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1 Introduction

A general nonlinear programming problem with complementarity constraints can be writ-
ten in the form

F (x) → min, cE(x) = 0, cI(x) ≤ 0, cT
K(x)cL(x) = 0,

where F : Rn → R, cE : Rn → RmE , cI : Rn → RmI , are twice continuously differentiable
functions and I = J ∪ K ∪ L is a disjunctive decomposition of I with K = {k1, . . . , kp},
L = {l1, . . . , lp}. This problem is difficult to solve by standard nonlinear programming
methods since the Mangasarian-Fromowitz constraint qualification is not satisfied at any
feasible point if K �= ∅, L �= ∅. Therefore, special methods have been developed by consid-
ering complementarity constraints cT

K(x)cL(x) = 0 separately. In this report, we describe
an interior-point method that uses l1 exact penalty function instead of complementarity
constraints. To simplify the description and analysis of this method, we assume without a
loss of generality that E = J = ∅ (constraints cE(x) = 0, cJ(x) ≤ 0 can be treated by a
usual way as, e.g. in [9], [11]). Thus we are concerned with the problem

F (x) → min, cK(x) ≤ 0, cL(x) ≤ 0, cT
K(x)cL(x) = 0. (1)

This problem can replaced by the problem

F (x) + ρcT
K(x)cL(x) → min, cK(x) ≤ 0, cL(x) ≤ 0, (2)

where ρ > 0, which has the same solution as (1) if ρ is sufficiently large. The advantage of
this transformation consists in the fact that the constraints of problem (2) usually satisfy
the Mangasarian-Fromowitz constraint qualification. Problem (2) can be solved by an
interior-point method. Thus we solve a sequence of the following IP subproblems

F (x)+ρsT
KsL−μeT ln(SK)e−μeT ln(SL)e → min, cK(x)+sK = 0, cL(x)+sL = 0, (3)

where ρ > 0, μ > 0 are parameters, sK > 0, sL > 0 are vectors of slack variables, and
SK = diag(sK), SL = diag(sL). If we denote s = (sK , sL), u = (uK , uL), where uk, uL

are vectors of Lagrange multipliers, then the Lagrange function of subproblem (3) has the
form

L(x, s, u) = F (x) + ρsT
KsL − μeT ln(SK)e − μeT ln(SL)e

+ uT
K(cK(x) + sK) + uT

L(cL(x) + sL), (4)

Denoting UK = diag(uK), UL = diag(uL) and AK = ∇cK(x), AL = ∇cL(x), we obtain the
following necessary KKT conditions

∇xL(x, s, u) = ∇F (x) + AK(x)uK + AL(x)uL = 0,

∇sK
L(x, s, u) = ρSLe − μS−1

K e + UKe = 0,
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∇sL
L(x, s, u) = ρSKe − μS−1

L e + ULe = 0,

∇uK
L(x, s, u) = cK(x) + sK = 0,

∇uL
L(x, s, u) = cL(x) + sL = 0,

or
∇F (x) + AK(x)uK + AL(x)uL = 0, (5)

SKUKe + ρSKSLe − μe = 0, SLULe + ρSKSLe − μe = 0, (6)

cK(x) + sK = 0, cL(x) + sL = 0. (7)

Applying the Newton method to the nonlinear system (5)–(7), we need to solve a
sequence of linear KKT systems

⎡
⎢⎢⎢⎢⎢⎢⎣

G(x, u) 0 0 AK(x) AL(x)
0 UK + ρSL ρSK SK 0
0 ρSL UL + ρSK 0 SL

AT
K(x) I 0 0 0

AT
L(x) 0 I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δx
ΔsK

ΔsL

ΔuK

ΔuL

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

g(x, u)
gK(s, u)
gL(s, u)
cK + sK

cL + sL

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8)

where

g(x, u) = ∇F (x) + AK(x)uK + AL(x)uL,

gK(s, u) = SKUKe + ρSKSLe − μe,

gL(s, u) = SLULe + ρSKSLe − μe

and
G(x, u) = ∇2F (x) +

∑
i∈K

ui∇2ci(x) +
∑
i∈L

ui∇2ci(x).

