
Schemes of Multiagent Systems

Rydvan, Pavel
2005

Dostupný z http://www.nusl.cz/ntk/nusl-39698

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 23.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-39698
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
Academy of Sciences of the Czech Republic

Schemes of Multiagent Systems

Pavel Rydvan

Technical report No. 943

December 2005

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420266 051 111, fax: +420286 585 789,
e-mail:ics@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Schemes of Multiagent Systems 1

Pavel Rydvan2

Technical report No. 943

December 2005

Abstract:

In the artificial intelligence, the hybrid models tend to provide good results for many problems. Hybrid
model is a model that combines several approaches (neural networks, genetic algorithms, fuzzy logic
controllers etc.). However, such a model often has many variants and parameters to be set. The success
of the model depends on these options.

A scheme of the multiagent systems is an instrument for formal description and construction of the
multiagent systems. Schemes are flexible enough to describe simple multiagent system as well as the hybrid
model implemented by the multiagent system. This brings the potential of an automatic generation of the
scheme, and therefore the potential for using the evolutionary algorithms for the scheme creation.

Keywords:
Software agents, multiagent systems, schemes, genetic algorithms

1This work was partially supported by GA ČR Grant 201-05-H014.
2Institute of Computer Science, Academy of Sciences of CR, Pod vodárenskou věž́ı 2, P.0. Box 5, 182 07 Prague 8,

Czech Republic
Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic,
pavel.rydvan@st.cuni.cz



1 Introduction

In the artificial intelligence, the hybrid models tend to provide good results for many problems [6].
Hybrid model is a model that combines several approaches (neural networks, genetic algorithms, fuzzy
logic controllers etc.) [2]. However, such a model often has many variants and parameters to be set.
The success of the model depends on these options.

A scheme of the multiagent systems is an instrument for formal description and construction of the
multiagent systems. Schemes are flexible enough to describe simple multiagent system as well as the
hybrid model implemented by the multiagent system [3]. This brings the potential of an automatic
generation of the scheme, and therefore the potential for using the evolutionary algorithms for the
scheme creation [5, 4].

2 Schemes

The main reason for introducing schemes is to provide the means for explicit description of the
communication interface of both a single agent and a group of them. It is very handy to have the
same instrument for describing both single agent and a group of agents, so both can be handled in
the same way.

Scheme definition prescribes the two fundamental properties: gates and interfaces. While gates
are the tools for sending the messages, the interfaces are the tools for obtaining messages and for
distinguishing among more possible sources of them. Gates and interfaces thus are the means of
communication. The connection can be established between a gate (of one agent) and the interface
(of second agent).

The agent can send any message through its gate. The message is transported to the second agent’s
interface. The second agent can (but is not forced to) send a reply to the message. The communication
is therefore ”semi-bidirectional”. Each message exchange is iniciated by the agent which holds the
gate, but each message can be replied.

An important property of both gates and interfaces is that the target of each of them can be
easily changed from outside. It is supposed, that any agent (or group of agents acting as a scheme)
understands the particular messages for manipulating with gates/interfaces. With this proprty it is
possible to use the schemes as a building blocks for creating multiagent systems (MAS).

MAS is the entity that fulfils the constrains given by the scheme definition. The simplest case
of MAS is a single agent with given set of gates and interfaces. Another case of MAS is a group of
agents, each of them playing its role and acting together as a single scheme. Finally, because the MAS
can behave as a single agent (one can send messages to the scheme as if it was regular agent) and,
similarly, a scheme can be also the originator of the messages, the MAS can be also a building block
of other (bigger) MAS. On the other hand, none of the comprising agents (or MAS) looses its former
ability to act on its own.

2.1 MAS

The definition of MAS is given by two its fundamental properties: the set of building blocks and the
way the building blocks are interconnected.

Each building block indicates the way how to create one scheme, which takes part within the MAS.
Both agent and MAS can play the role of the building block. It is therefore possible to create recursive
structures where MAS is made out of other MASes and/or agents.

2.2 Building Blocks

There are two basic possibilities for describing the way how to obtain each building block in the MAS
specification: the agent/MAS can be newly created when creating the MAS or a “living” agent can
be connected to the MAS that is being created.

It is also possible to handle the building blocks in special ways. For example, it is possible to specify
a ring of them. In this case, several “clones” of certain buiding block are created and interconnected

1



very easily to form the token ring, which could be very handful for parallel implementation of some
algorithms. Other topologies can be handled in a similar fashion.

