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Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:luksan@cs.cas.cz, vlcek@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Transformations enabling to construct
limited-memory Broyden class methods
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Abstract:

The Broyden class of quasi-Newton updates for inverse Hessian approximation are trans-
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1 Introduction

In this report we present a new family of limited-memory variable metric (VM) line
search methods for unconstrained minimization, which generalizes the well-known
limited-memory BFGS method, see [5], [2].

VM or quasi-Newton line search methods, see [3], start with an initial point x0 ∈ RN

and generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0,
where dk is the direction vector and tk > 0 is a stepsize.

It is assumed that the problem function f : RN → R is differentiable, dk = −Hkgk

and stepsize tk is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1.1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and Hk is a symmet-
ric positive definite matrix; usually H0 = I and Hk+1 is obtained from γkHk (γk > 0
is a scaling parameter) by a rank-two VM update to satisfy the quasi-Newton condi-
tion Hk+1yk = �ksk (in generalized form), where �k > 0 is a nonquadratic correction
parameter (see [3]), yk = gk+1 − gk, k ≥ 0.

To simplify the notation we frequently omit index k and replace index k + 1 by
symbol +. We denote (note that b > 0 by (1.1))

B = H−1, a = yTHy, b = sTy, c = sT Bs, V = I − (1/b)syT .

Limited-memory BFGS method is based on the following quasi-product form of the
BFGS update

1

γ
H+ = V HV T +

�

γb
ssT . (1.2)

If we restrict to initial scaling, recommended in [2], where also only unit nonquadratic
correction parameters are used, it makes possible to define matrices Hk, k ≥ 0, by
H0 = I, Hk = Hk

j , j = min(k, m), k > 0, 1 ≤ m � N , where

Hk
0 =

bk−1

|yk−1|2 I, (1.3)

Hk
i+1 = Vk−j+iH

k
i V T

k−j+i +
�k−j+i

bk−j+i
sk−j+is

T
k−j+i , 0 ≤ i < j . (1.4)

Instead of matrices Hk
i , 2j vectors sk−j+i, yk−j+i, 0 ≤ i < j, are stored and direction

vectors dk = −Hkgk, k > 0, are computed using the Strang recurrences, see [5].

In Section 2 we mention some problems with generalization of this approach and
describe two variants of transformation of the scaled standard Broyden class of VM
updates to the quasi-product form resembling the BFGS update formula. In Section 3
we show how these transformations can be utilized in constructing of limited-memory
methods, which we call the limited-memory Broyden class methods. Numerical results
are presented in Section 4.
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2 Transformations to the formal BFGS update

Although the scaled Broyden class update of H with positive value of parameter η can
be written in the quasi-product form (see e.g. [6])

1

γ
H+ =

(
I −

(√
η

b
s +

1−√
η

a
Hy

)
yT

)
H

(
I − y

(√
η

b
s +

1−√
η

a
Hy

)T
)

+
�

γ

ssT

b
, (2.1)

similar to (1.2), application of this form of update to generalizing of the limited-memory
BFGS method is problematic; on the one hand we need to compute and store vectors
Hy (additional matrix by vector multiplication is sometimes not necessary, see Sec-
tion 3), on the other hand, VM matrices used in these vectors in previous iterations
differ from the current VM matrices and thus we have not the Broyden class update.

Therefore we process in another way. We transform the Broyden class update to
the formal BFGS update in transformed variables, which makes possible to construct
limited-memory methods in a similar way as for the BFGS update, with the same
number of stored vectors. Although we use the unit values of γk and �k in almost all
cases, we will consider also non-unit values in the subsequent analysis as is usual in
case of VM methods (see [3]). First we give the simple variant of the transformation.
We denote

ω =
�

γ
+

a

b
η , μ = η + (1 − η)

�

γ

b

a
. (2.2)

Theorem 2.1. Let � > 0, γ > 0, ω 	= 0, μ ≥ 0 and denote α = (η ± √
μ)/ω. Then√

μ 	= −η and the scaled standard Broyden class update of matrix H with parameter η,
scaling parameter γ and nonquadratic correction parameter � can be expressed in the
form

1

γ
HBC

+ =
� η

γb
ŝŝT + V̌ HV̌ T , ŝ = s − αH y, V̌ = I ±

√
μ

b
ŝyT . (2.3)