The interior-point method for nonlinear programming with complementarity constraints
can be roughly described in the following form. For given vectors x ∈ Rn, sK ∈ Rp,
sL ∈ Rp, uK ∈ Rp, uL ∈ Rp such that sK > 0, sL > 0 and given parameters μ > 0,
ρ > 0 we determine direction vectors Δx, ΔsK , ΔsL, ΔuK , ΔuL by solving linear system
equivalent to (8) (more details are given in Section 2). Furthermore, we choose a step-length
α > 0 and set x := x + αΔx, sK := sK + αΔsK , sL := sL + αΔsL, uK := uK + αΔuK ,
uL := uL + αΔuL (more details are given in Section 3). Finally, we determine a new
parameters μ > 0, ρ > 0, see Section 4.

A similar idea with the exact penalty term ρcT
K(x)cL(x) instead of ρsT

KsL was used in
[5], where conditions for global and superlinear convergence were studied.
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2 Direction determination

System (8) is nonsymmetric, but it can be easily transformed to the symmetric form

⎡
⎢⎢⎢⎢⎢⎢⎣

G 0 0 AK AL

0 S−1
K (UK + ρSL) ρI I 0

0 ρI S−1
L (UL + ρSK) 0 I

AT
K I 0 0 0

AT
L 0 I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δx
ΔsK

ΔsL

ΔuK

ΔuL

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

g
S−1

K gK

S−1
L gL

cK + sK

cL + sL

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

by multiplying the second and the third equations by S−1
K and S−1

L , respectively. Denoting
AI = [AK , AL],

gI =

[
gK

gL

]
, sI =

[
sK

sL

]
, uI =

[
uK

uL

]

and

M−1
I =

[
S−1

K (UK + ρSL) ρI
ρI S−1

L (UL + ρSK)

]
, (10)

we can write ⎡
⎢⎣ G 0 AI

0 M−1
I I

AT
I I 0

⎤
⎥⎦
⎡
⎢⎣ Δx

ΔsI

ΔuI

⎤
⎥⎦ = −

⎡
⎢⎣ g

S−1
I gI

cI + sI

⎤
⎥⎦ . (11)

This system can be further simplified by the elimination of vector ΔsI . Using the second
equation, we obtain

ΔsI = −MI(ΔuI + S−1
I gI), (12)

which after substitution into the third equation gives[
G AI

AT
I −MI

] [
Δx
ΔuI

]
= −

[
g

cI + sI − MIS
−1
I gI

]
. (13)

Lemma 1 Assume that the diagonal matrix

DK = DL = UKUL + ρ(UKSK + ULSL) (14)

is nonsingular. Then

MI =

[
DK 0
0 DL

]−1 [
SK(UL + ρSK) −ρSKSL

−ρSKSL SL(UK + ρSL)

]
. (15)

If diagonal matrices SK , SL, UK , UL are positive definite, then also MI is positive definite.

Proof Since diagonal matrices commute and DK = DL, we can easily check by multipli-
cation that[

S−1
K (UK + ρSL) ρI

ρI S−1
L (UL + ρSK)

] [
SK(UL + ρSK) −ρSKSL

−ρSKSL SL(UK + ρSL)

]
=

[
DK 0
0 DL

]
,
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which confirms (15). If SK > 0, SL > 0, UK > 0, UL > 0, then matrices DK , DL, and[
SKUL 0

0 SLUK

]

are positive definite. Since

MI =

[
DK 0
0 DL

]− 1
2
([

SKUL 0
0 SLUK

]
+ ρ

[
S2

K −SKSL

−SKSL S2
L

]) [
DK 0
0 DL

]− 1
2

,

it suffices to prove that the matrix[
S2

K −SKSL

−SKSL S2
L

]

is positive semidefinite. But it is true, since one has

[vT
K , vT

L ]