2.3 Connections

The MAS defines, how the connections among all the building blocks should be arranged. Basically,
each connection specifies the two endpoints: which building block–gate pair should be connected to
which building block–interface pair. There are four cases of whether the connection targets from/to
“inside” of the MAS or from/to “outside” of it, but only three out of them are interesting:

• inside to inside — both building blocks are inside the MAS being created;

• outisde to inside — the interface is inside the MAS but it is supposed to be connected to the
gate from outside of the MAS being created;

• inside to outside — the gate is inside the MAS and it is supposed to target to some interface
which is out of the MAS being created

2.4 Implementation

We will now describe the way how the foregoing concepts are implemented in bang3 project.

Gate

The gates are implemented very strightforwardly. The CLink class is taken as the base class for the
newly created CGate class. CLink is used in bang as a basic reference to an agent. It is used mostly
by the Sync function which is designed for message passing4. CLink stores the information about the
target — the unambiguous identification of the agent which it points to.

For our purposes this is insufficient: we also need to store the name of the interface which the
particular connection targets to. The CGate class adds this property to the CLink class. The instance
of CGate class can be created from any CLink instance providing the aditional information about the
interface the gate is about to point to.

Interface

The basic means for accepting messages in bang is the concept of triggers. Each trigger is defined by
two important parts: the message template and the chunk of code. The message template defines the
constraints on the incomming message. If the incomming message holds the constraints, the given
chunk of code is executed.

Whenever the CGate is used instead of CLink for sending the message, the information about the
interface the gate targets to is added to the message as a metadata. An enhancement of the message
template definition was added which makes it possible and easy to specify the interface in the trigger
definition.

MAS

MAS is a common name for agents or suits of agents that fulfill the scheme definition, that can
eventually manipulate their connections in order to incorporate themselves into another scheme.

In the case of the MAS consisting of a single agent, the situation is simple. Concerning sending
messages, the agent is supposed use the CGates instead of CLinks for its communication. The agent
is also supposed to understand the messages for manipulating the gates. On the other hand, when
receiving messages, the agent is supposed to process the messages that come through its interfaces.
We will now focus on the case of the suites of agents.

3www.cs.cas.cz/bang3
4To be precise, there are 3 basic functions for sending a message which differ on whether and how the reply is

delivered to the sender. However, this is out of scope of this text. Only Sync is therefore used for simplicity in place,
where all thre variants should have been mentioned.

2



The objective is to define the means for describing and maintaining them. We proposed and
implemented an agent AMas that acts as a maintainer of one particular MAS. This agent is responsible
for creating the MAS out of its description.

Agent AMas intensively uses so called Sub-Agent Modules (SAMs). The SAM is a concept which
allows to create the modules that have some of the properties of the agents. Namely, it can create and
send messages and it can specify the triggers (which basically means that it can accept and process
incomming messages). However, the SAM cannot do it on its own — it always acts on the account of
certain agent. The agents can plug the SAMs in. When the agent plugs the SAM, it adopts the triggers
specified by the SAM and can take advantage of using its methods. The messages specified by the
SAM to be sent appear as if they have been sent by the agent itself.

The description of the MAS contains two lists: the list of building blocks and the list of connections.
There is more types of building blocks as well as there is more types of connections. There exists the
SAM for each particular building block or connection. When constructing the MAS, the AMas agent
reads the description (building blocks and connections) and cerates the relevant SAMs, and plugs them
into itself.

According to their purpose, the following SAMs were implemented:

• SMASCtor — the base class SAM or all the building block descriptor classes mentioned later in
this list. SMASCtor (and therefore each of its successors) keeps the link (CLink5) to the target
agent. It also stores the roleName (a string which serves as a reference to the particular building
block within the MAS).

SMASCtor defines a virtual method (incarnate). This method is called by AMas when this
agent/MAS should be created. SMASCtor also defines an auxiliary method findAgent serving for
finding the agent of given roleNamewithin the MAS, and another auxiliary method createAgent

which creates new agent of given type. The standard mechanism of launching agents in Bang
(agent ALauncher) is used here.

• SMASFromTypeName — building block SAM used for launching a new agent (i.e. not reusing an
existing one) of the type that is given as a parameter.

• SMASFromLink — SAM for integrating an existing (“living”) agent into the MAS. The link to
the agent is given as a parameter.

• SMASFromMAS— SAM for integrating a “subMAS” into the MAS. SMASFromMAS is one of the ways
how to get the MASes recursive. An “inner” MAS will be created according to the description
(given as a parameter), and will be treated as a building block of the “outer” MAS.

• SMASRing — the token ring is created. Each node of the building block is a MAS of the same
definition, which is given as a parameter.

