), 1I<KC<NC, are smooth and well-conditioned.
$KSC=2 - The constraint functions FC(KC;X), 1<KC<NC, are smooth but ill-conditioned.
$KSC=3 - The constraint functions FC(KC;X), 1<KC<NC, are nonsmooth.

The option $KSC=1 is default.
If some of the constraint functions are linear and have the form

NF
FO(KC;X) = Y~ CG((KC — 1) » NF + I x X(I)
=1
we can specify them separately. Then the number of linear constraint functions must be specified by using
the statement $NCL=number_of_linear_functions (default value is $NCL=0). We always suppose that the
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first NCL constraint functions are linear. Then the coefficients CG((KC-1)*NF+I), 1<KC<NCL, 1<I<NF,
are specified by using the macrovariable $INPUT and the macrovariables SFMODELC or $FMODELCS,
$GMODELC or $SGMODELCS, $SHMODELC or $HMODELCS are used only for the specification of the
nonlinear constraint functions FC(KC;X), NCL<KC<NC.

2.14 Specification of the constraint functions (sparse problems)

The UFO system contains optimization methods which take into account the sparsity pattern of the
Jacobian matrix CG. This possibility decreases the computational time and storage requirements for
large-scale optimization problems. In this case, we use option $JACC=’S’ which means that the sparsity
pattern is specified. All other specifications remain the same as in the case of dense problems. The sparsity
pattern of the Jacobian matrix is specified by using the macrovariable $INPUT. Two integer vectors ICG
and JCG are used where ICG(KC), 1<KC<NC+1, are pointers and JCG(K), 1<K<ICG(NC+1)-1, are
indices of nonzero elements. Nonzero elements are ordered by the gradients of the constraint functions.
The number of nonzero elements must be specified by using the statement $MC=number_of_elements. The
number of nonzero elements could be greater than is needed (twice say) since it is used for the declaration
of working fields. For example, if we have the gradients

GC(1;X) = [911,0 ,0 , g%,
GC(2;X) = [0 , 95,0 , g54],
GC(3;X) =[0,0 ,953,0 ],
GC(4;X) = [95, 95, 95,0 1,

GC(5:;X) = 1[0 ,0 , 953, 954,

and the Jacobian matrix

glc;l ’0 ’0 7951
0 9% .0 4%
0

CG(X) = 0 Lg% .0
9§ 9% 9% 0
0 0 ,95% .95
then we have to set:
$NC=5
$MC=20 (the minimum required value is MC=10)
$ADD(INPUT)
ICG(1)=1; ICG(2)=3; ICG(3)=5
ICG(4)=6; ICG(5)=9; ICG(6)=11
JCG(1)=1; JCG(2)=4; JCG(3)=2; JCG(4)=4; JCG(5)=3
JCG(6)=1; JCG(7)=2; JCG(8)=3; JCG(9)=3; JCG(10)=4

$ENDADD
As in the case of the dense problem, the first derivatives of the constraint functions can be specified

by using the macrovariables SGMODELC or $§GMODELCS. If $JACC=’S’, only nonzero elements of the
gradients are specified. There are two possibilities distinguished by the macrovariable SCRED (the default
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value is SCRED="N’). If §CRED="N", indices of nonzero elements remains unchanged. If SCRED="Y", in-
dices of nonzero elements are replaced by indices of elements of reduced gradients. If KC-th approximating
function depends on LC variables, we use indices 1,2, ..., LC.

For the above example the specifications have the form:

$SET(GMODELC)
IF (KC.EQ.1) THEN
GC( ) = OFC(1;X)/0X (1)
GC(4) = OFC(1:X)/0X(4)
ELSE IF (KC.EQ.2) THEN
GC(2) = OFC(2:X)/0X(2)
GC(4) = OFC(2:X)/0X(4)
ELSE IF (KC.EQ.3) THEN
C(3) = OFC(3;X)/0X(3)
(1
(2
GC(3

Q

ELSE IF (KC.EQ.4) THEN

) = OFC(4;X)/0X(1)
) = OFC(4;X)/0X(2)
) = OFC(4:X)/0X(3)

GC(1
GC

ELSE
GC(3) = OFC(5:X)/0X(3)
GC(4) = OFC(5;X) /X (4)
ENDIF
$ENDSET

if SCRED="N",

$SET(GMODELC)
IF (KC.EQ.1) THEN
GC( ) = OFC(1;X)/0X(1)
GC(2) = OFC(1;X)/0X(4)
ELSE IF (KC.EQ.2) THEN
GC(1) = OFC(2;X)/0X(2)
GC(2) = OFC(2;X)/0X(4)
ELSE IF (KC.EQ.3) THEN
GC(1) = OFC(3;X)/0X(3)
ELSE IF (KC.EQ.4) THEN
GC(1) = OFC(4;X)/0X(1)
GC(2) = IFC(4X)/0X(2)
GC(3) = IFC(4X) /0X(3)
ELSE
GC(1) = OFC(5;X)/0X(3)
GC(2) = OFC(5;X) /X (4)

ENDIF
$ENDSET
if SCRED="Y" or
$SET(GMODELCS)
CG( ) = OFC(1;X) /90X (1)
CGI(2) = OFC(1LX) J0X (1)
CG(3) = FC(2;X)/0X(2)
CG(4) = OFC(2;X)/0X(4)
CG(5) = IFC(3;X)/0X(3)
CG(6) = IFC(4;X)/0X(1)
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CG(7) = OFC(4;X)/0X(2)
CG(8) = OFC(4;X)/0X(3)
CG(9) = OFC(5;X)/0X(3)
CG(10) = OFC(5;X)/0X(4)
$ENDSET

in both cases.

As in the case of the dense problem, the second derivatives of the constraint functions can be specified
by using the macrovariables SHMODELC or $SHMODELCS. If $JACC="S’, only nonzero elements of the
Hessian matrices are specified. The use of macrovariable SHMODELC is allowed only if §CRED="Y". For
the above example the specifications have the form:

$SET(HMODELC)
IF (KC.EQ.1) THEN
HC( ) = 02FC(1;X)/0X(1)?
) = 0*FC(1:X)/0X(1)9X (4)
) = 02FC(1;X)/0X(4)?

(KC.EQ.2) THEN
= 0°FC(2;X)/0X(2)?
= 02FC(2;X)/0X(2)0X
= 02FC(2;X)/0X(4)?

HC(2
HC(3
ELSE IF
HC(1) =
HC(2) = (4)
HC(3) =
ELSE IF (KC.EQ.3) THEN
HC(1) = 9?FC(3;X)/0X(3)?
ELSE IF (KC.EQ.4) THEN
HC(
HC(
HC(
HC(
HC(
HC(

= 0?FC(4;X)/0X

92FC(4;X)/0X
92FC(
92FC(
(
(

(
)/9X(
)/9X(
)/0X(
)/0X(
)/0X(

Y

0°FC
0°FC

/OX
/OX

)

X
X
X
X
X
X
X

O —

1
2
3
4
)
6

s s

HC(1) = 92FC(5;X)/0X(3)?
HC/(2) = 92FC(5;X)/0X(3)0X
HC(3) = 92FC(5;X) /0X(4)?
ENDIF
$ENDSET

if SCRED="Y" or

$SET(HMODELCS)
CH( ) = 9°FC
= 92FC
= 92FC
82FC

(4)

CH(2) =
CH(3) =
CH(4)
CH(5)
CH(6)
CH(7)
CH(8) =
CH(9) =

CH(10
CH(11

CH(12
CH(13

) =
) =
) =
) =

92FC
92FC
92FC(4;
92FC(4;
92FC(4;
92FC(4;
92FC(4;

(1

(1

(1

(2
0?FC(2;
0?°FC(2;
(3

(4

4;

(
)/9X(
)/9X(
)/OX(



CH(14) = 8?FC(5;X)/0X(3)?

CH(15) = 9%FC(5;X)/0X(3)0X(4)

CH(16) = 0°FC(5;X)/0X (4)?
$ENDSET

in both cases. Note that the dimensions of arrays HC or CH must be specified by the statement
$MHC=dimension_of HC or $MCH=dimension_of_CH.

If some of the constraint functions are linear (i.e. if NCL>0) and if $JACC="S’, then the coefficients
CG(K), 1<K<ICG(NCL+1)—1 (constant part of the sparse Jacobian matrix), must be specified by using
the macrovariable $SINPUT. If the matrix given in the above example is the constant sparse Jacobian
matrix, we use this specification:

$ADD(INPUT)
CG(1)=g{}; CG(2)=g%}; CG(3)=g%; CG(4)=g%,
CG(5)=g$s; CG(6)=g51; CG(7)=9%; CG(8)=g%
CG(9)=g¢5; CG(10)=g¢5,

$ENDADD

There is another possibility which can be useful when all constraint functions are linear. It is based on
the usage of a special procedure UKMCI1 which serves for a direct input of individual Jacobian matrix
elements. The procedure UKMCI1 is formally called by using the statement

CALL SUKMCIL(K,LGCKI) or  $SETCG(K,LGCKI)

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), and GCKI is a numerical value of the element OFC(K;X)/0X(I).
For the example given above we can write:

$ADD(INPUT)

$SETCG(1, ,gn)
$SETCG(1, 4,91 )
$SETCG(2,2,92 )
SSETCG(2,4,65 <)
$SETCG(3, 3,g3 )
SSETCG(4, L))
$SETCG(4,2,g4 )
$SETCG(4, 3,94 )
$SETCG(5,3,95%)
$SETCG(5,4,45,)
$ENDADD

The main advantage of the last possibility is the fact that it is not necessary to specify the fields ICG
and JCG beforehand. If the number of the constraints is very large, then we can use a slightly more
complicated procedure UKMCI2 which uses dynamic structures and therefore works more quickly. The
procedure UKMCI2 is formally called by using the statement

CALL $UKMCI2(K,I,GCKI)

where K is an index of a given constraint function (a row of the Jacobian matrix), I is an index of a given
variable (a column of the Jacobian matrix), GCKI is the numerical value of the element OFC(K;X)/0X(I).
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2.15 Solution of systems of nonlinear functional equations

If we set SMODEL="NE’, then we suppose that the system of nonlinear functional equations

FA(KA;X) =0, 1<KA<NF

is solved. This possibility is equivalent to minimization of sum of squares when $SMODEL="AQ’, but
now NA=NF so that special methods for solving systems of nonlinear functional equations can be used.
Functions FA(KA;X), 1 < KA < NF, are in fact approximating functions. Their specification is described
in Sections 2.5 — 2.6.

2.16 Solution of systems of ordinary differential equations

If we set SMODEL="DE’, then we suppose that the system of ordinary differential equations

dYA(KE; TA)

dTA
is solved in the interval TAMIN < TA < TAMAX, where FE(KE;YA(TA),TA), 1<KE<NE, are smooth
state functions and FY(KE), 1<KE<NE, are smooth initial functions. In this case, the statement

$NE=number_of_differential_equations must be used for the specification of number of differential equations
NE. Moreover, values TAMIN and TAMAX have to be specified by using the macrovariable SINPUT.

$SADD(INPUT)
TA = initial (minimum) value of the independent variable (TA = TAMIN)
TAMAX = maximum value of the independent variable

$ENDADD

= FE(KE; YA(TA),TA), YA(KE;TAMIN) = FY(KE) 1<KE<NE

Specification of state functions is described in Section 2.8. Specification of initial functions is described
in Section 2.9. The resulting state variables (solution of system of ordinary differential equations) can be
stored in all integration steps (if $MED=1) or in prescribed mesh points (if $MED=2). In the second
case, the macrovariable $NA specifies the number of mesh points equidistantly distributed in the interval
TAMIN < TA < TAMAX.

2.17 Additional specifications concerning optimization problems

Useful specifications, which can improve the computational efficiency and robustness of the optimization
methods, are a lower bound for the objective function value and an upper bound for the stepsize. Both
of these values depend on the definition of the objective function and can be specified by the statements
$FMIN=lower_bound (for the objective function value) and $XMAX=upper_-bound (for the stepsize).
We recommend a definition of $FMIN whenever it is possible, and a definition of $XMAX whenever the
objective function contains the exponential functions. If the objective function is a sum of powers (or a sum
of squares), then automatically $FMIN=0. The default option for the maximum stepsize is $XMAX=1000.

If there are no general constraints and if the number of variables is not greater than 100, then we can

use global optimization methods. A decision between local and global optimization is effected by means
of macrovariable SEXTREM:

$EXTREM='L’ - A local extremum is found, which usually contains the starting point in its basin of
attraction.
$EXTREM="G’ - All extremum points in the given region are found and a global extremum is determined.

The default option is SEXTREM="L’. If SEXTREM='G’, we cannot use the common macrovariables
$FGMODELF and $FGHMODELF for a common specification of the value, the gradient and the Hessian
matrix of the model function. Similarly we cannot use the macrovariables SFGMODELA or $FGMODE-
LAS and SFGHMODELA or $FGHMODELAS for a common specification of the approximating functions.
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The global optimization is performed over a bounded region specified by lower and upper bounds XL(I)
and XU(I), 1<I<NF. If these bounds are not specified (using the macrovariable $INPUT), they are com-
puted from initial values of variables and from the given maximum stepsize, so that XL(I)=X(I)-XMAX
and XU(I)=X(I)+XMAX, 1<I<NF. The maximum stepsize is specified, as in the case given above, using
the statement $XMAX=maximum_stepsize. The default option is again $XMAX=1000.

Additional useful specifications, concerning the solution precision, are bounds used in termination
criteria. These bounds can be specified by the macrovariables $TOLX, $TOLF, $TOLB, $TOLG, $TOLC
and $MIT, SMFV, $MFG:

$TOLX - lower bound for a relative change of variables
$TOLF - lower bound for a relative change of function values
$TOLB - lower bound for the objective function value

$TOLG - lower bound for the objective function gradient norm
$TOLC - lower bound for the violated constraint functions

$MIT - maximum number of iterations
$MFV - maximum number of function evaluations
$MFG - maximum number of gradient evaluations

The default values are $TOLX="1.0D-8, $TOLF="1.0D-16’, $TOLB="—1.0D60’, $TOLG="1.0D-6,
$TOLC="1.0D-6" and $MIT=500, SMFV=1000, $MFG=10000.