Proof. (i) First we show that
√

μ 	= −η. From (2.2) we have

η2 − μ = η2 − η − (1 − η)�b/(γa) = (η − 1)(η + �b/(γa)) = (η − 1) ωb/a, (2.4)

thus
√

μ 	= −η for η 	= 1 by b > 0 and obviously also for η = 1.
(ii) Consider the scaled Broyden class update with parameters η, γ and � in the

form, see [3],

1

γ
H BC

+ = H +
ω

b
ssT − η

b

(
H ysT + syT H

)
+

η − 1

a
H yyTH .

Setting s = ŝ + ξH y, ξ ∈ R, we obtain

1

γ
H BC

+ = H +
ω

b
ŝŝT +

ξω − η

b

(
H yŝT + ŝyTH

)
+

(
η − 1

a
+

ξ2ω − 2ξη

b

)
H yyTH.

The last term vanishes for ξ2ω − 2ξη + (b/a)(η − 1) = 0, i.e. for ξ = (η ±√
μ)/ω = α;

then ξω − η = ±√
μ and thus

1

γ
H BC

+ = H +
ω

b
ŝŝT +

±√
μ

b

(
H yŝT + ŝyTH

)
= V̌ HV̌ T +

1

b

(
ω − a

b
μ

)
ŝŝT .
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In view of
ω − a

b
μ =

�

γ
+

a

b
η − a

b
η − �

γ
(1 − η) =

�

γ
η (2.5)

we have (2.3). �

Note that we prefer the minus sign in α and V̌ , since then for η = 1 (BFGS) we
get α = 0, ŝ = s and V̌ = V . For η ≈ 1 it is also

√
μ ≈ 1, therefore the formula for α

above should be rewritten in another form. In view of (2.4) we obtain for ω 	= 0 (thus
also

√
μ 	= −η by Theorem 2.1)

α =
η −√

μ

ω
=

η2 − μ

ω(η +
√

μ)
=

(η − 1) ωb/a

ω(η +
√

μ)
=

(η − 1)b/a

η +
√

μ
. (2.6)

For better understanding, condition μ ≥ 0 can be rewritten as η(�b− γa) ≤ �b, i.e.
η ≤ ηSR1 for ηSR1 > 0, or η ≥ ηSR1 for ηSR1 < 0, where ηSR1 is the value of parameter η
for the SR1 method, ηSR1 = �b/(�b−γa), see [3]. From (2.2) we obtain ω = (�/γ)η 	= 0
for η = ηSR1 and therefore Theorem 2.1 can also be used for the SR1 update.

For the transformation above, the similarity to the BFGS update is relatively free.
Firstly V̌ is not a projection matrix in general, secondly matrix HBC

+ does not satisfy the
quasi-Newton condition in transformed variables, since vector HBC

+ y is not parallel to
ŝ. Both these properties can be obtained if we introduce an additional transformation.

Theorem 2.2. Let � > 0, γ > 0, ω 	= 0, μ > 0, α = (η − √
μ)/ω, b̂ = b/

√
μ,

ĉ = c − 2αb + α2a, ĉ 	= 0, β = −(�/γ)αb̂/ĉ, ŝ = s − αHy and ŷ = y − βBŝ. Then
b̂ = ŝT ŷ > 0, ĉ = ŝT Bŝ > 0 and the scaled standard Broyden class update of matrix H
with parameter η, scaling parameter γ and nonquadratic correction parameter � can be
expressed in the form

1

γ
HBC

+ =
�̂

γb̂
ŝŝT + V̂ HV̂ T, V̂ = I − 1

b̂
ŝŷT , �̂ = �

(
η√
μ
− αβ

)
. (2.7)

Moreover, if η ≥ 0, then �̂ > 0.

Proof. (i) First we establish ĉ = ŝT Bŝ > 0 and b̂ = ŝT ŷ > 0. From ŝ = s − αHy we
get ŝT Bŝ = (s − αHy)T (Bs − αy) = c − 2αb + α2a = ĉ. This yields

ŝT ŷ = ŝT (y − βBŝ) = (s − αHy)Ty − βŝT Bŝ = b − αa − βĉ,

which gives by (2.6), (2.2) and
√

μ 	= −η, see Theorem 2.1,

ŝTŷ = b − b
η − 1

η+
√

μ
+

�

γ
b̂α = b

√
μ +1

η+
√

μ
+

b√
μ

(η−1)�b/(γa)

η+
√

μ
=

b(μ+
√

μ + η−μ)√
μ(η+

√
μ)

= b̂.