The specified MAS is created more times, and interconnected to form a token ring. The gate
ringnext of each “clone” of the “inner MAS” is connected to the interface ringnext of the next
one in the ring.

Any message sent to this MAS as a whole is sent to the first member of the ring only. SMASRing
provides also the means for sending message to the particular member of the ring, and for
broadcasting a message to all the ring members.

Example of uisng SMASRing is shown in the next section.

When agent AMas “incarnates” the MAS, first all building blocks are created/located. This is done
by employing the virtual method incarnate of each particular building block. The CLink to each of
them is stored in the corresponding SAM.

When links to all building blocks are avilable, AMas creates the connections among them. The con-
nections are listed in the array which was mentioned earlier as the second part of the MAS definition.

The following SAMs for defining the interconnections among building blocks are avilable:

5We really keep a CLink here (and not CGate). We need a “pointer” to the whole inferior building block
(agent/(sub)MAS) and not to its particular interface here. . .

3



• SConnCtor — the base class of all the connection descriptor’s classes. The rest of classes in this
list are derived from this one. SConnCtor declares the virtual method establish. The method
is called when the scheme is built.

• SConnInside — describes the connection, where both source and receiver are within boundary
of this MAS. The source is determined by name of building block (referring to the list of building
blocks) and the name of gate (G). The destination is determined by name of building block and
name of the interface (I). When establishing the connection, AMas finds the source agent, and
instructs it to set its gate G to target to interface I of the target agent.

• SConnIface — describes the connection, that should act as a interface from “outside” into
the MAS. Since we want the MAS to behave like an agent, which fulfills particular scheme
definition, this gives the MAS the possibility to have its own interface. The SConnIface is given
three parameters:

– Name of the interface to be created. This interface belongs to the MAS as a whole and
acts as a “fake” interface, which in fact is delivered to the interface described by the two
following arguments.

– Reference to the agent (let’s call it A) which will be sent the messages comming through
this interface

– Name of the interface of agent A, which is to be used for delivering the messages

To conclude, the definition of the interface of the MAS determines the particular agent–interface
pair, into which the incomming messages should be delivered. There is established a trigger
within the AMas agent, which triggers all messages comming through the given interface. This
trigger forwards them to the building block’s interface, that is specified.

• SConnGate — describes the connection which points out of the MAS and originates inside.
Although this type of connection is described very similarly — by the agent–gate pair, which is
the real originator, and by the name of the “fake” gate that formally belongs to the MAS as a
whole — the implementation is quite different.

In the “single agent” case we would want to have a gate, that stores the target–interface pair.
We would want it to understand the set/get messages. Similarly, in our case we want the whole
MAS to have a CGate that

– is accessible by the building block that actually sends messages through

– is able to understand the set/get messages

SConnGate stores CLink to the agent who is going to be the originator of the messages and the
name of its particular gate (both specified in the MAS definition).

The agent who puts all the above mentioned things together is the AMas agent.

3 Experiments

This section describes the experiments with automatical scheme generation using a genetic algorithm
[1].

The training sets used for experiments represented various polynomials. The genetic algorithm
was generating the schemes containing the following agents representing arithmetical operations: Plus

(performs the addition on floats), Mul (performs the multiplication on floats), Copy (copies the only
input (float) to two float outputs), Round (rounds the incoming float to the integer) and finally
Floatize (converts the int input to the float).

The selected set of operators has the following features: it allows to build any polynomial with
integer coefficients. The presence of the Round allows also another functions to be assembled. These
functions are the ‘polynomials with steps’ that are caused by using the Round during the computation.

4



The only constant value that is provided is −1. All other integers must be computed from it using
the other blocks. This makes it more difficult to achieve the function with higher coefficients.

We supply three operators for the genetic algorithm that would operate on graphs representing
schemes: random scheme creation, mutation and crossover.

The aim of the first one is to create a random scheme. This operator is used when creating the first
(random) generation. The diversity of the schemes that are generated is the most important feature
the generated schemes should have. The ‘quality’ of the scheme (that means whether the scheme
computes the desired function or not) is insignificant at that moment, it is a task of other parts of
the genetic algorithm to assure this. The algorithm for random scheme creation works incrementally.
In each step one building block is added to the scheme being created. In the beginning, the most
emphasis is put on the randomness. Later the building blocks are selected more in fashion so it would
create the scheme with the desired number and types of gates (so the process converges to the desired
type of function).

The goal of the crossover operator is to create offsprings from two parents. The crossover operator
proposed for scheme generation creates one offspring. The operator horizontally divides the mother
and the father, takes the first part from father’s scheme, and the second from mother’s one. The
crossover is illustrated in Fig. 3.1.