If a direct solver (SNUMBER=1) is used for direction determination in methods for sparse constrained
problems, the statement $MMA X=space_for_sparse_factor should be given. The default value SMMAX=M
can be insufficient in these cases.

2.18 Conventional names of basic variables and arrays

Basic variables and arrays of optimization problems solved by the UFO system require the use of the
following prescribed names.

NF - Number of variables.

X - Vector of variables.

XN - Scaling coefficients.

XL - Lower bounds of variables.

XU - Upper bounds of variables.

X - Types of box constraints.

NX - Number of box constraints.

FF - Value of the objective function.

GF - Gradient of the objective function.

HF - Hessian matrix of the objective function (only the upper half is stored).
IH - Pointers of diagonal elements of sparse matrix HF.

JH - Column indices of nonzero elements of sparse matrix HF.

NA - Number of approximating functions.

KA - Index of the approximating function.

FA - Value of the KA-th approximating function.

AF - Vector containing values of all approximating functions.

GA - Gradient of the KA-th approximating function.

AG - Jacobian matrix containing gradients of all approximating functions.
IAG - Pointers of row-start elements of sparse matrix AG.

JAG - Column indices of nonzero elements of sparse matrix AG.

MA - Number of nonzero elements of sparse matrix AG.

HA - Hessian matrix of the KA-th approximating function (only the upper half is stored).
AH - Tensor containing Hessian matrices of all approximating functions.
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AM - Vector containing fitted values of all approximating functions.

AW - Vector containing weights of all approximating functions.

NC - Number of constraint functions.

KC - Index of the constraint function.

FC - Value of the KC-th constraint function.

CF - Vector containing values of all constraint functions.

GC - Gradient of the KC-th constraint function.

CcG - Jacobian matrix containing gradients of all constraint functions.

1CG - Pointers of row-start elements of sparse matrix CG.

JCG - Column indices of nonzero elements of sparse matrix CG.

MC - Number of nonzero elements of sparse matrix CG.

HC - Hessian matrix of the KC-th constraint function (only the upper half is stored).
CH - Tensor containing Hessian matrices of all constraint functions.

CL - Lower bounds of constraint functions.

CU - Upper bounds of constraint functions.

1C - Types of general constraints.

W - Vector containing weights of all constraint functions.

NE - Number of state variables and state functions (number of differential equations).
KE - Index of the state function.

FE - Value of the KE-th state function.

EF - Vector containing values of all state functions.

GE - Gradient of the KE-th state function.

EG - Jacobian matrix containing gradients of all state functions.

DE - Matrix containing derivatives of the KE-th state function with respect to state variables.
ED - Tensor containing derivatives of all state functions with respect to state variables.

Note that the names of arrays given above can be changed by the user using statement NAME1="NAME2’
in the macrovariable SINPUT. However, the same names cannot be used for different objects, i.e., NAME2
cannot be taken from the above list. For instance, the example demonstrated in Section 1.2 can be
rewritten in the form

$SET (INPUT)
$X=’U’
U(1)=-1.2D0; U(2)= 1.0D0O
$ENDSET
$SET (FMODELF)
FF=1.0D2* (U (1) **2-U(2) ) **2+(U(1)-1.0D0) **2
$ENDSET
$NF=2
$MOUT=1
$NOUT=1
$BATCH
$STANDARD

2.19 Automatic differentiation

If derivatives of the model function FF are not given, i.e., if only macrovariable SFMODELF is defined,
then either numerical or automatic differentiation is used if it is necessary. The choice of the kind of
differentiation is specified by the macrovariable $IADF:
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$IADF=0 - Derivatives of the model function are computed by numerical differentiation.

$TADF=1 - The first order derivatives of the model function are computed by using the reverse mode
of automatic differentiation. New macrovariable $FGMODELF, which defines the value
FF and the gradient GF of the model function is created and the original macrovariable
$FMODELF is cancelled. The second order derivatives are computed numerically if they
are required.

$IADF=2 - The first order derivatives of the model function are computed by using the reverse mode
of automatic differentiation. New macrovariable $FGMODELF, which defines the value
FF and the gradient GF of the model function is created. The reverse mode is followed
by the forward mode for computation of the second order derivatives. New macrovariable
$HMODELF, which defines the Hessian matrix HF of the model function is created. Finally,
the original macrovariable $FMODELF is cancelled.

Automatic differentiation is realized in the first phase by the UFO control language preprocessor. All
variables contained in macrovariable SFMODELF are redefined and all expressions are transformed in the
way that also the sequence of elementary operations and their parameters are stored. The list of elementary
operations is used in the reverse mode of automatic differentiation by the subroutine RVRSWP (if SIADF=1)
or RVRSWPH (if $TADF=2). The subroutines, which realize elementary operations are included to the UFO
source program.

If the automatic differentiation is chosen ($IADF>0), there are limitations concerning Fortran 77
expressions in the macrovariable $FMODELF:

e If an expression contains array $SFLOAT W(100), say, with elements depending on the vector of
variables, then the user has to declare corresponding array INTEGER TAD_W(100) in the input file
* . UFO (before statements $GLOBAL or $STANDARD).

e Calls of functions and subroutines (with exceptions of intrinsic Fortran 77 functions in the generic
form, i.e., SQRT, EXP, LOG, LOG10, SIN, COS, TAN, ASIN, ACOS, ATAN, SINH, COSH, TANH) are not
permitted.

e Names of variables cannot contain digits.

e Statements containing scalar variables, e.g., W = W * X(I), cannot be used in a cycle. It is necessary
to declare array W(*) and write W(I+1) = W(I) * X(I) instead.

e Blanks cannot be used in WRITE statement. Arguments of functions are not replaced by transformed
variables in WRITE statement.

e Blanks cannot be used in IF and ELSE IF statements. Only comparisons of numbers and variables
are permitted (expressions are forbidden). Arguments of functions and indices of arrays are not
replaced by transformed variables in IF and ELSE IF statements.

e Computed GO TO statement cannot be used.

Automatic differentiation can also be used for computation of derivatives of approximating functions
and constraint functions described by macrovariables SFMODELA and $FMODELC, respectively. In these
cases, the kind of differentiation is specified by macrovariables $TADA and $TADC. The meaning of these
macrovariables and the limitations concerning Fortran 77 expressions in macrovariables SFMODELA and
$FMODELC are the same as those for macrovariables $TADF and $FMODELF described above.

Automatic differentiation can be used for dense problems at present, i.e., it does not work if $JACA="S’,
$JACC="S’, $SHESF="S’, SHESF="B".
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3 Optimization methods in the UFO system

The UFO system has a modular structure. All optimization methods can be set up using the individual sim-
ple modules. For example, the sequential quadratic programming variable metric methods for nonlinearly
constrained optimization problems are set up by using the modules for an objective function evaluation,
penalty function definition, direction determination, quadratic programming solution, stepsize selection,
and variable metric update. The optimization methods contained in the UFO system can be roughly
divided into two groups. The first group contains methods for unconstrained and linearly constrained
optimization problems, while the second group contains methods for general nonlinear programming prob-
lems (or problems which are transformed to general nonlinear programming problems, e.g. [i, I and
minimax problems). Methods for general nonlinear programming problems, i.e. for problems with non-
linear constraints, are classified by their realization form which is determined by using the macrovariable
$FORM:

$FORM="SQ’ - Recursive quadratic programming methods for dense nonlinear programming prob-
lems or dense unconstrained minimax problems.

$FORM="SL’ - Recursive linear programming methods for dense unconstrained minimax problems.

$FORM="SE’ - Recursive quadratic programming methods for sparse equality constrained problems.

$FORM="ST’ - Primal-dual interior point methods for sparse nonlinear programming problems.

$FORM='SF’ - Nonsmooth equation methods for sparse nonlinear programming problems.

$FORM="SP’ - Primal interior point methods for sparse nonlinear programming problems, sparse
unconstrained minimax problems and sparse unconstrained [, or /1 approximation
problems.

$FORM="SM’ - Smoothing methods for sparse unconstrained minimax problems.

Sections 3.1 — 3.29 concern methods for unconstrained and linearly constrained problems. These methods
do not use the macrovariable $SFORM for a classification. Methods for general nonlinear programming
problems are described in Sections 3.30 — 3.33. The basic parts of optimization methods are described in

Sections 3.34 — 3.38. Section 3.39 is devoted to global optimization methods.
Methods for unconstrained and linearly constrained problems contained in the UFO system can be
partitioned into several classes which are specified by using the macrovariable $CLASS:

$CLASS="HM’ - Heuristic methods for small-size problems. This class contains the pattern search
method and the simplex method.

$CLASS="CD’ - Conjugate direction methods which use no matrices. This class contains conjugate
direction methods and variable metric methods with limited memory based on the
Strang recursions.

$CLASS="VM’ - Variable metric methods which use an approximation of the Hessian matrix which
is updated in each iteration.

$CLASS="VL’ - Variable metric methods with limited memory based on compact updates.

$CLASS="VS’ - Variable metric methods with limited memory based on shifted product-form up-
dates.

$CLASS="VP’ - Variable metric methods with limited memory based on corrected product-form
updates.

$CLASS="VN’ - Variable metric methods with limited memory based on projections.

$CLASS="VR’ - Variable metric methods with limited memory based on reduced Hessians.

$CLASS="MN’ - Modified Newton methods which use the Hessian matrix computed either analyti-
cally or numerically.

$CLASS="TN’ - Truncated Newton methods based on the difference approximation of directional

derivatives.
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$CLASS="GN’ - Modified Gauss-Newton methods for nonlinear least squares problems which use the
normal equation matrix as an approximation of the Hessian matrix. These methods
are also realized by using the Jacobian matrix representation.

$CLASS="QN\’ - Quasi-Newton methods for nonlinear least squares problems and nonlinear equations.

$CLASS="QL’ - Quasi-Newton methods with limited memory for sparse nonlinear least squares prob-
lems and sparse nonlinear equations.

$CLASS="QB’ - Quasi-Newton and Brent methods for nonlinear equations.

$CLASS="LP’ - Simplex type methods for linear programming problems.

$CLASS="LT’ - Interior point methods for linear programming problems.

$CLASS="QP’ - Simplex type methods for quadratic programming problems.

$CLASS="QI’ - Interior point methods for quadratic programming problems.

$CLASS="BM’ - Proximal bundle methods for nonsmooth optimization.

$CLASS="BN’ - Bundle-Newton methods for nonsmooth optimization.

$CLASS="BV’ - Bundle variable metric methods for nonsmooth optimization.

$CLASS="BL’ - Bundle limited-memory variable metric methods for large-scale nonsmooth opti-

mization.

Individual methods from the above classes can be chosen by using additional specifications. The most
important ones, concerning direction determination and stepsize selection, are the type of the method, the
kind of the matrix decomposition and the number of the method. The type of the method is specified by

the macrovariable $TYPE:

$TYPE="L’ - Line search methods.

$TYPE="G - General trust region methods.

$STYPE="T" - Special trust region methods for nonlinear least squares problems.
$TYPE="M’ - Modified Marquardt methods for nonlinear least squares problems.
$TYPE="P’ - Pattern search method of Hooke and Jeeves.

$TYPE="S’ - Simplex method of Nelder and Mead.

The kind of the matrix decomposition is specified by the macrovariable $DECOMP:

$DECOMP='M’ - The original symmetric matrix is used as an input for the direction determination.

$DECOMP="G’ - The LDL” decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the Gill-Murray algorithm
[94].

$DECOMP="S’ - The LDLT decomposition with permutations is used as an input for the direc-
tion determination. This decomposition is usually obtained by the Schnabel-Eskow
algorithm [245].

$DECOMP="B’ - The block LDL” decomposition with permutations is used as an input for the
direction determination. This decomposition is usually obtained by the Bunch-Parlett
algorithm [27].

$DECOMP="T - The inverse of a symmetric matrix is used as an input for the direction determination.

$DECOMP="R’ - the RT R decomposition without permutations is used as an input for the direction
determination. This decomposition is usually obtained by the recursive QR factor-
ization [130].

$DECOMP="C" - The RTR decomposition with permutations is used as an input for the direction
determination. This decomposition is usually obtained by an application of the rank
revealing algorithm [34].

$DECOMP=’A’ - The rectangular matrix is used as an input for the direction determination.

$DECOMP="Q’ - The QR decomposition of a rectangular matrix without permutations is used as

an input for the direction determination. This decomposition is usually obtained by
using the Householder reflection with the explicitly stored orthogonal matrix Q.
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$DECOMP="E’ - The general square matrix is used as an input for the direction determination in the
case NA=NF (system of nonlinear equations).

If SFORM="SE’, we have additional possibilities for a representation of matrices in the direction determi-
nation:

$DECOMP='K’ - The indefinite Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.
$DECOMP="7’ - The null space representation based on orthogonal projection is used as an input for

the direction determination.

$DECOMP="G’ - The range space representation based on the Schur complement is used as an input
for the direction determination.

If SFORM="ST", then the following possibility for a representation of matrices in the direction determination
is used implicitly:

$DECOMP="T - The interior point Karush-Kuhn-Tucker matrix is used as an input for the direction
determination.

If SFORM="SE’, then the following possibility for a representation of matrices in the direction determina-
tion is used implicitly:

$DECOMP="F’ - The nonsmooth equation Karush-Kuhn-Tucker matrix is used as an input for the
direction determination.

Macrovariable $DECOMP is also used for the selection of conjugate direction methods. In this case it
does not concern the kind of matrix decomposition.

The serial number of the method is specified by the macrovariable NUMBER. It determines an indi-
vidual realization of the direction determination.

Additional information about specifications $TYPE, $DECOMP, $NUMBER is given in Section 3.33.

All options used for the method selection have default values, which follow from the knowledge bases
coded in the individual templates. Therefore they need not be specified by the user. The possibilities we
describe can be of service to users who are familiar with optimization methods.