[
S2

K −SKSL

−SKSL S2
L

] [
vK

vL

]
= (SKvK − SLvL)T (SKvK − SLvL) ≥ 0

for arbitrary vectors vK ∈ Rp, vL ∈ Rp. �

Linear system (13) with the matrix

K =

[
G AI

AT
I −MI

]
(16)

can be solved either directly by the Bunch-Parlett decomposition (since matrix K is in-
definite when MI is positive semidefinite) or iteratively by the conjugate gradient method
preconditioned by the matrix

C =

[
D AI

AT
I −NI

]
(17)

where D is a positive definite diagonal matrix approximating G (e.g. a diagonal of G)
and NI is a suitable matrix. We assume that the matrix C is nonsingular, which implies
that the matrix NI + AT

I D−1AI , the Schur complement of D in C, is nonsingular. In the
subsequent considerations, we consider two cases where either NI = MI or

NI =

[
D−1

K SK(UL + ρSK) 0
0 D−1

L SL(UK + ρSL)

]
. (18)

In the first case, if NI = MI , the following theorems, proved in [9], demonstrate advanta-
geous properties of preconditioner C.

Theorem 1 Matrix KC−1 has at least mI unit eigenvalues with mI corresponding linearly
independent eigenvectors. Remaining eigenvalues of matrix KC−1 are eigenvalues of the
matrix G̃D̃−1, where

G̃ = G + AIM
−1
I AT

I , D̃ = D + AIM
−1
I AT

I .

If matrices G̃, D̃ are positive definite, then all eigenvalues of KC−1 are positive.
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Theorem 2 The dimension of the Krylov subspace defined by matrix KC−1 is at most
n + 1.

Theorem 3 Consider the conjugate gradient method with preconditioner C applied to sys-
tem (13). Assume that matrices G̃, D̃ are positive definite and choose the initial esti-
mation of Δx in such a way that the second equation is satisfied accurately (e.g. set
Δx = −D−1AI(A

T
I D−1AI)

−1(cI + sI − MIS
−1
I gI)). Then:

• Vector Δx∗ (the first part of the solution) is found after n iterations at most.

• Algorithm cannot fail before Δx∗ is found.

• The norm ‖Δx − Δx∗‖ converges to zero at least R-linearly with a quotient
√

κ − 1√
κ + 1

,

where κ is the spectral condition number of matrix G̃(D̃)−1.

• If Δx = Δx∗, then also ΔuI = Δu∗
I.

A disadvantage of the choice NI = MI is the fact that matrix MI can be indefinite. This fact
motivated us to use a positive diagonal of MI given by (18). Nevertheless, preconditioner
C with NI given by (18) has not an excellent properties given by Theorem 1–Theorem 3
and computational efficiency is also lower in comparison with the choice NI = MI .

3 Stepsize selection

Having computed directions Δx, ΔsI , ΔuI , we need to select a suitable stepsize α for
computing new vectors

x+ = x + min(α, αx)Δx, s+
I = sI + min(α, αs)ΔsI , u+

I = uI + min(α, αu)ΔuI , (19)

where αx > 0, αs > 0, αu > 0 are suitable upper bounds. Theoretically, the Newton
method requires a full step α = 1 (here we assume that upper bounds αx, αs, αu are
sufficiently large). But the unit stepsize is sometimes unsuitable and has to be decreased.
Usually, a merit function P (α) is used for this purpose and a stepsize α is chosen in such
a way that α = βj min(1, αx), where 0 < β < 1, and j ≥ 0 is the lowest integer for which
P (α) < P (0). Motivated by [6], we use the following merit function

P (α) = F (x + αΔx)

+ (uK + ΔuK)T (cK(x + αΔx) + sK + αΔsK)

+ (uL + ΔuL )T (cL (x + αΔx) + sL + αΔsL )

+ ρ(sK + ΔsK)T (sL + αΔsL) + ρ(sL + ΔsL)T (sK + αΔsK) (20)

− μ eT ln(SK + αΔSK)e − μ eT ln(SL + αΔSL)e

+
σ

2
‖cK(x + αΔx) + sK + αΔsK‖2 +

σ

2
‖cL(x + αΔx) + sL + αΔsL‖2,
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where ρ > 0, μ > 0, σ ≥ 0. The following theorem holds.