From b̂ = b/
√

μ and b > 0 we deduce b̂ > 0, thus also ŝ 	= 0, which implies ĉ > 0 by
positive definiteness of B.

(ii) Next we show that â/b̂ + 2β =
√

μ(a − β2ĉ)/b, where â = ŷTHŷ. From

a = yT Hy = (ŷ + βBŝ)T (Hŷ + βŝ) = â + 2βb̂ + β2ĉ we obtain

â

b̂
+ 2β =

â + 2βb̂

b̂
=

a − β2ĉ

b̂
=

√
μ

a − β2ĉ

b
. (2.8)
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(iii) As in the proof of Theorem 2.1 we get

1

γ
HBC

+ = H +
ω

b
ŝŝT −

√
μ

b

(
H yŝT + ŝyTH

)
.

Setting y = ŷ + βBŝ, we obtain by b = b̂
√

μ

1

γ
HBC

+ = H − 1

b̂

(
HŷŝT+ ŝŷTH

)
+

ω−2β
√

μ

b̂
√

μ
ŝŝT = V̂ HV̂ T +

1

b̂

[
ω√
μ
−2β − â

b̂

]
ŝŝT .

To complete the proof, we rewrite the expression in brackets, using (2.8) and (2.5):

ω√
μ
−2β − â

b̂
=

ω√
μ
− a

b

√
μ + β2 ĉ

b

√
μ =

1√
μ

(
�

γ
η

)
+

βĉ

b̂
β =

�

γ

(
η√
μ
− αβ

)
=

�̂

γ
.

Since η = 1 for α = 0 due to (2.6), we see that �̂/� ≡ η/
√

μ−αβ = η/
√

μ+(�/γ)α2b̂/ĉ >

0 holds for η ≥ 0 by b̂ > 0 and ĉ > 0. �

Obviously, the quasi-Newton condition HBC
+ ŷ = �̂ŝ in transformed variables is

satisfied by (2.7). Note that ĉ = c − 2αb + α2a can be near to zero and therefore it is
better to compute it e.g. by

ĉ =
ac − b2 + (αa − b)2

a
= c − b2

a
+

b2

a

(√
μ + 1√
μ + η

)2

(2.9)

in view to (2.6) and
√

μ 	= −η, see Theorem 2.1, where ac ≥ b2 by the Schwarz
inequality.

3 Application to limited-memory methods

Theory in the previous section enables us to view the Broyden class updates with μ > 0
formally as the BFGS update in transformed variables.

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied, μ > 0, b̌=∓b/
√

μ and
�̌ = ∓�η/

√
μ. Then the scaled standard Broyden class update of matrix H with param-

eter η, scaling parameter γ and nonquadratic correction parameter � can be formally
expressed as the scaled BFGS update in the form (1.2) with s, b, � and V replaced by
ŝ, b̌, �̌ and V̌ .

Proof. See Theorem 2.1. �

Theorem 3.2. Let the assumptions of Theorem 2.2 be satisfied. Then the scaled stan-
dard Broyden class update of matrix H with parameter η, scaling parameter γ and
nonquadratic correction parameter � can be formally expressed as the scaled BFGS
update in the form (1.2) with s, y, b, � and V replaced by ŝ, ŷ, b̂, �̂ and V̂ .
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Proof. See Theorem 2.2. �

Therefore we can again define matrices Hk
0 by (1.3) and Hk = Hk

j , j = min(k, m),
k > 0, by relations similar to (1.4) according to Theorem 3.1 or Theorem 3.2. Instead
of matrices Hk

i , 2j ≤ 2m vectors ŝk−j+i and yk−j+i or ŷk−j+i are stored here, together

with numbers b̌k−j+i, �̌k−j+i or b̂k−j+i, �̂k−j+i, 0 ≤ i < j. In addition to vector Hkgk,
another vector Hkyk, k > 0, should be computed here (it is not necessary in case of the
simpler transformation according to Theorem 2.1, see below). Note that transformed
nonquadratic correction parameters are not unit here, which requires a little modifica-
tion of the Strang recurrences, see [5], used for computing of vectors Hkgk, Hkyk.