Almost all optimization methods have different realizations for the three different representations of the
objective function. If SHESF="D’, dense variants can be used for either unconstrained problems or box con-
strained problems or linearly constrained problems (with dense linear constraints specified by $JACC="D").
If SHESF="S’, sparse variants can be used for either unconstrained problems or box constrained problems
or linearly constrained problems (with sparse linear constraints specified by $JACC="S"). If $JACA="S’
and $HESF='B’, partitioned variants can be used for either unconstrained problems or box constrained
problems. Partitioned variants of optimization methods are usually less efficient due to the more expensive
matrix operations. Therefore we recommend preferring sparse variants to the partitioned ones.

3.1 Heuristic methods

Heuristic (or comparative) methods are specified by the statement $CLASS="HM’. These methods should
be used only for small-size problems (with 10 variables at most). The main advantage of heuristic methods
is that they do not require continuity of the objective function.

The individual heuristic methods are specified by the macrovariable $TYPE:

$TYPE="P’ - Pattern search method of Hooke and Jeeves [118].
$TYPE="S’ - Simplex method of Nelder and Mead [219].

The default value is $TYPE="P’.
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3.2 Conjugate direction methods

Conjugate direction methods are specified by the statement $CLASS="CD’. These methods are very ef-
ficient for large problems with computationally simple objective functions ($KCF=1 or $KCA=1). The
main advantage of conjugate direction methods is that no matrices are used (implicitly $HESF="N"). This
fact highly decreases storage requirements.

The individual conjugate direction methods are specified by the macrovariable $DECOMP:

$DECOMP="C’ - Conjugate gradient methods. These methods are the simplest ones of all conju-
gate direction methods and they require the fewest storage requirements. However,
they usually consume a greater number of function evaluations then other conjugate
direction methods.

$SDECOMP="V’ - Variable metric methods with limited memory based on the Strang recursions. These
methods allow us to prescribe storage requirements using the number of VM steps
(the number of necessary used vectors is approximately twice as great a number of
VM steps). The number of VM steps is specified by the macrovariable $MF. Variable
metric methods with limited memory usually consume fewer function evaluations then
conjugate gradient methods.

The default value is SDECOMP="C’ if $KCF=1 or $KCA=1 and $DECOMP="V’ otherwise.
There are two families of conjugate gradient methods implemented in the UFO system:

$NUMBER=1 - Basic conjugate gradient methods described in [156].
$NUMBER=2 - Generalized conjugate gradient methods introduced in [139].

If SNUMBER=1, the individual methods and their modifications are specified by using the macrovari-
ables SMET, $MET1, $MET2, $SMET3, $SMET4, and $METS5.
Macrovariable $MET determines the conjugate gradient method:

$MET=0 - The steepest descent method is used.
SMET==+1 - The Hestenes-Stiefel method [116] is used.
SMET=+2 - The Polak-Ribiere method [227] is used.
$SMET=+3 - The Liu-Storey method [139] is used.
$MET=+4 - The Dai-Yuan method [54] is used.
$MET=4£5 - The Fletcher-Reeves method [84] is used.
$MET==+6 - The conjugate descent method [80] is used.
$SMET=+7 - The hybrid Dai-Liao method [49] is used.
SMET=+8 - The hybrid Hager-Zhang method [109] is used.

If SMET <0, the previous direction vector is used. If $MET>0, the vector of variables difference is used.
The default value is SMET=1.
Macrovariable $MET1 specifies a modification of the conjugate gradient method.

$MET1=+1 - The basic CG method is used.

$MET1=+2 - A combined CG method [52] is used.

$MET1=+3 - The basic CG method with scaled gradients [305] is used.
SMET1==+4 - A modified CG method with scaled gradients [52], [305] is used.
$MET1=%£5 - A three term CG method [307] is used.

$SMET1=+6 - An improved CG method with scaled gradients [306] is used.
SMET1=+7 - A modified CG method [296] is used.

$SMET1=+8 - A convex combination [288] of CG methods is used.

If SMET1<0, the CG method with a general parameter is used. If SMET1>0, the CG method with a
nonnegative parameter is used. The default value is SMET1=3 if | MET|=4,5,6 and $MET1=1 otherwise.
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Macrovariable SMET?2 specifies a test on conjugacy or orthogonality described in [156].

$MET2=1 - The basic CG method is used.
$MET2=2 - A test on conjugacy is used.
$MET2=3 - A test on orthogonality is used.

The default value is SMET2=2 if |SMET|=4,5,6 and $MET2=1 otherwise.
Macrovariable SMET3 specifies the scaling parameter as is described in [156].

$MET3=1 - No scaling is used.

$MET3=2 - The BFGS scaling in every iteration is used.
$SMET3=3 - The DFP scaling in every iteration is used.
$MET3=4 - The Hoshino scaling in every iteration is used.

The default value is SMET3=1.
Macrovariable SMET4 specifies a nonquadratic correction.

SMET4=1 - No correction is used.
$MET4=2 - The Wei nonquadratic model [134] is used.
$MET4=3 - The Deng nonquadratic model [301] is used.

The default value is SMET4=1.
Macrovariable $METS5 specifies a periodic restart.

$MET5=1 - Periodic restart after n iterations used.
$SMET5=2 - The Periodic restart after 2n iterations used.
$SMET5=3 - The Periodic restart after 12n iterations used.

The default value is SMET5=1.
If $NUMBER=2, modifications of generalized conjugate gradient methods are specified by using the
macrovariable $MET1 which specifies the restart procedure as it is described in [156].

$MET1=1 - The basic CG method is used.

$MET1=2 - The CG method with a positive parameter is used.

$MET1=3 - The CG method with a bounded positive parameter is used.

$MET1=4 - The CG method with a bounded positive parameter and the Storey restart is used.
$MET1=5 - The modified CG method with a bounded and restricted parameter is used.
$MET1=6 - The CG method with the Powell restart is used.

The default value is SMET1=4.
They are four variable metric methods with limited memory implemented in the UFO system:

$NUMBER=1 - The BFGS method with limited memory described in [220]. The default number of
VM steps is $MF=10.

$NUMBER=2 - The extended BFGS method with limited memory described in [123]. The default
number of VM steps is $SMF=3.

$NUMBER=3 - Methods with limited memory from the Broyden class transformed to the BFGS

form with Strang recurrences described in [284] — a general version. The default
number of VM steps is $MF=10.

$NUMBER=4 - Methods with limited memory from the Broyden class transformed to the BFGS
form with Strang recurrences described in [284] — a simplified version. The default
number of VM steps is $SMF=10.

If SNUMBER=1, the limited memory method is realized by using various scaling techniques [138] specified
by the macrovariable $MET1I.

45



$MET1=1 - The scaling is suppressed.

$MET1=2 - The scalar scaling is used.
$MET1=3 - The diagonal scaling is used.
$MET1=4 - The scalar and diagonal scalings are used simultaneously.

The default value is SMET1=2. If SNUMBER=2, only the scalar scaling is used, which is specified by the
macrovariable $MET1.

$MET1=1 - The scaling is suppressed.
$MET1=2 - The scalar scaling is used.

The default value is SMET1=2.
Possible specifications (type-decomposition-number) for the conjugate direction methods in the uncon-
strained case are these:

L-C-1, L-V-1,
L-C-2, L-V-2,
L-V-3,
L-V-4.

Conjugate direction methods can also be used for sparse linear constraints when $JACC="S’.

3.3 Variable metric methods

Variable metric methods are specified by the statement $CLASS="VM’. These methods are most com-
monly used for either unconstrained or linearly constrained optimizations. Variable metric methods use
a symmetric (usually positive definite) matrix which is updated in every iteration in such a way that it
approximates the Hessian matrix of the objective function as precisely as possible. In the UFO system,
the variable metric methods are realized in the three different forms (for $HESF="D’, SHESF="S’ and
$HESF="B’) depending on the Hessian matrix specification.

There are three families of variable metric methods for dense problems ($HESF='D’) which are distin-
guished using the macrovariable SUPDATE:

$UPDATE="B’ - The Broyden family [22]. Variable metric methods from this family are the most
commonly used ones since they are very robust and efficient.
$UPDATE="D’ - The Davidon family [61]. Variable metric methods from this family are similar to

the previous ones. The only difference is that projections into the new subspace are
computed. This guarantees the quadratic termination property even in the case of an
imperfect line search.

$UPDATE="S’ - The shifted Broyden family [279]. Variable metric methods from this family are
efficient without scaling strategies.

The default value is SUPDATE="B".
Individual variable metric methods are specified by using macrovariables $SMET, $MET1, $MET2
$MET3 and $MET4. Macrovariable $MET determines the variable metric update.

SMET=1 - The BFGS method [22], [78], [97], [247] is used.

$SMET=2 - The DFP method [62], [83] is used.

$MET=3 - The Hoshino method [119] is used.

SMET=4 - The safeguarded rank-one method [153] is used.

$MET=5 - The optimally conditioned method [61] is used.

$SMET=6 - The rank-one based method [153] from the perfect Broyden subclass is used.
$MET=7 - The variationally derived method [157] from the perfect Broyden subclass is used.
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SMET=8 - The heuristic method [160] is used.

$MET=9 - The method [302] derived from the matrix decomposition is used.

$MET=10 - The method [303] which minimizes the angle between the direction vector and the
negative gradient is used.

$MET=11 - The method [160] which minimizes the norm of the direction vector is used.

$SMET=12 - The least prior deviation method [206] is used.

The default value is SMET=1. If we specify $DECOMP="M’, only values $MET=1,2,3,4 can be used. If
we specify SUPDATE="M’, only values $MET=1,2,3,4,5,6,7,8 can be used. If we specify SUPDATE="S’,
only values SMET=1,2,3,4,5,6 can be used (SMET=5 corresponds to the variationally derived method [157]
from the perfect Broyden subclass and $MET=5 corresponds to the hybrid globally convergent update
[279] in this case).

Macrovariable SMET1 determines the Oren (scaling) parameter [224].

$MET1=+1 - No scaling is used.

SMET1==2 - The initial scaling [251] is used.
$MET1=%43 - The controlled scaling [157] is used.
SMET1=+4 - The interval scaling [180] is used.
SMET1=45 - The scaling in each iteration is used.

If SMET1>0, the basic initial scaling is used. If $MET2<0, the modified initial scaling is used. The
default value is SMET1=4.
Macrovariable $MET?2 determines the value of the Biggs (nonquadratic model) parameter [11].

$SMET2=+1 - The unit value is used.

$MET2=+2 - The Spedicato value [255] is used.

$MET2=+3 - The modified Spedicato value [160] is used.

$MET2=+4 - The value determined from the homogeneous model [160] is used.
$MET2=+5 - The value determined from the Bigs cubic model [10] is used.
$MET2==+6 - The value determined from the Zhang tensor model [304] is used.
SMET2=+7 - The Deng curvilinear model [301] is used.

If SMET2>0, the basic update is used. If SMET2<0, the modified update [235] is used. The default value
is SMET2=2.
Macrovariable SMET3 determines the Powell correction [230].

$SMET3=1 - The Powell correction is suppressed (the strong update elimination).
$SMET3=2 - The Powell correction is suppressed (the weak update elimination).
$SMET3=3 - The Powell correction is applied.

The default value is $SMET3=1. If $UPDATE="S’, then macrovariable $MET3 determines the value of
the shift parameter [279].

$SMET3=0 - The parameter from the previous iteration is used.

$MET3=1 - A simple choice with the constant relative parameter is used.

$SMET3=2 - A choice defined by a quadratic equation is used.

$MET3=3 - A heuristic choice with the relative parameter not greater than half is used.

$MET3=4 - A heuristic choice with the optimally conditioned first iteration (the first formula)
is used.

$MET3=5 - A heuristic choice with the optimally conditioned first iteration (the second formula)
is used.

$SMET3=6 - A heuristic choice derived from the lowest eigenvalue is used.

The default value is $MET3=4.
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Macrovariable SMET4 specifies a rule for the determination of the scaling parameter [178].

$MET4=1 - The BFGS scaling is used.
$MET4=2 - The DFP scaling is used.
SMET4=3 - The geometric mean is used.
$MET4=4 - The harmonic mean is used.
$MET4=5 - The arithmetic mean is used.

The default value depends on the value of macrovariable SMET (values SMET4=1 or $MET4=3 are most
frequently used).

Possible specifications (type-decomposition-number) for dense variable metric methods in the uncon-
strained case are these:

L-G-1, L-S-1, L-B-1, L-I-1, L-M-1,
L-M-3,
G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,
G-M-3,
G-M-A,
G-M-5,
G-M-T.

) )

The default choice is L-I-1. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP="B’".

If the Hessian matrix is sparse with a general pattern (SHESF="S’), the sparse variable metric methods,
which preserve this pattern, are used. If $DECOMP="M’, the individual variable metric updates (or
families) are specified by using the macrovariable SUPDATE:

$UPDATE="M’ - The simple Marwil projection update [203]. This update can only be used if $DE-
COMP="M".

$UPDATE="Q’ - The fractioned Marwil projection update [272]. This update can only be used if
$DECOMP="M’ and $NUMBER=3.

SUPDATE="T" - The fractioned Toint projection update (the best method given in [272]). This
update can only be used if $DECOMP="M’ and $NUMBER=3.

$UPDATE="B’ - The partitioned variable metric updates from the Broyden family [102]. These

updates can only be used if SMODEL="AF’ or $MODEL="AQ’ or $SMODEL="AP"’.

The default value is SUPDATE="M".

Fractioned updates with specifications SUPDATE="G’ or $UPDATE="T" can only be used in the
unconstrained case. If SUPDATE="B’, the particular update is specified by using the macrovariable
$MET.

$MET=1 - The BFGS method [22], [78], [97], [247] is used.
SMET=2 - The DFP method [62], [83] is used.
$MET=3 - The Hoshino method [119] is used.
$MET=4 - The safeguarded rank-one method [153] is used.

The default value is SMET=1.

If $SDECOMP="@’, less efficient sparse product form updates from the Broyden family are used. In
this case, the particular update is specified by using the macrovariable $MET as in the previous case. The
default value is SMET=1.