Theorem 4 Let UK + ρSL > 0, UL + ρSK > 0 and let the pair Δx, ΔuI be an inexact
solution of system (13) so that[

G AI

AT
I −MI

] [
Δx
ΔuI

]
+

[
g

cI + sI − MIS
−1
I gI

]
=

[
r
rI

]
, (21)

where rT
I = [rT

K , rT
L ]. Then

P ′(0) = − ΔxT GΔx + ΔxT r

− ΔsT
KS−1

K (UK + ρSL)ΔsK − ΔsT
LS−1

L (UL + ρSK)ΔsL (22)

− σ‖cK + sK‖2 − σ‖cL + sL‖2 + σ(cK + sK)T rK + σ(cL + sL)TrL.

If

σ > −ΔxT GΔx + ΔsT
KS−1

K (UK + ρSL)ΔsK + ΔsT
LS−1

L (UL + ρSK)ΔsL

‖cK + sK‖2 + ‖cL + sL‖2
(23)

and if (13) is solved with a sufficient precision, namely if

ΔxT r + σ(cK + sK)T rK + σ(cL + sL)T rL < ΔxT GΔx

+ ΔsT
KS−1

K (UK + ρSL)ΔsK + ΔsT
LS−1

L (UL + ρSK)ΔsL (24)

+ σ‖cK + sK‖2 + σ‖cL + sL‖2,

then P ′(0) < 0.

Proof Differentiating (20) by α, we obtain

P ′(0) = ΔxT (∇F (x) + AK(uK + ΔuK) + AL(uL + ΔuL))

+ ΔsT
K(uK + ΔuK) + ΔsT

L(uL + ΔuL)

+ ρ ΔsT
K(sL + ΔsL) + ρ ΔsT

L(sK + ΔsK) (25)

− μ ΔsT
KS−1

K e − μ ΔsT
LS−1

L e

+ σ(cK + sK)T (AT
KΔx + ΔsK) + σ(cL + sL)T (AT

LΔx + ΔsL)

Using the equality⎡
⎢⎢⎢⎢⎢⎢⎣

G 0 0 AK AL

0 S−1
K (UK + ρSL) ρI I 0

0 ρI S−1
L (UL + ρSK) 0 I

AT
K I 0 0 0

AT
L 0 I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δx
ΔsK

ΔsL

ΔuK

ΔuL

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

∇F (x) + AKuK + ALuL

uK + ρsL − μS−1
K e

uL + ρsK − μS−1
L e

cK + sK

cL + sL

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r
0
0
rK

rL

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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which is equivalent to (12) and (21), we obtain

ΔxT (∇F (x) + AK(uK + ΔuK) + AL(uL + ΔuL)) = −ΔxT GΔx + ΔxT r,

ΔsT
K(uK + ΔuK) + ρΔsT

K(sL + ΔsL) − μΔsT
KS−1

K e = −ΔsT
KS−1

K (uK + ρSL)ΔsK ,

ΔsT
L(uL + ΔuL) + ρΔsT

L(sK + ΔsK) − μΔsT
LS−1

L e = −ΔsT
LS−1

L (uL + ρSL)ΔsL,

(cK + sK)T (AT
KΔx + ΔsK) = −‖cK + sK‖2 + (cK + sK)T rK ,

(cL + sL)T (AT
LΔx + ΔsL) = −‖cL + sL‖2 + (cL + sL)T rL,

which after substituting into (25) gives (22). If (23) holds, then the right-hand side in (24)
is positive so if (13) is solved with a sufficient precision, then (24) holds and P ′(0) < 0 by
(22). �

Merit function (20) contains a new penalty parameter σ. Condition (23) restricts the
choice of parameter σ weakly. If matrix G is positive semidefinite, any value σ ≥ 0 satisfies
this condition. In the opposite case, the second term, which is always positive, decreases
the value of P ′(0) and partially eliminates the influence of the first term.