In the next algorithms which correspond to the transformation given in Theorem 2.1
we also consider the case μk = 0, i.e. the SR1 update. Then variables b̌, �̌ are not
defined and thus we use in relation (3.1) term ηk−j+i/bk−j+i instead of �̌k−j+i/b̌k−j+i,
which again requires a little modification of the Strang recurrences. Moreover, if μk = 0
we have V̌k = I and thus the Strang recurrences can be simplified.

We shall now state the limited-memory Broyden class methods in details. In the
first two algorithms we use one additional matrix by vector multiplication per iteration
in comparison with the limited-memory BFGS method. Algorithm 3.1 corresponds to
the transformation given in Theorem 2.1, Algorithm 3.2 to the transformation given
in Theorem 2.2. Everywhere we suppose � = γ = 1, except for the initial scaling (1.3).

Algorithm 3.1

Data: The number m of VM updates per iteration, line search parameters ε1 and ε2,
0 < ε1 < 1/2, ε1 < ε2 < 1.

Step 0: Initiation. Choose the starting point x1 ∈ RN , define starting matrix H0
0 = I

and direction vector d0 = −g0 and set the iteration counter k = 0.

Step 1: Line search. Compute xk+1 =xk+tkdk, where tk satisfies (1.1), gk+1=∇f(xk+1),
yk =gk+1−gk, bk, Hkyk (by the modified Strang recurrences, see discussion above,

using matrices {Hk
i }min(k,m)

i=0 ) and ak.

Step 2: Transformation. Choose parameter ηk of the Broyden class update satisfying
μk ≥ 0. Using Theorem 2.1, compute αk and ŝk and define V̌k.

Step 3: Updates definition. Set k := k + 1, j = min(k, m) and define Hk
0 by (1.3) and

Hk = Hk
j by

Hk
i+1 = V̌k−j+iH

k
i V̌ T

k−j+i +
ηk−j+i

bk−j+i
ŝk−j+iŝ

T
k−j+i , 0 ≤ i < j . (3.1)

Step 4: Direction vector. Compute dk = −Hkgk by the modified Strang recurrences,
using matrices {Hk

i }min(k,m)
i=0 , and goto Step 1.

Algorithm 3.2

Data: The number m of VM updates per iteration, line search parameters ε1 and ε2,
0 < ε1 < 1/2, ε1 < ε2 < 1.

Step 0: Initiation. Choose the starting point x1 ∈ RN , define starting matrix H0
0 = I

and direction vector d0 = −g0 and set the iteration counter k = 0.
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Step 1: Line search. Compute xk+1 =xk+tkdk, where tk satisfies (1.1), gk+1=∇f(xk+1),
yk =gk+1−gk, bk, Hkyk (by the modified Strang recurrences, see discussion above,

using matrices {Hk
i }min(k,m)

i=0 ) and ak.

Step 2: Transformation. Choose parameter ηk of the Broyden class update satisfying
μk > 0 and ωk 	= 0. Using Theorem 2.2, compute αk, b̂k, ĉk, βk, ŝk, ŷk and �̂k

and define V̂k.

Step 3: Updates definition. Set k := k + 1, j = min(k, m) and define Hk
0 by (1.3) and

Hk = Hk
j by

Hk
i+1 = V̂k−j+iH

k
i V̂ T

k−j+i +
�̂k−j+i

b̂k−j+i

ŝk−j+iŝ
T
k−j+i , 0 ≤ i < j . (3.2)

Step 4: Compute dk = −Hkgk by the modified Strang recurrences, using matrices
{Hk

i }min(k,m)
i=0 , and goto Step 1.

Classical Broyden class updates of matrix H , see [1], [3], need vector Hy besides
the direction vector d = −Hg in every iteration, but it does not mean that we must
calculate two matrix by vector multiplications per iteration. If we have computed
vector Hy, then the next direction vector can be expressed as a linear combination of
vectors s, Hy.