Possible specifications (type-decomposition-number) for sparse variable metric methods in the uncon-
strained case are these:
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L-G-1, L-M-1,
L-M-3,
G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is L-M-3. In the box constrained case, only the choice SDECOMP="M’ is permitted.
The fractioned updates (SUPDATE="T" and $UPDATE="G’) can only be used if $DECOMP="M’ and
$NUMBER=3.

If the Hessian matrix is sparse with a partitioned pattern ($HESF='B’), only the partitioned variable
metric updates, specified by the choice SUPDATE="B’, can be used. These updates are the same as in the
case when the Hessian matrix is sparse with a general pattern, but the partitioned realization is usually
less efficient than the general one due to the more expensive matrix operations.

Possible specifications (type-decomposition-number) for partitioned variable metric methods in the
unconstrained case are these:

L-M-3,
G-M-3.

The default choice is L-M-3.

3.4 Variable metric methods with limited memory based on compact updates

Variable metric methods with limited memory based on compact updates are specified by the statement
$CLASS="VL’. The number of VM steps is specified by the macrovariable $MF (the default value is
$MF=5). Variable metric methods with limited memory based on compact updates use several small-size
matrices which are updated in every iteration in such a way that their product approximates the Hessian
matrix as precisely as possible [31].

Individual variable metric methods with limited memory based on compact updates are specified by
using the macrovariables $MET and $MET1. Macrovariable $MET determines the variable metric update.

SMET=1 - The BFGS method [22], [78], [97], [247] is used.
$MET=4 - The safeguarded rank-one method [153] is used.

The default value is SMET=1.
Macrovariable SMET1 determines the scaling technique.

$MET1=1 - The scaling is suppressed.
$MET1=2 - The scalar scaling is used.

The default value is $SMET1=2.

Possible specifications (type-decomposition-number) for variable metric methods with limited memory
based on compact updates are these:

L-I-1

)

L-M-3.
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3.5 Variable metric methods with limited memory based on shifted product-form updates

Variable metric methods with limited memory based on shifted product-form updates are specified by the
statement $CLASS="VS’. The number of VM steps is specified by the macrovariable $MF (the default
value is $MF=10). Variable metric methods with limited memory based on shifted product-form updates
use a rectangular matrix containing $MF columns with $NF elements, which is updated in every iteration
in such a way that the shifted product of this matrix with its transposition approximates the Hessian
matrix as precisely as possible [279], [280], [281].

Individual variable metric methods with limited memory based on shifted product-form updates are
specified by using the macrovariables SMET $MET3 and $MET5. Macrovariable $MET determines the
variable metric update.

$MET=1 - The the BFGS method [22], [78], [97], [247] is used.

SMET=2 - The DFP method [62], [83] is used.

$MET=3 - The Hoshino method [119] is used.

$MET=4 - The safeguarded rank-one method [153] is used.

$MET=5 - The variationally derived method [157] from the preconvex part of the Broyden

family is used.

The default value is SMET=1.
Macrovariable $MET3 determines the shift parameter.

$SMET3=0 - The parameter from the previous iteration is used.

$SMET3=1 - A simple choice with the constant relative parameter is used.

$SMET3=2 - A choice defined by a quadratic equation is used.

$MET3=3 - A heuristic choice with the relative parameter not greater than half is used.

$MET3=4 - A heuristic choice with the optimally conditioned first iteration (the first formula)
is used.

$MET3=5 - A heuristic choice with the optimally conditioned first iteration (the second formula)
is used.

$SMET3=6 - A heuristic choice derived from the lowest eigenvalue is used.

The default value is SMET3=4.
Macrovariable $METS5 determines the individual limited-memory method.

$MET5=+1 - A rank-one limited memory method is used.

$MET5=+2 - A simple rank-two limited memory method is used.

$SMET5=+3 - The the rank-two limited memory method derived from the shifted Broyden class
(based on a simple simple choice) is used.

SMETH==+4 - The rank-two limited memory method derived from the shifted Broyden class (based
on a minimization of the Frobenius norm) is used.

$MET5=+5 - The rank-two limited memory method derived from the shifted Broyden class (based
on a comparison of direction vectors) is used.

$SMET5=+6 - The rank-two limited memory method derived from the standard Broyden class

(based on a minimization of the Frobenius norm) is used.

Two different implementations (SMET5>0 and $MET5<0) can be used. The default value is SMET5=5.
Possible specifications (type-decomposition-number) for variable metric methods with limited memory
based on shifted product-form updates are these:

L-I-1.
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3.6 Variable metric methods with limited memory based on corrected product-form updates

Variable metric methods with limited memory based on corrected product-form updates are specified by
the statement $CLASS="VP’. The number of VM steps is specified by the macrovariable $MF (the default
value is SMF=10). Variable metric methods with limited memory based on corrected product-form updates
use a rectangular matrix containing $MF columns with $NF elements, which is updated in every iteration
in such a way that the product of this matrix with its transposition satisfies the quasi-Newton condition.
This product is augmented by the scaled unit matrix and the resulting matrix is corrected by using a
limited number of the Strang recurrences to approximate the Hessian matrix as precisely as possible [282].

Individual variable metric methods with limited memory based on corrected product-form updates are
specified by using the macrovariables $MET2, $MET3 and $MET5. Macrovariable SMET2 determines a
nonquadratic correction.

$MET2=+1 - The unit value is used.

SMET2=+2 - The Spedicato value [255] is used.

$MET2=%+3 - The modified Spedicato value [160] is used.

$MET2=+4 - The value determined from the homogeneous model [160] is used.
$MET2=+5 - The value determined from the Bigs cubic model [10] is used.

If SMET2<0, the basic variable metric update is used. If $MET2>0, a modified variable metric update is
used. The default value is SMET2=1.
Macrovariable $MET3 determines a variable metric method used for correction.

$MET3=1 - The variable metric correction with a constant Broyden parameter is used.
$SMET3=2 - The variable metric correction with a variable Broyden parameter computed by a
special formula is used.

The default value is SMET3=1.

Macrovariable SMET5 determines the number of the Strang recurrences used in the correction phase.
This number has to be nonnegative. The default value is $MET5=2.

Possible specifications (type-decomposition-number) for variable metric methods with limited memory
based on corrected product-form updates are these:

L-I-1.

3.7 Variable metric methods with limited memory based on projections

Variable metric methods with limited memory based on projections are specified by statement $CLASS="VN’.
The number of VM steps is specified by the macrovariable MF (the default value is $MF=10). Variable
metric methods with limited memory based on projections use two rectangular matrices containing $MF
columns with $NF elements, which are updated in every iteration in such a way that the difference of
products of these matrices with their transpositions augmented by the scaled unit matrix satisfies the
quasi-Newton condition [283].

Possible specifications (type-decomposition-number) for variable metric methods with limited memory
based on projections are these:

L-I-1.

3.8 Variable metric methods with limited memory based on reduced Hessians

Variable metric methods with limited memory based on reduced Hessians are specified by the statement
$CLASS="VR’. The number of VM steps is specified by the macrovariable $MF (the default value is
$MF=10). Variable metric methods with limited memory based on reduced Hessians use a small-size
matrix which is updated in every iteration in such a way that it approximates the reduced Hessian matrix
as precisely as possible [92].
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There are two families of variable metric methods with limited memory based on reduced Hessians
implemented in the UFO system:

$NUMBER=1 - Basic variable metric methods with limited memory based on reduced Hessians
described in [92].
$NUMBER=2 - Variable metric methods with limited memory based on reduced Hessians and or-

thogonal transformations described in [279).

Individual variable metric methods with limited memory based on reduced Hessians are specified by
using the macrovariables $SMET, $MET1, $MET2, $SMET3, $SMET4 and $MET5. Macrovariable SMET
determines the variable metric update.

$MET=1 - The BFGS method [22], [78], [97], [247] is used.

$SMET=2 - The DFP method [62], [83] is used.

$SMET=3 - The Hoshino method [119] is used.

SMET=4 - The safeguarded rank-one method [153] is used.

$MET=5 - The optimally conditioned method [61] is used.

$MET=6 - The rank-one based method [153] from the perfect Broyden subclass is used.
$MET=7 - The variationally derived method [157] from the perfect Broyden subclass is used.
$MET=8 - The heuristic method [160] is used.

$SMET=9 - The method [302] derived from the matrix decomposition is used.

$SMET=10 - The method [303] which minimizes the angle between the direction vector and the

negative gradient is used.

The default value is SMET=L1.
Macrovariable SMET1 determines the Oren (scaling) parameter [224].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [251] is used.
$MET1=3 - The controlled scaling [157] is used.
$MET1=4 - The interval scaling [180] is used.
SMET1=5 - The scaling in each iteration is used.

The default value is SMET1=3.
Macrovariable $MET?2 determines the value of the Biggs (nonquadratic model) parameter [11].

$MET2=1 - The unit value is used.

SMET2=2 - The Spedicato value [255] is used.

$SMET2=3 - The modified Spedicato value [160] is used.

$MET2=4 - The value determined from the homogeneous model [160] is used.
$MET2=5 - The value determined from the Biggs cubic model [10] is used.

Moreover, if SMET2>0, the basic update is used and if SMET2<0, the modified update [235] is used. The
default value is SMET2=2.
Macrovariable $MET3 determines the Powell correction [230].

$MET3=1 - The Powell correction is suppressed (the strong update elimination).
$SMET3=2 - The Powell correction is suppressed (the weak update elimination).
$MET3=3 - The Powell correction is applied.

The default value is SMET3=1.
Macrovariable SMET4 specifies a rule for the determination of the scaling parameter [178].

$MET4=1 - The BFGS scaling is used.
$MET4=2 - The DFP scaling is used.
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$MET4=3 - The geometric mean is used.
$SMET4=4 - The harmonic mean is used.
$SMET4=5 - The arithmetic mean is used.

The default value depends on the value of macrovariable SMET (values SMET4=1 or $MET4=3 are most
frequently used).
Macrovariable $METS5 specifies a type of scaling.

$MET5=1 - The standard scaling is used
$MET5=2 - The simplified scaling is used

The default value is SMET5=1.
Possible specifications (type-decomposition-number) for variable metric methods with limited memory
based on reduced Hessians are these:

LR-1 LI,
L-R-2 L-I-2.

3.9 Modified Newton methods

Modified Newton methods are specified by the statement $CLASS="MN’. These methods use the Hessian
matrix of the objective function which is computed either analytically or numerically. The UFO sys-
tem performs a numerical computation of the Hessian matrix automatically whenever the macrovariable
$HMODELF (or $FGHMODELF) is not defined. Modified Newton methods are realized in the three
different forms (for SHESF="D’, $SHESF="S’ and $HESF="B’) depending on the Hessian matrix specifi-
cation. Even if the modified Newton methods can be realized as line search methods ($TYPE='L’), it is
more advantageous to realize them as trust region methods ($TYPE='G’).

If the Hessian matrix is dense (SHESF="D’), all second derivatives have to be given analytically or they
are computed numerically by using differences of gradients. Possible specifications (type-decomposition-
number) for dense modified Newton methods in the unconstrained case are these:

L-G-1, L-S-1, L-B-1, L-M-1,
L-G-2, L[-S2, L-B-2 LM2,
L-M-3,
G-G-1, G-S-1, G-B-1, G-M-1,
G-G-2, G-S-2, G-B-2, G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot use
specifications with $DECOMP="S’ and $DECOMP='B’. The choice L-G-1 differs from the choice L-G-2.
The last one corresponds to the combination of both the Newton and the conjugate gradient methods.

If the Hessian matrix is sparse with a general pattern ($HESF='S’), we have two possibilities. If
$MODEL="FF’, only the structurally nonzero second order derivatives have to be given analytically by
using the prescribed pattern. The numerical computation of the second derivatives is based on the fact
that a substantially lower number of differences has to be used in comparison with the dense case. The
determination of suitable differences is a combinatorial problem equivalent to a graph coloring problem
[39], [38]. If SMODEL="AF’ or SMODEL="AQ’ or SMODEL="AP’, only the nonzero second derivatives of
the approximating functions have to be given analytically by using the prescribed pattern. The numerical
computation of the second derivatives is based on the fact that the approximating functions depend on a
minor number of variables so that the number of differences is substantially lower in comparison to the
dense case.

93



If SMODEL="AQ’ (sum of squares), the combination [163] of both the modified Newton and the
modified Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET.

$SMET=1 - The modified Newton method is used.
SMET=2 - The combined method is used.

The default value is SMET=2.
Possible specifications (type-decomposition-number) for sparse modified Newton methods in the un-
constrained case are these:

L-G-1, L-M-,
L-M-3,
G-G-1, G-M-1,
G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-T.

The default choice is G-M-3. In the box constrained case, only the choice SDECOMP="M’ is permitted.

If the Hessian matrix is sparse with a partitioned pattern (SHESF="B’), a computation of the second
order derivatives is the same as in the case when the Hessian matrix is sparse with a general pattern, but
the partitioned realization is usually less efficient than the general one due to the more expensive matrix
operations.

If SMODEL="AQ’ (sum of squares), the combination of both the modified Newton and the modified
Gauss-Newton methods can be used. This choice is possible by using the macrovariable $MET in the
same way that is used if SHESF="S’. Possible specifications (type-decomposition-number) for partitioned
modified Newton methods in the unconstrained case are these:

L-M-3,
G-M-3.

The default choice is G-M-3.

3.10 Truncated Newton methods

Truncated Newton methods are specified by the statement $CLASS="TN’. These methods differ from
modified Newton methods in that the directional derivatives are determined by the numerical differentiation
instead of the sparse Hessian matrix multiplication. Truncated Newton methods are very efficient for large
problems with computationally simple objective functions (SKCF=1 or $KCA=1). The main advantage of
truncated Newton methods is that no matrices are used (implicitly SHESF="N"). This fact highly decreases
storage requirements.

Truncated Newton methods are implemented either as line search methods or as trust region meth-
ods and are based on the conjugate gradient subalgorithm. Possible specifications (type-decomposition-
number) for truncated Newton methods are these:

L-M-3,
G-M-3,
G-M-4,
G-M-5.