Inequality (23) gives one possibility for the computation of parameter σ, which implies
P ′(0) < 0 if (24) holds. But it is usually more efficient for practical computation to choose
parameter σ as a constant and replace matrix G by a positive definite diagonal matrix
D if condition P ′(0) < 0 does not hold. If D is the same as in preconditioner C (where
CI = MI), then KC−1 = I and we obtain the solution of (13) in the first CG step.

Now we concentrate to the determination of upper bounds αx, αs, αu. We usually set

αx =
Δ

‖Δx‖ , (26)

where value Δ is used as a safeguard against possible overflows. The upper bound αs

assures positivity of s+
I . Thus we should set αs ≤ α(1)

s , where

α(1)
s = τ min

i∈I, Δsi<0

(
− si

Δsi

)
,

and 0 < τ < 1 is a coefficient close to unit. Unfortunately, the same idea cannot be used for
Lagrange multipliers, since they can be negative by (6) (if complementarity constraints are
not satisfied). Instead of inequality u+

I > 0, we need to assure inequalities U+
K + ρS+

L > 0,
U+

L +ρS+
K > 0 used in Theorem 4. These inequalities restrict both αs and αu. Thus we set

αu = αs = min(α(1)
s , α(2)

s , α(2)
s ), (27)

where

α(2)
s = τ min

1≤i≤p

Δuki
+ρΔsli

<0

(
− uki

+ ρsli

Δuki
+ ρΔsli

)
,

α(3)
s = τ min

1≤i≤p

Δuli
+ρΔski

<0

(
− uli + ρski

Δuli + ρΔski

)
.

Note that U+
K + ρS+

L > 0, U+
L + ρS+

K > 0 imply U+
K + ρ+S+

L > 0, U+
L + ρ+S+

K > 0 for every
ρ+ ≥ ρ, so we can increase ρ in the next iteration.
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4 The choice of parameters and their update

Interior-point methods for nonlinear programming with complementarity constraints are
theoretically studied in [5]. It is shown that if the interior-point subproblems are solved
with a sufficient precision and parameters μ and ρ are updated by a suitable way, then
the interior-point method for nonlinear programming with complementarity constraints is
globally convergent. Unfortunately, their strict rules for updating μ and ρ are not suitable
for large problems with sparse matrices (since it is difficult to solve a large interior-point
subproblem with a sufficient precision). Therefore, we use different strategies based on
heuristic formulas which have been verified by computational experiments.

Our implementation of interior-point methods choose the value μ in such a way that

μ = max

(
μ, λ

sT
K(uK + ρsL) + sT

L(uL + ρsK)

mI

)
, (28)

where μ > 0 is a small lower bound for the barrier parameter which serves as a safeguard
and 0 < λ < 1. This choice corresponds to a usual strategy used for standard nonlinear
programming problems (where ρ = 0). Computational experience has shown that the
algorithm performs best when components ski

(uki
+ ρsli), sli(uli + ρski

), 1 ≤ i ≤ p, of the
dot-product in numerator approach zero at a uniform rate. The distance from uniformity
can be measured by the ratio

ν = 2 p
min1≤i≤p[ski

(uki
+ ρsli) + sli(uli + ρski

)]∑p
i=1[ski

(uki
+ ρsli) + sli(uli + ρski

)]