BlockPlus (0)

BlockCopy (2)

BlockConstNeg1 (1)

BlockFloatize (4)

BlockRound (5)

Schema Input

BlockMul (6)

BlockCopy (5) BlockFloatize (4)

BlockMul (7)

BlockPlus (8)

Scheme Output

BlockMul (6)

BlockCopy (5) BlockFloatize (4)

BlockMul (7)

BlockPlus (8)

Scheme Output

BlockRound (0)

BlockFloatize (2)

BlockCopy (1)

BlockRound (3)

Schema Input

BlockMul (3)

BlockPlus (7)

BlockFloatize (6)

Schema Output

BlockPlus (0)

BlockCopy (2)

BlockConstNeg1 (1)

BlockFloatize (4)

BlockRound (5)

Schema Input

Figure 3.1: Crossover of two schemes. The mother and father are horizontally divided and the offspring
becomes a mixture of both.

The mutation operator is very simple. It finds two links in the scheme (of the same type) and
switches their destinations. The mutation operator is illustrated in Fig. 3.2.

BlockPlus (8)

BlockMul (6)BlockMul (7)

BlockFloatize (4)

BlockConstNeg1 (1)

BlockRound (5)

BlockCopy (5) BlockPlus (0)

BlockCopy (2)

BlockFloatize (4)

Schema Input

Scheme Output

BlockPlus (8)

BlockMul (6)BlockMul (7)

BlockFloatize (4)

BlockConstNeg1 (1)

BlockRound (5)

BlockCopy (5) BlockPlus (0)

BlockCopy (2)

BlockFloatize (4)

Scheme Output

Schema Input

Figure 3.2: Mutation on scheme. The destination of two links are switched.

The aim of the experiments was to verify the possibilities of the scheme generation by genetic
algorithms. The below mentioned examples were computed on 1.4GHz Pentium computers. The

5



computation is relatively time demanding. The duration of the experiment depended on many pa-
rameters. Generally, one generation took from seconds to minutes to be computed.

The results of the experiments depended on the complexity of the desired functions. The functions,
that the genetic algorithm learned well and quite quickly were functions like x

3
− x or x

2
y
2. The

learning of these functions took from tens to hundred generations, and the result scheme precisely
computed the desired function.

Also more complicated functions were successfully evolved. The progress of evolving function
x

3
− 2x

2
− 3 can be seen in the Fig. 3.3 and 3.4. Having in mind, that the only constant that can

be used in the scheme is −1, we can see, that the scheme is quite big (comparing to the previous
example where there was only approximately 5–10 building blocks) — see Fig. 3.5. It took much
more time/generations to achieve the maximal fitness (namely 3000 generations) in this case.

On the other hand, learning of some functions remained in the local maxima, which was for example
the case of the function x

2 + y
2 + x.

Figure 3.3: Function x
3
− 2x

2
− 3. The history of the maximal and average fitness

Figure 3.4: Function x
3
− 2x

2
− 3. The best schemes from generation 0, 5, 200 and 3000

4 Conclusion

We have introduced the notion of the schemes of agents in the multiagent systems. We have described
the infrastructure for maintaining the schemes in the multiagent system bang. We have designed the
system for description of such a schemes, and the instruments for building the schemes out of the
agents and the other building blocks.

We have used an evolutionary algorithm for automatic creation of multiagent systems. Although
the presented example limits to relatively simple agents for computing the arithmetical expressions,

6



Figure 3.5: Function x
3
− 2x

2
− 3. The scheme with fitness 1000 (out of 1000), taken from 3000th

generation.

we have demonstrated that it is possible to create the schemes of the multiagent systems in an
autonomous, automatical way.

In the future work, we plan to focus on incorporating more complex agents into autonomously
generated schemes.

7



Bibliography

[1] Gerd Beuster, Pavel Krušina, Roman Neruda, and Pavel Rydvan. Towards building computational
agent schemes. In Artificial neural Nets and Genetic Algorithms — Proceedings of the ICANNGA

2003. Springer Wien, 2003.

[2] P. Bonissone. Soft computing: the convergence of emerging reasoning technologies. Soft Comput-

ing, 1:6–18, 1997.

[3] Jacques Ferber. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Har-
low: Addison Wesley Longman, 1999.

[4] D. B. Fogel. Evolutionary Computation: The Fossil Record. MIT-IEEE Press, 1998.

[5] J. Holland. Adaptation In Natural and Artificial Systems. MIT Press, reprinted edition, 1992.

[6] T. Mitchell. Machine Learning. McGraw Hill, 1997.

8