The default choice is G-M-3.
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3.11 Modified Gauss-Newton methods for nonlinear least squares and nonlinear equations

Modified Gauss-Newton methods are specified by the statement $CLASS="GN’. These methods are spe-
cial optimization methods for either nonlinear least squares ($MODEL="AQ’) or nonlinear least powers
(SMODEL="AP’) problems. Modified Gauss-Newton methods are based on the fact that the first term in
the Hessian matrix expression, the so-called normal equation matrix, depending on the first derivatives of
the approximating functions only is a good approximation of the whole Hessian matrix. The second term
in the Hessian matrix expression can be approximated by using the variable metric updates.

Modified Gauss-Newton methods are realized in four different forms (for $HESF="D’, $SHESF="S’,
$HESF="B’, $HESF="N") depending on the Hessian matrix specification. Although the modified Gauss-
Newton methods can be realized as the line search methods (3TYPE=’L’), it is more advantageous to
realize them as the trust region methods (STYPE="G").

If the Hessian matrix is specified to be dense ($HESF='D’), then the normal equation matrix is also
dense. In this case, we can use hybrid methods with dense updates:

$UPDATE="N\’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).
$UPDATE="S’ - The Dennis structured approach [67] is used. The second part of the Hessian matrix

is approximated by using modified variable metric updates. This part is added to
the normal equation matrix if the conditions for leaving the modified Gauss-Newton
method are satisfied.

$UPDATE="F’ - The Fletcher hybrid approach [1], [85] is used. The Hessian matrix is approximated
either by the normal equation matrix or by the matrix obtained by using the variable
metric updates. The decision between the two cases is based on the rate of the
function value decrease and on the normal equation matrix conditioning.

$UPDATE="B’ - A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [163].

The default value is SUPDATE="N".
Individual variable metric updates from the above families are specified by using the macrovariable
$MET.

SMET=1 - The BFGS method [22], [78], [97], [247] is used.
SMET=2 - The DFP method [62], [83] is used.

$MET=3 - The Hoshino method [119] is used.

$MET=4 - The original (unsafeguarded) rank-one method is used.

The value SMET=4 is allowed only if §UPDATE=’"S’ and is the default in this case. The value SMET=1
is the default in the other cases.

Variable metric updates (SUPDATE="F’ or §UPDATE="B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated), as is described in [163]. A decision between these possibilities is mediated by the
macrovariable $MOT1.

$MOT1=0 - The cumulative update is used.
$MOT1=1 - The simple update is used.

The default value is MOT1=1.

In the dense case, the modified Gauss-Newton methods can be realized with additional special matrix
decompositions which cannot be used in other cases. If SDECOMP="R/’, the recursive QR decomposition
[227] is used with an additional correction of the upper triangular matrix R. If SDECOMP="C’, this matrix
R can moreover be changed by using the rank revealing algorithm [34] which can improve its conditioning.
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Possible specifications (type-decomposition-number) for dense modified Gauss-Newton methods in the
unconstrained case are these:

L-G-1, L-S1, LB, LR-1, L-C-1, L-MI,

L-M-3,

G-G-1, G-S-1, G-B-1, G-R-1, G-C-1, G-M-1,

G-G-2, G-S-2, G-B-2, G-R-2, G-C2 G-M2,

G-M-3,

G-M-A,

G-M-5,

G-M-7,

T-G-1, T-S-1, T-R-1, T-C-1, T-M-,
T-G-2,

T-S-7, T-C-7, T-M-7,

M-M-1.

The default choice is G-M-7. In both the box constrained and the linearly constrained cases we cannot use
specifications SDECOMP="S’, $DECOMP="R’, $DECOMP="C’. If $DECOMP="S’ or $DECOMP="C’,
then variable metric updates cannot be used (SUPDATE="N’). The specification SUPDATE="S’ can only
be used if SDECOMP="M".

If the Hessian matrix is specified to be sparse with a general pattern (SHESF="S’), the normal equation
matrix has the same structure. In this case, we can use hybrid methods with sparse updates:

$UPDATE="N’ - No update is used. The method utilizes the normal equation matrix (the first part
of the Hessian matrix expression).
$UPDATE="S’ - The Dennis structured approach [67] is used. The second part of the Hessian matrix

is approximated by using modified variable metric updates. This part is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.

$UPDATE="D’ - The Brown-Dennis structured approach [23] is used. The Hessian matrices of approx-
imating functions are approximated by using variable metric updates. These matrices
serve for approximating the second part of the Hessian matrix which is added to the
normal equation matrix if conditions for leaving the modified Gauss-Newton method
are satisfied.

$UPDATE="B’ - A variable metric update from the Broyden class is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [163].

$UPDATE="M’ - A sparse update based on the Marwil projection is applied either to the normal
equation matrix or to the previous approximation of the Hessian matrix if conditions
for leaving the modified Gauss-Newton method are satisfied [163].

The default value is SUPDATE="N".

Individual variable metric updates from the above families are specified by using the macrovariable
$MET as in the dense case. The value SMET=4 is allowed only if either SUPDATE="S’ or §UPDATE="D’,
and is the default in this case. The value SMET=1 is the default in the other cases excepting the case
$UPDATE="M’ in which the macrovariable $MET is not utilized.

Variable metric updates (SUPDATE="M’ or SUPDATE="B’) can be realized either as simple updates
(normal equation matrix is updated) or as cumulative updates (previous approximation of the Hessian
matrix is updated). A decision between these possibilities is mediated by the macrovariable $MOT1
similarly as in the dense case.

If SUPDATE="D’, we can use several switches for utilizing variable metric updates specified by the
macrovariable $MOT?2.
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$MOT2=0 - The Fletcher and Xu switch [85] is used.

$MOT2=1 - A modification of the Fletcher and Xu switch is used.
$MOT2=2 - The Dennis and Welsch switch [71] is used.
$MOT2=3 - The Ramsin and Wedin switch [239)] is used.

The default value is $MOT2=0.

Possible specifications (type-decomposition-number) for sparse Gauss-Newton methods in the uncon-
strained case are these:

L-G-1, L-M-1,
L-M-3,
G-G-1, G-M-1,
G-G-2, G-M-2,
G-M-3,
G-M-4,
G-M-5,
G-M-7,
T-G-1, T-M-1,
T-M-7,
M-M-1.

The default choice is G-M-3. In the box constrained case, only the choice SDECOMP="M’ is permitted.
If the Hessian matrix is specified to be sparse with a partitioned pattern ($SHESF='B’), the normal
equation matrix has the same structure. If this is the case, then we can use hybrid methods with partitioned
updates SUPDATE="N’, $UPDATE="S’, SUPDATE="D’, $UPDATE="F’, §UPDATE="B’, whose details
have already been explained above. Note that the partitioned realization is usually less efficient than the
general one due to the more expensive matrix operations.
Possible specifications (type-decomposition-number) for partitioned Gauss-Newton methods are these:

L-M-3,
G-M-3.

The default choice is G-M-3.

If the Hessian matrix is not specified (SHESF='N"), the normal equation matrix is not used. The
Jacobian matrix, defining a linear least squares problem, is utilized in each iteration instead. Such so-
called normal equation free Gauss-Newton methods are realized in the two different forms (for $JACA="D’
and $JACA="S’) depending on the Jacobian matrix specification.

If the Jacobian matrix is specified to be dense ($JACA='D’), then we cannot use hybrid methods with
variable metric updates (only the specification $UPDATE='N’ is permitted). Moreover, dense, normal
equation free Gauss-Newton methods can only be used in the unconstrained case.

Possible specifications (type-decomposition-number) for dense, normal equation free, Gauss-Newton
methods are these:

L-Q-1, L-A-1, L-E-,

L-A-3, L-E-3,
L-A-4, L-E-4,
L-E-5,
G-Q-1, G-A-1, G-El,
G-Q-2, G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,
G-E-5,

G-A-T.
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The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP="E’ can only be used if NA=NF (system of nonlinear equations).

If the Jacobian matrix is specified to be sparse ($JACA="S’), we can use hybrid methods with simple
variable metric updates:

$UPDATE="N’ - No update is used. The method utilizes the original Jacobian matrix.

$UPDATE="V’ - The simple factorized BFGS update [163] is used. The second order information is
approximated by the unsymmetric rank-one update of the Jacobian matrix.

$UPDATE="R’ - The simple factorized rank-one update [163] is used. The second order information

is approximated by the addition of a dense row to the Jacobian matrix.

If SUPDATE="V’ or SUPDATE="R’, we can use several switches for utilizing variable metric updates,
specified by the macrovariable $MOT?2 as in the case of the specification SHESF="S’ described above. The
default value is $MOT2=0.

The main advantage of sparse, normal equation free, Gauss-Newton methods consists in the fact that
the normal equation matrix is dense if the sparse Jacobian matrix has at least one dense row. If this is the
case, then the classical Gauss-Newton methods cannot be used. On the other hand, the normal equation
matrix often has a lower number of nonzero elements than the Jacobian one. Consequently, the classical
Gauss-Newton methods are more efficient in this case.

Possible specifications (type-decomposition-number) for sparse, normal equation free, Gauss-Newton
methods are these:

L-A-1, L-E-1,
L-A-3, L-E-3,
L-A4, L-E-4,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-T.

The default choice is G-A-3 for least squares problems and G-E-3 for systems of nonlinear equations. The
specification $DECOMP="E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The last one corresponds to the incomplete LU decomposition.

3.12 Quasi-Newton methods for nonlinear least squares and nonlinear equations

Quasi-Newton methods are specified by the statement $CLASS="QN’. These methods are special opti-
mization methods for nonlinear least squares (SMODEL="AQ’) problems including systems of nonlinear
equations ($SMODEL="NE’) when the first derivatives are not specified analytically (the macrovariable
$GMODELA is not defined). Quasi-Newton methods use a rectangular matrix which is updated in every
iteration in such a way that it approximates the Jacobian matrix as precisely as possible. In the UFO sys-
tem, the quasi-Newton methods are realized in the two different forms (for $JACA="D’ and $JACA="S")
depending on the Jacobian matrix specification.

There are two possibilities for dense problems ($JACA='D’) which are distinguished by using the
macrovariable SUPDATE:

$SUPDATE="N’ - No update is used. An approximation of the Jacobian matrix is computed numeri-
cally by using differences.
$UPDATE="B’ - The Broyden family [21] of rank-one updates is used in almost all iterations. After

restart, the Jacobian matrix is approximated numerically by using differences.
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When $UPDATE='B’, the individual quasi-Newton methods are specified by using the macrovariable
$MET.

$MET=1 - The first (good) Broyden update [21] is used.
SMET=2 - The second Broyden update [21] is used.
$MET=3 - The the second Greenstadt update [256] is used.
$MET=4 - The first Greenstadt update [256] is used.
$SMET=5 - The first Todd OC update [125] is used.
$SMET=6 - The first Todd OCX update [125] is used.
SMET=7 - The second Todd OC update [125] is used.
$MET=8 - The second Todd OCX update [125] is used.

The default value is SMET=1.
Dense quasi-Newton methods can only be used in the unconstrained case.
Possible specifications (type-decomposition-number) for dense quasi-Newton methods are these:

L-Q-1, L-A1l, L-EI,

L-A-3, L-E-3,
L-A4, L-E-4,
L-E-5,
G-Q-1, G-A-1, G-E-1,
G-Q-2, G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,
G-E-5,

G-A-T.

The default choice is G-Q-3. The specification SDECOMP="E’ can only be used if NA=NF (system of
nonlinear equations).

If the Jacobian matrix is sparse with a general pattern (8JACA=’S’), there are two possibilities for
computing an approximation of the Jacobian matrix by the differences. These possibilities are distinguished
by using the macrovariable SNUMDER:

$NUMDER=1 - Derivatives of individual approximating functions are computed.
$NUMDER=2 - The Coleman-More [40] graph coloring algorithm is used.

Moreover, various sparse quasi-Newton updates which preserve the pattern of the Jacobian matrix can be
used.

If SNUMDER=1, there are three choices of the quasi-Newton updates which are specified by the
macrovariable §UPDATE:

$UPDATE="N’ - No update is used. An approximation of the Jacobian matrix is computed numeri-
cally by using differences.

$UPDATE="B’ - Sparse quasi-Newton updates are used in almost all iterations. After restart, the
Jacobian matrix is approximated numerically by using differences.

$UPDATE="S’ - Modified Newton methods such as the row scaling update are used in almost all
iterations. After restart, the Jacobian matrix is approximated numerically by using
differences.

If SNUMDER=2, there are four choices of the quasi-Newton updates which are specified by the
macrovariable §UPDATE:

$UPDATE="N\’ - No update is used. An approximation of the Jacobian matrix is computed numeri-
cally by using differences.

59



$UPDATE="B’ - Sparse quasi-Newton updates [246] are used in almost all iterations. After restart,
the Jacobian matrix is approximated numerically by using differences.

$UPDATE="S’ - Modified Newton methods such as the row scaling update are used in almost all
iterations. After restart, the Jacobian matrix is approximated numerically by using
differences.

$UPDATE="C’ - Cyclic column determination methods are used in almost all iterations. After restart,

the Jacobian matrix is approximated numerically by using differences.

Individual quasi-Newton methods are specified by using the macrovariable SMET. If SUPDATE="B’, the
following specifications are possible.

$MET=1 - The Schubert update [246] is used.
$MET=2 - The Bogle-Perkins update [18] is used.
SMET=3 - The column update [201] is used.

If SUPDATE="S’, the following specifications are possible.

$MET=0 - The modified Newton method is used.
$MET=1 - The the row scaling update [201] is used.

If SUPDATE="C’, the following specifications are possible.

$MET=0 - The cyclic column determination method [133] is used.
$MET=1 - The cyclic column determination method [133] is used followed by the Schubert
update [246].

Possible specifications (type-decomposition-number) for sparse quasi-Newton methods are these:

L-A-1, L-E-1,
L-A-3, L-E-3,
L-A4, L-E-4,

L-E-5,
G-A-1, G-E-1,

G-E-2,
G-A-3, G-E-3,
G-A-4, G-E-4,

G-E-5,
G-A-T.