(also called the centrality measure). Clearly, 0 < ν ≤ 1 and ν = 1 if and only if the
conditions (6) hold. The value λ is then computed by using ν. Heuristic formulas are
usually used for this purpose. In our implementation, we have used the formula

λ = 0.1 min
(
0.05

1 − ν

ν
, 2
)3

(29)

proposed in [11].
Parameter ρ should be increased if |cT

K(x)cT
L(x)| (the violation of complementarity con-

straints) is much larger than ‖c0
I(x)‖, where c0

i (x) = max(ci(x), 0), i ∈ I. We use the
condition

|cT
K(x)cT

L(x)| ≤ ρ max(10−8, ‖c0
I‖), (30)

where ρ > 0 is a suitable constant. If this inequality holds, we set ρ+ = ρ. In the opposite
case, we set ρ+ = min(γρ, ρ), where γ > 1 is a suitable coefficient and ρ > 0 is a large
upper bound which serves as a safeguard.

Concerning parameter σ, we use a small constant value. If P ′(0) ≥ 0, than σ is not
increased, but the iteration is restarted with G replaced by D as was pointed out in
Section 3.
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5 Description of the algorithm

The above considerations can be summarized in the algorithmic form.

Algorithm 1.

Data: Minimum precision for the direction determination 0 < ω < 1. Line-search
parameter 0 < β < 1. Maximum step-length reduction 0 < τ < 1. Lower bound
for the barrier parameter μ > 0. Level for changing the exact penalty parameter
ρ > 0. Upper bound for the exact penalty parameter ρ > 0. Rate of the exact

penalty parameter increase. Step bound Δ > 0.

Input: Sparsity pattern of matrices ∇2F and AI . Initial choice of vector x.

Step 1: Initiation. Choose the values μ > 0 (e.g. μ = 1), ρ > 0 (e.g. ρ = 1) and σ > 0
(e.g. σ = 0.01). For i ∈ I set si := max(−ci(x), δs) and ui := δu, where δs > 0
(e.g. δs = 0.1) and δu > 0 (e.g. δu = 0.1). Compute value F (x) and vector cI(x).
Set k := 0.

Step 2: Termination. Compute matrix AI := AI(x) and vector g := g(x, u). If com-
plementarity constraints (1) and KKT conditions (5)–(7) are satisfied with a
sufficient precision and μ is sufficiently small, then terminate the computation.
Otherwise set k := k + 1.

Step 3: Approximation of the Hessian matrix. Compute approximation G of the Hessian
matrix G(x, u) by using differences of gradient g(x, u) as in [3].

Step 4: Direction determination. Build linear system (13) and choose a suitable pre-
conditioner of form (17). Determine positive definite diagonal matrix D as an
approximation of the diagonal of G and factorize the matrix AT

I D−1AI + NI by
using the complete or incomplete Gill-Murray decomposition to obtain a rep-
resentation of C−1. Set ω = min(‖g‖, 1/k, ω) and determine direction vectors
Δx, ΔuI as an inexact solution of (13) (with the precision ω) by using a pre-
conditioned Krylov-subspace method. Compute vector ΔsI by (12). Compute
directional derivative P ′(0) of the merit function P (α) by (25).

Step 5: Restart. If P ′(0) ≥ 0, determine positive definite diagonal matrix D by the
procedure given in [8], set G = D and go to Step 4.

Step 6: Step-length selection. Define maximum step-lengths αx, αs, αu by (26)–(27). Find
the minimum integer l ≥ 0 such that P (βlα) < P (0). Set α = βlα and x := x+,
sI := s+

I , uI := u+
I , where x+, s+

I , u+
I are vectors given by (19). Compute value

F (x) and vector cI(x).

