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Abstract:

We consider the conjecture formulated in the title concerning existence of a symmetric singular
matrix in a singular symmetric interval matrix. We show by means of a counterexample that it is
generally not valid, and we prove that it becomes true under an additional assumption of positive
semidefiniteness of the midpoint matrix. The proof is constructive.?

Keywords:
Symmetric interval matrix, singularity, positive semidefiniteness.

!This work was supported with institutional support RVO:67985807.
2Above: logo of interval computations and related areas (depiction of the solution set of the system
[2,4]z1 + [-2,1]z2 =[-2,2], [-1, 2]z1 + [2,4]z2 = [—2,2] (Barth and Nuding [?])).
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Abstract

We consider the conjecture formulated in the title concerning existence of
symmetric singular matrix in a singular symmetric interval matrix. We show
by means of a counterexample that it is generally not valid, and we prove
that it becomes true under an additional assumption of positive semidefi-
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1. Introduction

A square interval matrix A = [A — D, A+ D] is called singular if it
contains a singular matrix, and it is said to be symmetric if both A and D
are symmetric. Thus unless D = 0, A contains nonsymmetric matrices as
well. This context — namely, presence of both symmetric and nonsymmetric
matrices within A —leads to a natural question: if a symmetric A is singular,
does it necessarily contain a symmetric singular matrix?

In Section 2 we show by means of a 2 x 2 counterexample that this con-
jecture is not true; but then in Section 3 we prove that under an additional
assumption of positive semidefiniteness of the midpoint A it becomes valid.
The proof is constructive, and in Section 4 we translate it into the form of an
algorithm. It is interesting that it is a two-stage process: first we must find
an arbitrary (generally nonsymmetric) singular matrix in A, and then we
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exploit the sign structure of its null vector to construct a symmetric singular
matrix in A.
2. Counterexample

The symmetric interval matrix

a=( oy )

is obviously singular since it contains the singular matrix

(1)

yet each symmetric matrix in A is of the form

-1 t
At_< y 1), te[-1,1]

and it satisfies det(A4;) = —1 — 2 < 0, i.e., it is nonsingular. Hence, a
singular symmetric interval matrix does not contain a symmetric singular
matrix in the general case.

3. Existence of a symmetric singular matrix

We shall show, however, that under an additional assumption the con-
jecture becomes true.

Theorem 1. A singular symmetric interval matriz [A — D, A + D] with
positive semidefinite A contains a symmetric singular matriz.

PROOF. By assumption there exists a singular matrix Sy € [A — D, A+ D]
and thus also a vector z # 0 satisfying Sz = 0. Then we have

2l Az < |$T(A — So)z| < |$|T|A — Sollz| < |$|TD|x| (1)

Define a diagonal matrix 7" by 1;; = 1 if ; > 0 and T3 = —1 otherwise,
then |z| = Tz and substituting into (1) we obtain

T (A —TDT)z <0.



Because A—T DT is symmetric, by the Courant-Fischer theorem [1] we have

T o ’ T B
Nmin (A — TDT) = i © A= TPz (A= TDT)e

<0.
21 £0 Tyt - T

Now define a function f of one real variable by
f(t) = Amin(A—tTDT), te]0,1].

Then f(0) = Amin(A) > 0 because A is positive semidefinite by assumption,
f(1) = Anin(A—TDT) < 0 as proved above, and, moreover, f is continuous
in [0, 1] since by the Wielandt-Hofman theorem [1] for each t1,%2 € [0, 1] we
have

[f(t1) — f(t2)| < (82 — t2)TDT | < [t1 — t2| D]l p,

where || - || is the Frobenius norm. In this way the assumptions of the
intermediate value theorem are met, hence there exists a t* € [0, 1] such
that f(t*) = 0. Then

S=A-t"TDT

is a symmetric singular matrix in [A — D, A+ D].

4. Computation of a symmetric singular matrix

We may now sum up the construction given in the proof into the form
of an algorithm. Notice that first a singular matrix Sy must be constructed
(by arbitrary means; we recommend the MATLAB file mentioned in the
footnote) and then the sign structure of its null vector z is exploited to con-
struct a real function f whose zero on the interval [0, 1] must be found (we
recommend to use the classical bisection method which works well despite
the lack on any additional information about f).

Find a singular matrix! Sy € [A — D, A + D).

Find an z # 0 satisfying Spx = 0.

T =1I; set T;; = —1 whenever z; < 0.

C=TDT.

Construct a function f(t) = Amin (4 — tC), t € [0, 1].
Find a zero? t* of f(¢) in [0, 1].

S O w N

'E.g. by the file available at http://uivtx.cs.cas.cz/~rohn/other/regising.m.
2E.g. by the interval halving (bisection) method.



7. S=A-1*C.

Consider a randomly generated symmetric positive semidefinite integer
matrix A and a symmetric nonnegative integer matrix D.

A=
208 97 -8 153 62 -89
97 197 -102 71 10 -60
-8 -102 154 -64 -2 -17
163 71 -64 263 54 -32
62 10 -2 54 35 -12
-89 -60 -17 -32 -12 186

D=

NN NN
NN - N
N0 N =~
D OO N
O o ®mm~ o
oo ~N NN

The computed matrix Sy is not yet symmetric, but it contains a sym-
metric integer submatrix A(2 : 5,2 : 5). This nice integer substructure is
however destroyed while computing the symmetric singular matrix S which
contains no more integer entry. Finally we compute the rank of S to demon-
strate its singularity.

S0 =

208.5947 98.1894 -5.9186 153.5947 63.4867 -88.4053
93.0000 190.0000 -103.0000 65.0000 3.0000 -67.0000
-15.0000 -103.0000 152.0000 -70.0000 -10.0000 -24.0000
161.0000 65.0000 -70.0000 261.0000 46.0000 -38.0000
57.0000 3.0000 -10.0000 46.0000 29.0000 -17.0000
-87.0000 -53.0000 -10.0000 -26.0000 -7.0000 191.0000



207.0808 98.8385 -4.7827 153.9192 64.2981 -89.9192
98.8385 193.7827 -102.4596  68.2423 6.7827 -56.7827
-4.7827 -102.4596 153.0808 -66.7577 -5.6769 -13.7827

163.9192 68.2423 -66.7577 262.0808 50.3231 -29.2423
64.2981 6.7827 -5.6769 50.3231 32.2423 -9.7019

-89.9192 -56.7827 -13.7827 -29.2423 -9.7019 183.7019

>> rank(S)
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