The default choice is G-A-3 for the least squares problems and G-E-3 for systems of nonlinear equations.
The specification SDECOMP="E’ can only be used if NA=NF (system of nonlinear equations). The choice
L-E-1 differs from the choice L-E-2. The latter corresponds to the incomplete LU decomposition.

3.13 Quasi-Newton methods with limited memory for nonlinear equations

Quasi-Newton methods with limited memory are specified by the statement $CLASS="QL’. The number of
QN steps is specified by the macrovariable $MF (the default value is $MF=5). These methods are special
methods for solving sparse systems of nonlinear equations (SMODEL='NE’) when the first derivatives
are not specified analytically (the macrovariable §GMODELA is not defined). Therefore only the case
NA=NF is permitted. Quasi-Newton methods with limited memory use an initial approximation of the
sparse Jacobian matrix together with several small-size matrices which are updated in every iteration in
such a way that their product approximates the Jacobian matrix as precisely as possible [31]. There are
two possibilities which are distinguished by using the macrovariable SUPDATE:

60



$SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.

$SUPDATE="B’ - The Broyden good update of rank-one with limited memory [31] is used in almost all
iterations. After restart, the Jacobian matrix is approximated numerically by using
differences.

Possible specifications (type-decomposition-number) for quasi-Newton methods with limited memory
are these:

L-A-3, L-E-3,
L-A-4, L-E-4,
L-E-5,
G-A-3, G-E-3,
G-A-4, G-FE-4,
G-E-5,

The default choice is G-E-3.

Besides the quasi-Newton methods with limited memory, this class contains inverse column scaling
methods which are chosen by using the specification $DECOMP="T". There are two possibilities which are
distinguished by using the macrovariable §UPDATE:

$SUPDATE="N’ - No update is used. Every approximation of the Jacobian matrix is computed nu-
merically by using differences.
$UPDATE="B’ - The inverse column scaling update [202] is used in almost all iterations. After restart,

the Jacobian matrix is approximated numerically by using differences.

Possible specifications (type-decomposition-number) for inverse column scaling methods are these:

L-I-1,
L-1-3.

If SNUMBER=1, then a complete LU decomposition is used. If SNUMBER=3, then a combination of
direct and iterative methods is used. The default value is NUMBER=3.

3.14 Truncated Newton methods for nonlinear equations

Truncated Newton methods are specified by the statement $CLASS="TN’. These methods are special
methods for solving systems of nonlinear equations (SMODEL="NE’) when the first derivatives are not
specified analytically (the macrovariable SGMODELA is not defined). Therefore only the case NA=NF
is permitted. Truncated Newton methods differ from quasi-Newton methods in that the sparse Jacobian
matrix multiplication is replaced by the numerical differentiation. These methods are very efficient for large
problems with computationally simple functions in nonlinear equations ($KCA=1). The main advantage
of the truncated Newton methods is that no matrices are used (implicitly $JACA='N"). This fact highly
decreases storage requirements.

Truncated Newton methods are implemented either as the line search methods or as the trust region
methods and are based on the smoothed CGS subalgorithm. This subalgorithm can be preconditioned by
using the tridiagonal decomposition. This possibility is determined by the macrovariable $MOS2.

$MOS2=0 - The tridiagonal decomposition is not used.

$MOS2=1 - The tridiagonal decomposition is used before the iterative process is started.
$MOS2=2 - The tridiagonal decomposition is used as a preconditioner.

$MOS2=3 - Both previous cases are assumed.

The default value is $MOS2=0.
Possible specifications (type-decomposition-number) for truncated Newton methods are these:
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L-E-3,
L-E-4,
L-E-5,
G-E-3,
G-E-4,
G-E-5.

The default choice is G-E-3.

3.15 Quasi-Newton and Brent methods for nonlinear equations

Quasi-Newton and Brent methods are specified by the statement $CLASS="QB’. These methods are
special simple methods for solving dense systems of nonlinear equations (SMODEL='NE’) when the first
derivatives are not specified analytically (the macrovariable §GMODELA is not defined). Therefore, only
the case NA=NF is permitted. Individual methods are selected using the macrovariable NUMBER:

$NUMBER=1 - The Brent method described in [20].
$NUMBER=3 - The simple Newton method (this method can also be used if the macrovariable
$GMODELA is defined).

The default value is SNUMBER=3.

3.16 Simplex type methods for linear programming problems

Simplex type methods for linear programming problems are specified by the statement $SCLASS='LP’.
These methods are realized in the two different forms (for $JACC='D’ and $JACC="S’) depending on the
constraint Jacobian matrix specification.

If the constraint Jacobian matrix is dense ($JACC="D’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [93]),
which is a special implementation of the steepest descent reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the steepest descent projected gradient method.

Possible specifications (type-number) for dense linear programming methods are L-1 and L-2. The
default choice is L-1.

If the constraint Jacobian matrix is sparse (3JACC=’'S’), we can use two different linear programming
methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method described in [270].
$NUMBER=2 - Primal projected steepest descent (range-space) method.

A possible specification (type-number) for simplex type linear programming methods are L-1 and L-2.
The default choice is L-1, but this choice is not suitable for problems with equality constraints.

3.17 Interior point methods for linear programming problems

Interior point methods for linear programming problems are specified by the statement $CLASS="LI".
These methods, based on an infeasible primal-dual predictor-corrector strategy, can be used only in the
sparse case when $JACC=’S’. Moreover, only the standard LP constraints Az = b, x > 0 can be considered
at present. Individual methods are chosen by using the macrovariable $MLP:
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$MLP=1 - The first algorithm of Miao [204].
$MLP=2 - The second algorithm of Miao [204].
$MLP=3 - The Mizuno algorithm [207].

All these methods can be realized in the three forms depending on the way of solving the linear generalized
Karush-Kuhn-Tucker system:

$NUMBER=1 - Direct solution based on the Gill-Murray decomposition applied to the Schur com-
plement.

$NUMBER=2 - Direct solution based on the Bunch-Parlett decomposition applied to the original
Karush-Kuhn-Tucker system.

$NUMBER=3 - Iterative solution based on the conjugate gradient method applied to the Schur
complement.

Possible specifications (type-number) for interior point linear programming methods are L-1, L-2 and
L-3. The default choice is L-1.

3.18 Simplex type methods for quadratic programming problems

Simplex type methods for quadratic programming problems are specified by the statement $CLASS="QP’.
These methods are realized in the two different forms (for $JACC="D’ and $JACC="S’) depending on the
constraint Jacobian matrix specification.

If the constraint Jacobian matrix is dense ($JACC="D’), we can use three different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) method (like the method proposed in [95])
which is a special implementation of the Newton reduced gradient method.

$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [76])
which is a special implementation of the Newton projected gradient method.

$NUMBER=3 - Dual projected gradient (range-space) method (like the method proposed in [98]).

Possible specifications (type-number) for dense quadratic programming methods are L-1, L-2, and L-3.
The default choice is L-1.

If the constraint Jacobian matrix is sparse ($JACC=’S’), we can use two different quadratic program-
ming methods based on the active set strategy:

$NUMBER=1 - Primal reduced gradient (null-space) simplex type method described in [270].
$NUMBER=2 - Primal projected conjugate gradient (range-space) method.

A possible specification (type-number) for sparse simplex type quadratic programming methods are
L-1 and L-2. The default choice is L-2. Choice L-1 is not suitable for problems with equality constraints.

3.19 Interior point methods for quadratic programming problems

Interior point methods for quadratic programming problems are specified by the statement $CLASS="QI’.
These primal-dual methods, based on the logarithmic barrier function and iterative solution of the indefinite
Karush-Kuhn-Tucker system, can be used only in the sparse case when $JACC="S’. Interior point methods
for quadratic programming problems are in fact the same as methods with the choices $TYPE="L’ and
$DECOMP='T" described in Section 3.31.

Two realizations are possible, which are specified by the macrovariable NUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [74] of the indefinite Karush-
Kuhn-Tucker system is used.
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$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOSI,
$MOS2 and $MOS3.

The default value is SNUMBER="3".
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of
the penalty parameter.

$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice
of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=+1 - The indefinite preconditioner [177] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2==+1 - The indefinite preconditioner [177] based on a diagonal approximation of the Hessian

matrix is used in the augmented system form.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.
Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS2=0 - The residual smoothing is suppressed.
$MOS2=0 - A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Possible specifications (type-number) for sparse interior point quadratic programming methods are L-1
and L-3. The default choice is L-3.

3.20 Proximal bundle methods for nonsmooth optimization

Proximal bundle methods for nonsmooth optimization problems are specified by the statement $CLASS
="BM’. These methods use a bundle of gradients computed in trial points and updated in every itera-
tion. The size of this bundle is specified by the macrovatiable $MB (the default value is SMB="NF+3’).
Proximal bundle methods solve a special quadratic programming subproblem derived from the cutting
plane approach [277]. This subproblem is in fact the same as in the recursive quadratic programming
methods for minimax problems. Proximal bundle methods are realized only for unconstrained or linearly
constrained dense problems ($JACA="D’). The special quadratic programming subproblem can be solved
by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [145].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the Newton projected gradient method.

The special quadratic programming subproblem is defined in such a way that it has a diagonal Hessian
matrix. There are several methods for computing the diagonal weight coefficients, which are selected by
using the macrovariables $MOS and $MES2.
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$MOS=1 - If SMES2=1, the weights are updated by using curvature of the one-dimensional
quadratic function.

$MOS=1 - If $MES2=2, the weights are updated by using the minimum position estimate
(suitable for polyhedral and nearly polyhedral functions).

$MOS=2 - The weights are updated by using the quasi-Newton condition.

The default values are $MOS=1 and $MES2=1.
Proximal bundle methods are only realized as line search methods in two modifications which are
specified by the macrovariable SMEX.

$SMEX=0 - A convex version is assumed.
$MEX=1 - A nonconvex version is assumed and we can define a measure of nonconvexity by
using the macrovariable SETAS5. The default value is $ETA5=0.25.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Proximal bundle methods are sensitive to the values
of parameters SETA5 and $XMAX. Therefore, these values should be carefully chosen.

Possible specifications (type-number) for proximal bundle methods are L-1 and L-2. The default choice
is L-1. Proximal bundle methods can be used when $KSF=3 or $KSA=3. They can be also used for min-
imizing sums of absolute values (SMODEL="AA’) and for solving minimax problems ($SMODEL="AM’).

3.21 Bundle Newton methods for nonsmooth optimization

Bundle Newton methods for nonsmooth optimization problems are specified by the statement $CLASS
="BN’. These methods use a bundle of gradients and Hessian matrices computed in trial points and
updated in every iteration. The size of this bundle is specified by the macrovatiable $MB (the default
value is $MB="NF+3’). Bundle Newton methods solve a special quadratic programming subproblem
derived from the cutting plane approach which contains second order information [185]. This subproblem
is in fact the same as in recursive quadratic programming methods for minimax problems. Bundle Newton
methods are only realized for unconstrained or linearly constrained dense problems ($JACA="D’). The
special quadratic programming subproblem can be solved by using the following methods:

$NUMBER=1 - Dual projected gradient (range-space) method proposed in [145].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the Newton projected gradient method.

The special quadratic programming subproblem has a general (dense) Hessian matrix which is a bundle
approximation of the second-order matrix of the original nonsmooth problem.

Bundle Newton methods are only realized as line search methods. A nonconvex version is assumed
and we can define a measure of nonconvexity by using the macrovariable $ETA5. The default value
is $ETA5=0.25. Another important parameter is the maximum stepsize defined by the macrovariable
$XMAX. The maximum stepsize is a safeguard, which guarantees that the new point lies in the region
where the bundle model is valid. The default value is $XMAX=1000. Bundle Newton methods are sensitive
to the values of parameters $ETA5 and $XMAX. Therefore, these values should be carefully chosen.

Possible specifications (type-number) for bundle Newton methods are L-1 and L-2. The default choice is
L-1. Bundle Newton methods can be used when $KSF=3 or $KSA=3. They can be also used for minimizing
sums of absolute values ($MODEL="AA’) and for solving minimax problems (MODEL="AM’).

3.22 Bundle variable metric methods for nonsmooth optimization

Bundle variable metric methods for nonsmooth optimization problems are specified by the statement
$CLASS =’BV’. These methods are based on a special realization of variable metric method updates. This
realization uses special null steps and restarts. Stepsize selection is based on the polyhedral approximation
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obtained by using bundles of points and subgradients. Bundle variable metric methods are realized only
for unconstrained or linearly constrained dense problems ($JACA='D’). They need not solve any quadratic
programming subproblem.

Bundle variable metric methods are realized as line search methods in two modifications which are
specified by the macrovariable SMEX.

$MEX=0 - A convex version [188] is assumed.
$MEX=1 - A nonconvex version [278] is assumed and we can define a measure of nonconvexity
by using the macrovariable $ETA5. The default value is $ETA5=0.25.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Variable metric bundle methods are sensitive to the
values of parameters $ETA5 and $XMAX. Therefore, these values should be carefully chosen.

Bundle variable metric methods use an auxiliary bundle of gradients, which serve for the initial stepsize
determination in the line search subalgorithm. The size of this bundle is specified by the macrovatiable
$MB (the default value is SMB="NF+3’).

Possible specifications (type-number) for bundle variable metric methods are L-1 and L-2. The default
choice is L-1. Bundle variable metric methods can be used when $KSF=3 or $KSA=3. They can be
also used for minimizing sums of absolute values (SMODEL='AA’) and for solving minimax problems
(SMODEL="AM").

3.23 Bundle variable metric methods with limited memory for nonsmooth optimization

Bundle variable metric methods with limited memory for nonsmooth optimization problems are specified
by the statement $CLASS ="BL’. The number of VM steps is specified by the macrovariable $MF (the
default value is $MF=5). These methods are based on special realization of limited memory variable metric
updates. This realization uses special null steps and restarts. Stepsize selection is based on the polyhedral
approximation obtained by using bundles of points and subgradients. Bundle variable metric methods are
realized only for unconstrained or box constrained sparse problems ($JACA=’S’ and $HESF="S"). They
need not solve any quadratic programming subproblem.