Step 7: Parameters update. Determine μ by (28), where λ is computed by (29). Multiply
ρ by γ if (30) is not satisfied. Go to Step 2.
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6 Computational experiments

Algorithm 1 was tested by using a set of 18 test problems with 100 variables. This set
was obtained by a modification of test problems for equality constrained minimization
given in [6] and [7] (Test18), which can be downloaded (together with report [7]) from
http://www.cs.cas.cz/luksan/test.html. In our set, equalities ci(x) = 0, 1 ≤ i ≤ m,
are replaced by complementarity constraints ci(x) ≤ 0, ci+p(x) ≤ 0, ci(x)ci+p(x) = 0,
1 ≤ i ≤ p = m/2. In Algorithm 1, we have used values ω = 0.9, β = 0.5, τ = 0.95,
μ = 1.0−15, ρ = 102, ρ = 106, γ = 3. The default value Δ = 103 was frequently decreased.
We have used preconditioner C with NI = MI in our tests (preconditioner C with NI given
by (18) gave worse results).

The results of the tests are listed in Table 1, where NIT is the number of iterations,
NFV is the number of function evaluations, NFG is the number of gradient evaluations
(NFG is greater than NFV since the second order derivatives are computed by using gra-
dient differences), NCG is the number of CG iterations. The last row contains summary
results for all 18 problems together with the total number of restarts NRS and the total
computational time.

P NIT NFV NFG NCG F ‖c0
I‖ |cT

KcL| ‖g‖
1 35 35 210 977 3.98714 0.0 0.3E-13 0.1E-11
2 71 71 994 8354 2084.88 0.9E-12 0.3E-08 0.2E-09
3 12 12 72 41 14.1685 0.0 0.4E-21 0.6E-06
4 33 34 198 165 454.645 0.2E-14 0.2E-20 0.4E-09
5 46 55 460 465 4.890021E-01 0.0 0.6E-11 0.1E-06
6 19 19 266 88 6037.6532 0.4E-15 0.2E-29 0.5E-08
7 16 16 112 29 -34.9980 0.0 0.3E-25 0.3E-09
8 128 189 896 1858 9743.49 0.4E-15 0.9E-14 0.1E-08
9 450 2007 3157 5911 9.99304 0.3E-01 0.1E-05 0.2E-03

10 13 13 78 64 2.23397 0.6E-16 0.1E-11 0.3E-10
11 74 75 444 8471 1.663530E-16 0.5E-11 0.1E-16 0.6E-09
12 33 33 231 2928 3.748598E-11 0.0 0.1E-10 0.2E-10
13 39 102 312 1928 339.382 0.0 0.4E-27 0.4E-08
14 72 72 504 3544 2.141127E-21 0.0 0.2E-19 0.4E-15
15 126 128 756 13551 1.083434E-17 0.0 0.6E-17 0.6E-12
16 42 49 210 4848 2.846946E-17 0.0 0.2E-17 0.1E-14
17 32 42 160 2278 29.4314 0.2E-12 0.9E-13 0.8E-07
18 108 146 540 3849 32.5028 0.5E-64 0.9E-11 0.4E-07
Σ 1349 3098 9600 59349 NRS = 63 TIME=1.72

Table 1: Test 18 – Problems with 100 variables
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7 Conclusions

The results proposed in Table 1 imply several conclusions:

• The idea used in this report seems to be reasonable. Algorithm 1 solved all problems
except Problem 9 with a sufficient precision. Problem 9 was solved after changing
parameters ρ, ρ and γ.

• Linear system (13) is usually worse conditioned than similar system obtained by
interior-point methods for standard nonlinear programming problems. Thus the num-
ber of CG iterations is larger in comparison with problems where complementarity
constraints are not present.

• We have used a simple procedure for updating the exact penalty parameter ρ and
have observed that the efficiency of the method strongly depends on parameters ρ,
ρ and γ. For this reason, the efficiency of Algorithm 1 could be increased by using
more sophisticated procedure, which could be the main field for future research. We
have also used procedures proposed in [5], which require sufficient precision in solving
IP subproblems, but the results obtained were not satisfactory.
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