Bundle variable metric methods with limited memory are realized as line search methods in several
modifications which are specified by the macrovariables SMEX, $SMEX1, $SMEX2, $MEX3.

$SMEX=0 - A convex version [188] is assumed.

$MEX=1 - A nonconvex version [278] is assumed and we can define a measure of nonconvexity
by using the macrovariable $ETA5. The default value is $ETA5=0.25.

$MEX1=0 - The basic algorithm is used.

$MEX1=1 - An additional restart is used if the direction vector is short.

$MEX1=2 - The controlled correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3 The default value is $ETA3=10"12.

$SMEX1=2 - The permanent correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3 The default value is $ETA3=10"12.

$MEX2=0 - The basic termination criterion is used.

$MEX2=1 - The extended termination criterion for large-scale problems is used.

$MEX3=0 - The termination is used after a zero difference of gradients.

$MEX3=1 - The extrapolation with a constant stepsize is used after a zero difference of gradients.

$MEX3=2 - The extrapolation with an increasing stepsize is used after a zero difference of gra-
dients.

The default values are SMEX=1, $SMEX1=0, $MEX2=0, $SMEX3=0.
Variable metric updates are controlled by the macrovariables SMET, $SMET2, $SMET3, $MET4.
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$SMET=0 - Limited memory BFGS matrix is updated only in descent steps.
$MET=1 - Limited memory BFGS matrix is updated in all steps.
$MET2=0 - No updates are used in null steps.

$MET2=1 - Rank-one updates are used in $MET3 consecutive null steps.
SMET2=2 - Rank-one updates are used in all null steps.

$SMET2=3 - BFGS updates are used in $MET4 consecutive null steps.

The default values are SMET=1 $MET2=1, $MET3=5, SMET4=5.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Bundle variable metric methods for large-scale sum
of absolute values are sensitive to the values of parameters $ETA5 and $XMAX. Therefore, these values
should be carefully chosen.

Bundle variable metric methods with limited memory use an auxiliary bundle of gradients, which serve
for the initial stepsize determination in the line search subalgorithm. The size of this bundle is specified
by the macrovatiable $MB (the default value is $MB=20).

A possible specification (type-number) for bundle variable metric methods for large-scale sum of abso-
lute values is L-1.

3.24 Bundle variable metric methods for sparse sum of absolute values

If SMODEL="AA’, then the objective function is the sum of absolute values. In this case, bundle variable
metric methods [197] can be chosen by using the statement $CLASS ="BV’. These methods are based
on a special realization of partitioned variable metric updates. This realization uses special null steps
and restarts. Stepsize selection is based on the polyhedral approximation obtained by using bundles of
points and subgradients. Bundle variable metric methods are realized only for unconstrained or box con-
strained sparse problems ($JACA=’S’ and $HESF="S’). They need not solve any quadratic programming
subproblem.

Bundle variable metric methods for sparse sum of absolute values are realized as line search methods
in several modifications which are specified by the macrovariables SMEX, $MEX1, $MEX2, $MEX3.

$MEX=0 - A convex version [188] is assumed.

SMEX=1 - A nonconvex version [278] is assumed and we can define a measure of nonconvexity
by using the macrovariable $ETA5. The default value is $SETA5=0.25.

SMEX1=0 - The basic algorithm is used.

$MEX1=1 - An additional restart is used if the direction vector is short.

$MEX1=2 - The controlled correction of the direction vector is used. The correction parameter
is specified by the macrovariable $ETA3 The default value is $ETA3=10"12.

$MEX1=3 - The permanent correction of the direction vector is used. The correction parameter

is specified by the macrovariable $ETA3 The default value is $ETA3=10"12.

$MEX2=0 - The basic termination criterion is used.

$MEX2=1 - The extended termination criterion for large-scale problems is used.

$MEX3=0 - The termination is used after a zero difference of gradients.

$MEX3=1 - The extrapolation with a constant stepsize is used after a zero difference of gradients.

$MEX3=2 - The extrapolation with an increasing stepsize is used after a zero difference of gra-
dients.

The default values are SMEX=1, $MEX1=0, $MEX2=0, $MEX3=0.
variable metric updates can be scaled. This possibility is specified by the macrovariable SMET1.

$MET1=0 - Scaling is suppressed.
$MET1=1 - Scaling is performed.
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The default value is SMET1=0.

Another important parameter is the maximum stepsize defined by the macrovariable $XMAX. The
maximum stepsize is a safeguard, which guarantees that the new point lies in the region where the bundle
model is valid. The default value is $XMAX=1000. Bundle variable metric methods for large-scale sum
of absolute values are sensitive to the values of parameters $ETA5 and $XMAX. Therefore, these values
should be carefully chosen.

Bundle variable metric methods for sparse sum of absolute values use an auxiliary bundle of gradients,
which serve for the initial stepsize determination in the line search subalgorithm. The size of this bundle
is specified by the macrovatiable $MB (the default value is $MB=20).

A possible specification (type-number) for bundle variable metric methods for large-scale sum of abso-
lute values is L-1.

3.25 Primal interior point methods for sparse sum of absolute values

If $MODEL="AA’, then the objective function is a sum of absolute values. In this case, primal interior
point methods [173] can be chosen by using the statement $FORM="SP’. These methods, which are
intended for large problems, belong to the following classes:

$CLASS="VM’ - Primal interior point variable metric methods. An approximation of the Lagrangian.
function Hessian matrix is updated in each iteration by using variable metric updates.
The partitioned variable metric updates from the Broyden family [102] are used

$CLASS="MN’ - Primal interior point modified Newton methods. The Lagrangian function Hessian
matrix is computed in each iteration either analytically or numerically.

The default value is $CLASS="MN’.
If $CLASS="VM’, the particular variable metric method is specified by using macrovariables $MET,
$MET1, SMET5. Macrovariable SMET determines the variable metric update.

$MET=1 - The partitioned BFGS method [22], [78], [97], [247] is used.
$SMET=2 - The partitioned DFP method [62], [83] is used.
$MET=3 - The partitioned Hoshino method [119] is used.
$SMET=4 - The partitioned safeguarded rank-one method [153] is used.

The default value is SMET=1.
Macrovariable SMET1 determines scaling of variable metric updates [224].

$MET1=1 - No scaling is used.

SMET1=2 - The initial scaling [251] is used.
$MET1=3 - The controlled scaling [157] is used.
$MET1=4 - The interval scaling [180] is used.
$MET1=5 - The scaling in each iteration is used.

The default value is SMET1=3.
Macrovariable SMET5 determines subjects of variable metric updates.

$METH5=0 - Updates concerns approximating functions.

$MET5=2 - Updates concerns approximating functions multiplied by the signs of the Lagrange
multipliers.

$MET5=3 - Updates concerns terms of the Lagrangian function.

The default value is SMET5=1.
The macrovariable SMEP3 determines a strategy for computation of the barrier parameter.
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$MEP3=1 - The geometric sequence is used.

$SMEP3=2 - A special monotone sequence is used.
$MEP3=3 - A special retarded monotone sequence is used.
$MEP3=4 - A simple retarded monotone sequence with stagnations is used.

The default value is SMEP3=2.

Primal interior point methods for sparse sum of absolute values use several parameters specified by
macrovariables $ETA4, $ETA5. The macrovariable $ETA4 determines the reduction of the barrier pa-
rameter. The default value is $ETA4=0.95. The macrovariable $ETA5 determines the minimum value of
the barrier parameter. The default value is $ETA5=10"%. Another important parameter is the maximum
stepsize defined by the macrovariable $XMAX. The maximum stepsize is a safeguard, which guarantees
that the new point lies in the region where the bundle model is valid. The default value is $XMAX=1000.

Primal interior point methods for sparse sum of absolute values uses either line search (if $TYPE="L")
or trust region (if $TYPE="Q’) strategies. Possible specifications (type-decomposition-number) are these:

L-G-1, L-M-1,
G-G-1, G-B-1, G-M-,
G-M-7.

The default choice is L-G-1.

3.26 Recursive linear programming methods for dense minimax problems.

If SMODEL="AM’, then the objective function is the maximum of approximating functions or their abso-
lute values. In this case, recursive linear programming methods [198] can be chosen by using the statement
$FORM=LP’. Recursive linear programming methods are realized as trust region methods with box con-
strained subproblems. The special linear programming subproblem, which is derived from the minimax
problem, is solved by a primal projected gradient (range-space) method which is a special implementation
of the steepest descent method. A possible specification (type-number) for recursive linear programming
methods is G-1.

3.27 Recursive quadratic programming methods for dense minimax problems.

If $MODEL="AM’, then the objective function is the maximum of approximating functions or their ab-
solute values. In this case, recursive quadratic programming methods [112], [146] can be chosen by using
the statement SFORM="QP’. These methods belong to the following classes:

$CLASS="VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration by using variable
metric updates belonging to the Broyden family.

$CLASS="MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.

The default value is SCLASS="VM".
Recursive quadratic programming methods are realized in three different forms:

$TYPE="L’ - Line search methods.
$TYPE="G’ - General trust region methods.
$STYPE="C’ - General trust region methods with second order corrections [81].

If $TYPE=L’, the special line search method ($MES=5), described in [146], can be used.
The special quadratic programming subproblem, which is derived from the minimax problem, can be
solved by using the two different methods:
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$NUMBER=1 - Dual projected gradient (range-space) method proposed in [145].
$NUMBER=2 - Primal projected gradient (range-space) method which is a special implementation
of the Newton projected gradient method.

Recursive quadratic programming variable metric methods use the same updates as methods with the
choices SDECOMP="G’ and $UPDATE="B’ described in Section 3.3 (values SMET=1 - $MET=12 can be
used). Similarly, recursive quadratic programming modified Newton methods correspond to the methods
with the choice SDECOMP="G’ described in Section 3.8 (the Gill-Murray decomposition is used).

Even if the minimax problems can be solved by using bundle methods described in Sections 3.19 — 3.21,
it is more efficient to use the recursive quadratic programming methods that utilize a special structure of
the minimax problem.

All of the above methods can be used only for dense unconstrained or linearly constrained problems.
A possible specifications (type-number) for recursive quadratic programming methods are these:

L-1, G-1, C-1,
L-2, G-2, C-2.

The default choice is L-1. A possible specification (type-number) for recursive linear programming methods

is G-1.

3.28 Primal interior point methods for sparse minimax problems

If SMODEL="AM’, then the objective function is the maximum of approximating functions or its ab-
solute values. In this case, primal interior point methods [171] can be chosen by using the statement
$FORM="SP’. These methods, which are intended for large problems, belong to the following classes:

$CLASS="VM’ - Primal interior point variable metric methods. An approximation of the Lagrangian.
function Hessian matrix is updated in each iteration by using variable metric updates.
The partitioned variable metric updates from the Broyden family [102] are used

$CLASS="MN’ - Primal interior point modified Newton methods. The Lagrangian function Hessian
matrix is computed in each iteration either analytically or numerically.

The default value is SCLASS="MN’.
If $CLASS="VM’, the particular variable metric method is specified by using macrovariables $MET,
$MET1, SMET5. Macrovariable SMET determines the variable metric update.

$MET=1 - The partitioned BFGS method [22], [78], [97], [247] is used.
SMET=2 - The partitioned DFP method [62], [83] is used.
$SMET=3 - The partitioned Hoshino method [119] is used.
$SMET=4 - The partitioned safeguarded rank-one method [153] is used.

The default value is SMET=1.
Macrovariable SMET1 determines scaling of variable metric updates [224].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [251] is used.
$MET1=3 - The controlled scaling [157] is used.
$MET1=4 - The interval scaling [180] is used.
$MET1=5 - The scaling in each iteration is used.

The default value is SMET1=3.
Macrovariable SMET5 determines subjects of variable metric updates.
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$SMET5=0 - Updates concerns approximating functions.

$MET5=2 - Updates concerns approximating functions multiplied by the signs of the Lagrange
multipliers.
$MET5=3 - Updates concerns terms of the Lagrangian function.

The default value is SMET5=1.
The macrovariable SMEP determines the particular barrier function:

$MEP=0 - Minimax function is used.

$MEP=1 - The logarithmic barrier function is used.
$SMEP=2 - The Ben-Tal barrier function is used.
SMEP=3 - The composite barrier function is used.
$MEP=4 - The Carrol barrier function is used.

The default value is SMEP=1.
The macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3=1 - The geometric sequence is used.

$MEP3=2 - A special monotone sequence is used.

$MEP3=3 - A special retarded monotone sequence is used.

$MEP3=4 - A simple retarded monotone sequence with stagnations is used.

The default value is SMEP3=2.

Primal interior point methods for sparse minimax problems use several parameters specified by macrovari-
ables $SETA3, SETA4, $SETAS5. The macrovariable $ETA3 determines the precision of the solution to inner
nonlinear equation. The default value is $ETA3=10"°. The macrovariable $ETA4 determines the reduc-
tion of the barrier parameter. The default value is $ETA4=0.85. The macrovariable $ETA5 determines
the minimum value of the barrier parameter. The default value is $ETA5=10"1°. Another important
parameter is the maximum stepsize defined by the macrovariable $XMAX. The maximum stepsize is a
safeguard, which guarantees that the new point lies in the region where the bundle model is valid. The
default value is $XMAX=1000.

Primal interior point methods for sparse minimax problems use either line search (if $TYPE='L’) or
trust region (if $TYPE="G’) strategies. Possible specifications (type-decomposition-number) are these:

L-G-1, L-M-1,
G-G-1, G-B-1, G-M-1,
G-M-T.

The default choice is L-G-1.

3.29 Smoothing methods for sparse minimax problems

If SMODEL="AM’, then the objective function is the maximum of approximating functions or their
absolute values. In this case, smoothing methods [228], [291] can be chosen by using the statement
$FORM="SM’. These methods, which are intended for large problems, belong to the following classes:

$CLASS="VM’ - Smoothing variable metric methods. An approximation of the Lagrangian function.
Hessian matrix is updated in each iteration by using variable metric updates. The
partitioned variable metric updates from the Broyden family [102] are used

$CLASS="MN’ - Smoothing modified Newton methods. The Lagrangian function Hessian matrix is
computed in each iteration either analytically or numerically.

The default value is $CLASS="MN’.
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If $CLASS="VM’, the particular variable metric method is specified by using macrovariables $MET,
$MET1, SMET5. Macrovariable SMET determines the variable metric update.

$MET=1 - The partitioned BFGS method [22], [78], [97], [247] is used.
SMET=2 - The partitioned DFP method [62], [83] is used.
$MET=3 - The partitioned Hoshino method [119] is used.
$MET=4 - The partitioned safeguarded rank-one method [153] is used.

The default value is SMET=L1.
Macrovariable SMET1 determines scaling of variable metric updates [224].

$MET1=1 - No scaling is used.

$MET1=2 - The initial scaling [251] is used.
$MET1=3 - The controlled scaling [157] is used.
$MET1=4 - The interval scaling [180] is used.
SMET1=5 - The scaling in each iteration is used.

The default value is SMET1=3.
Macrovariable SMET5 determines subjects of variable metric updates.

$MET5=0 - Updates concerns approximating functions.

$MET5=2 - Updates concerns approximating functions multiplied by the signs of the Lagrange
multipliers.

$MET5=3 - Updates concerns terms of the Lagrangian function.

The default value is SMET5=1.
The macrovariable $MEP?2 specifies whether values of exponentials are saved.

$MEP2=0 - Values of exponentials are not saved.
$SMEP2=1 - Values of exponentials are saved.

The default value is SMEP2=0.
The macrovariable $MEP3 determines a strategy for computation of the barrier parameter.

$MEP3=1 - A geometric sequence is used.

$MEP3=2 - A special monotone sequence is used.

$MEP3=3 - A special retarded monotone sequence is used.

$MEP3=4 - A simple retarded monotone sequence with stagnations is used.

The default value is SMEP3=2.

Smoothing methods for sparse minimax problems use parameters specified by macrovariables $ETA4,
$ETAS5. The macrovariable SETA4 determines the reduction of the barrier parameter. The default value
is $ETA4=0.85. The macrovariable $ETA5 specifies the minimum value of the barrier parameter. The
default value is $ETA5=10"8. Another important parameter is the maximum stepsize defined by the
macrovariable $XMAX. The maximum stepsize is a safeguard, which guarantees that the new point lies
in the region where the bundle model is valid. The default value is $XMAX=1000.

Primal interior point methods for sparse minimax problems use a line search strategy. Possible speci-
fication (type-decomposition-number) is L-G-2.

3.30 Recursive quadratic programming methods for dense nonlinear programming problems

Recursive quadratic programming methods for dense general nonlinear programming problems are specified
by the statement SFORM="SQ’. These methods belong to the two following classes:
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$CLASS="VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration by using variable
metric updates.

$CLASS="MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.

The default value is $CLASS="VM’. Variable metric methods are the same as in Section 3.3 with the
choice $DECOMP="G’ and $UPDATE="B’ (values SMET=1 - $MET=12 can be used). Similarly, mod-
ified Newton methods are the same as in Section 3.8 with the choice $DECOMP="G’ (the Gill-Murray
decomposition is used).

Recursive quadratic programming methods for dense general nonlinear programming problems are
realized as line search methods ($TYPE='L’) with the l;-exact penalty function. They are like the methods
proposed in [230]. The special line search method ($MES=5) for l;-exact penalty function can be used
successfully. The quadratic programming subproblem can be solved by using the two different methods:

$NUMBER=1 - Dual projected gradient (range-space) method (like the method proposed in [98]).
$NUMBER=2 - Primal projected gradient (range-space) method (like the method proposed in [76])
which is a special implementation of the Newton projected gradient method.

Possible specifications (type-number) for recursive quadratic programming methods for dense general
nonlinear programming problems are L-1 and L-2. The default choice is L-1.

Recursive quadratic programming methods can be used for dense nonlinear programming problems
with various objective functions. If we set SMODEL="AA’ (sum of absolute values) or SMODEL="AM’
(minimax) then an extended nonlinear programming problem containing extra variables is defined and
solved.

3.31 Recursive quadratic programming methods for sparse equality constrained problems

Recursive quadratic programming methods for sparse equality constrained nonlinear programming prob-
lems are specified by the statement FORM="SE’. These methods, which are intended for large problems,
belong to the following classes:

$CLASS="VM’ - Recursive quadratic programming variable metric methods. An approximation of
the Lagrangian function Hessian matrix is updated in each iteration by using variable
metric updates.

$CLASS="VL - Recursive quadratic programming variable metric methods with limited memory
based on compact representations of variable metric updates. The number of VM
steps is specified by the macrovariable $MF (the default value is $MF=5). Variable
metric methods with limited memory use several small-size matrices which are up-
dated in every iteration in such a way that their product approximates the Lagrangian
function Hessian matrix as precisely as possible [31].

$CLASS="MN’ - Recursive quadratic programming modified Newton methods. The Lagrangian func-
tion Hessian matrix is computed in each iteration either analytically or numerically.
The sparsity pattern is required

$CLASS="TN’ - Recursive quadratic programming truncated Newton methods. These methods differ
from modified Newton methods in that the directional derivatives are determined by
the numerical differentiation instead of the sparse Hessian matrix multiplication. The
sparsity pattern is not required

The default value is SCLASS="MN’.
If $CLASS="VM’ and $HESF="D’, dense variable metric updates are used. Macrovariable $MET
determines the variable metric update.
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SMET=1 - The BFGS method [22], [78], [97], [247] is used.

$MET=2 - The DFP method [62], [83] is used.
$MET=3 - The Hoshino method [119] is used.
$MET=4 - The safeguarded rank-one method [153] is used.

The default value is SMET=1.
If $CLASS="VM’ and $HESF="S’, the individual variable metric updates are specified by using the
macrovariable SUPDATE:

$UPDATE="M’ - The simple Marwil projection update [203].

$UPDATE="B’ - The partitioned variable metric updates from the Broyden family [102]. The parti-
tioned variable metric updates can only be used if SMODEL="AF’ or $SMODEL="AQ’
or SMODEL="AP".

The default value is SUPDATE="B’ if SMODEL="AF’ or $MODEL="AQ’ or SMODEL="AP’ and $UP-
DATE="M’ in the opposite case. If SUPDATE="B’, the particular variable metric method is specified
by using macrovariables $SMET, $MET1, $SMET5. Macrovariable $MET determines the variable metric
update.

$MET=1 - The partitioned BFGS method [22], [78], [97], [247] is used.
SMET=2 - The partitioned DFP method [62], [83] is used.
$SMET=3 - The partitioned Hoshino method [119] is used.
$MET=4 - The partitioned safeguarded rank-one method [153] is used.

The default value is SMET=1.
Macrovariable SMET1 determines scaling of variable metric updates [224].

$MET1=1 - No scaling is used.

SMET1=2 - The initial scaling [251] is used.
$MET1=3 - The controlled scaling [157] is used.
$MET1=4 - The interval scaling [180] is used.
$MET1=5 - The scaling in each iteration is used.

The default value is SMET1=3.
Macrovariable SMET5 determines subjects of variable metric updates.

$MET5=0 - Updates concerns approximating functions.

$MET5=2 - Updates concerns approximating functions multiplied by the signs of the Lagrange
multipliers.

$SMET5=3 - Updates concerns terms of the Lagrangian function.

The default value is SMET5=1.
Recursive quadratic programming methods for sparse equality constrained nonlinear programming
problems are realized in the three different ways which are specified by using the macrovariable $TYPE:

$TYPE="L’ - Line search methods based on various merit functions or filter structures.

$TYPE="G’ - Trust region methods. These methods use two direction determination subproblems
[70], [129], [184]. The vertical subproblem, solved by using the dog-leg method, serves
for a sufficient decrease of constraint violations. The horizontal subproblem, solved
by a special realization of the conjugate gradient method, serves for minimization of
a quadratic approximation of a particular merit function.

The default value is $STYPE="L".
If $TYPE="L’, various penalty functions or filter structures can be used for step-size selection. The
corresponding choice is determined by the macrovariable $MERIT:
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$SMERIT="P’ - A penalty function is used.
$MERIT="M’ - The Markov filter [275], [170] is used.
$MERIT="F’ - The Fletcher-Leyffer filter [82], [275] is used.

The default value is SMERIT="P’. If SMERIT="P’, additional choices specified by macrovariables $MEP,
$MEP1, $SMEP2 are possible.
Macrovariable SMEP determines the particular merit function:

$MEP=0 - No merit function is used.

$MEP=1 - The Powell [; exact penalty function is used.

$MEP=2 - The Iy augmented Lagrangian function is used.

$SMEP=3 - The [y augmented Lagrangian function is used.

$MEP=4 - The Han [; exact penalty function is used.

$MEP=5 - The Schittkowski augmented Lagrangian function is used.

The default value is SMEP=2.
Macrovariable SMEP1 specifies the second order correction for overcoming the Maratos effect.

$SMEP1=1 - The second order correction is suppressed.
$SMEP1=2 - The second order correction is determined as a least squares solution of the shifted
constraint system.

The default value is SMEP1=1.
Macrovariable SMEP2 specifies estimates of Lagrange multipliers at the beginning of each iteration.

SMEP2=1 - The initial estimate is taken from the previous iteration.
SMEP2=2 - The initial estimate is determined as a least squares solution of the first part of the
Karush-Kuhn-Tucker system.

The default value is SMEP2=1.

If $STYPE="G’, only the default specification MERIT="P’ is possible (with penalty functions deter-
mined by macrovariable MET as above). However, default values SMEP1=1 and $MEP2=1 are used in
this case.

If $TYPE="L’, the direction vector can be computed in the three different ways, which are specified
by using the macrovariable $DECOMP:

$SDECOMP="K’ - The direction vector is determined as a solution of the indefinite Karush-Kuhn-
Tucker system [187].

$DECOMP="7’ - The direction vector is decomposed into two parts. The vertical part is computed
directly from the constraint violation. The horizontal part, lying in the null-space, is
computed iteratively by using a special realization of the conjugate gradient method.
Instead of projecting into the null-space, either the augmented system or an orthog-
onal projection matrix, both determined from a range-space basis, are used [120].

$DECOMP='G’ - The direction vector is determined directly from the Lagrangian multipliers, which
are determined iteratively by using the conjugate gradient method in the range space
using the Schur complement. This choice can be used only if $CLASS="MN’ or
$CLASS="VM’ and $HESF="S’ (if a sparsity pattern is available).

The default value is SDECOMP="K".
If SDECOMP="K’, five realizations are possible, which are specified by the macrovariable SNUMBER:

$NUMBER=1 - An exact sparse Bunch-Parlett (BP) decomposition [74] of the indefinite Karush-

Kuhn-Tucker system is used. This choice can be used only if $CLASS="MN’ or
$CLASS="VM’ and $HESF="S’ (if a sparsity pattern is available).
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$NUMBER=3 - An inexact preconditioned conjugate gradient (PCG) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conju-
gate gradient method depends on specifications given by the macrovariables $MOSI,
$MOS2, $MOS3 and $MOS4.

$NUMBER=4 - An inexact preconditioned conjugate residual (PCR) method for the indefinite
Karush-Kuhn-Tucker system is applied which uses a special determination of the
required precision. The particular realization of the inexact preconditioned conjugate
residual method depends on specifications given by the macrovariables $MOS1 and
$MOS2.

$NUMBER=5 - An inexact symmetric preconditioned quasi-minimum residual (PQMR) method for
the indefinite Karush-Kuhn-Tucker system is applied which uses a special determi-
nation of the required precision. The particular realization of the inexact symmetric
preconditioned quasi-minimum residual method depends on specifications given by
the macrovariables $MOS1 and $MOS2.

$NUMBER=6 - An inexact nonsymmetric preconditioned conjugate gradient squared (PCGS)
method for the indefinite Karush-Kuhn-Tucker system is applied which uses a spe-
cial determination of the required precision. The particular realization of the inexact
nonsymmetric preconditioned conjugate gradient squared method depends on speci-
fications given by the macrovariables $MOS1, $MOS2 and $MOS3.

The default value is SNUMBER="3".
Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of
the penalty parameter.

$MOS1=2 - A precision guaranteeing descent direction is used together with an extended choice

of the penalty parameter.

The default value is $MOS1=0.
Macrovariable $MOS2 specifies a preconditioning technique.

$MOS2=0 - Preconditioning is suppressed.

$MOS2=41 - The indefinite preconditioner [187] based on a diagonal approximation of the Hessian
matrix is used in the normal equation form.

$MOS2=2 - The indefinite preconditioner [187] based on a diagonal approximation of the Hessian
matrix is used in the augmented system form.

$MOS2=43 - The indefinite preconditioner [187] based on a diagonal perturbation of the Schur

complement is used.

If $MOS2>0, a complete Gill-Murray decomposition is used. If $MOS2<0, an incomplete Gill-Murray
decomposition is used. The default value is $MOS2=1.
Macrovariable $MOS3 specifies residual smoothing of the conjugate gradient method.

$MOS3=0 - The residual smoothing is suppressed.
$MOS3=1 -A simple one-dimensional residual smoothing is used.

The default value is $MOS3=0.
Macrovariable $MOS4 specifies the choice of the initial direction.

$MOS4=0 - The zero initial direction is used.
$MOS4=1 - The vertical initial direction is used.
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The default value is $MOS4=0.
If $DECOMP="Z’, only one realization is possible, which is specified by the macrovariable SNUMBER:

$NUMBER=3 - An inexact null-space preconditioned conjugate gradient (NPCG) method for the
determination of the horizontal direction is applied which uses a special determination
of the required precision. A particular realization of the null-space preconditioned
conjugate gradient method depends on the specifications given by the macrovariables

$MOS1 and $MOS2.

Macrovariable $MOS1 specifies the precision control and the choice of the penalty parameter.

$MOS1=0 - The precision control is suppressed.

$MOS1=1 - A precision guaranteeing descent direction is used together with the basic choice of
the penalty parameter.

$MOS1=2 - A precision guaranteeing descent di