Lemma 3.1. Consider the scaled Broyden update of matrix H with parameter η, scaling
parameter γ and nonquadratic correction parameter � and denote by t the stepsize.
Then the direction vector d+ = −H+g+ can be written in the form

td+ =
[
γη

(
ac

b2
− 1

)
+ γ + �

(
c

b
− t

)]
s − b

a

[
γη

(
ac

b2
− 1

)
+ γ

]
Hy. (3.3)

Proof. Writing VM update in the form (1/γ)H+ = H + Δ, we get by s = −tHg and
the quasi-Newton condition H+y = �s

tH+g+ = tH+y + tγ(H + Δ)g = (�t − γ)s − γΔBs. (3.4)

For the scaled Broyden class update we have, see [3],

Δ =
1

b

(
�

γ
+

a

b
η

)
ssT − η

b

(
H ysT + syT H

)
+

η − 1

a
H yyTH . (3.5)

Therefore

ΔBs =
[
�

γ

c

b
+ η

(
ac

b2
− 1

)]
s − b

a

[
η

(
ac

b2
− 1

)
+ 1

]
Hy,

which together with (3.4) gives (3.3). �

Note that in the frequent case � = γ = t = 1 we have d+ = ΔBs by (3.4).
This approach cannot be used directly for our limited-memory methods, since ma-

trix Hk used for calculation of vector Hkyk is created by updating of matrix Hk
0 =

(bk−1/|yk−1|2)I, which is different from matrix Hk+1
0 = (bk/|yk|2)I, and thus matrix
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Hk = Hk
min(k,m) satisfying sk = −tkHkgk is different from the matrix which we up-

date for the last time to obtain matrix Hk+1. The result is that vector s is here only
approximation of −tHg and the right side of (3.3) is only a poor approximation of td+.

The situation is even worse when we start creating of matrix Hk with matrix
(bk/|yk|2)I instead of (bk−1/|yk−1|2)I. Nevertheless, Lemma 3.1 can be used to save
one matrix by vector multiplication per iteration in case of transformation given by
Theorem 2.1. The idea consist in using an approximation of vector Hkgk+1, calculated
by updating of matrix Hk+1

0 , to approximate vector Hkyk. Unfortunately, this idea is
not suitable for transformation given by Theorem 2.2, where condition sk = −tkHkgk

must be satisfied more accurately.

Algorithm 3.3

Data: The number m of VM updates per iteration, line search parameters ε1 and ε2,
0 < ε1 < 1/2, ε1 < ε2 < 1.

Step 0: Initiation. Choose the starting point x1 ∈ RN , define starting matrix H0
0 = I

and direction vector d0 = −g0 and set the iteration counter k = 0.

Step 1: Line search. Compute xk+1 =xk+tkdk, where tk satisfies (1.1), gk+1=∇f(xk+1),
yk = gk+1−gk, bk, ck and Hkgk+1 by the modified Strang recurrences, see dis-

cussion before Algorithm 3.1, using matrices {Hk
i }min(k,m)

i=0 .

Step 2: Approximation. Define Hkyk = Hkgk+1 + (1/tk)sk and ak = yT
k Hkyk.

Step 3: Transformation. Choose parameter ηk of the Broyden class update satisfying
μk ≥ 0. Using Theorem 2.1, compute αk and ŝk and define V̌k.

Step 4: Updates definition. Let j = min(k, m). Define Hk
0 = (bk/|yk|2)I and Hk = Hk

j

by (3.1).

Step 5: Direction vector. Compute dk+1 by (3.3).

Step 6: Loop. Set k := k + 1 and goto Step 1.

4 Computational experiments

In this section we demonstrate the influence of parameter η on the number of evalu-
ations and computational time, using the collection of sparse and partially separable
test problems from [4] (Test 14, 22 problems each) with 1000, m = 10, � = γ = 1 and
the final precision ‖g(x�)‖∞ ≤ 10−6.

Results for Algorithm 3.2 and Algorithm 3.3 are given in Table 1, where ’NFE’
is the total numbers of function and also gradient evaluations over all problems and
’Time’ the total computational time (Time) in seconds.

Our limited numerical experiments indicate that

• the efficiency of Algorithm 3.1 and Algorithm 3.2 is practically the same,

• it is possible to generalize limited-memory BFGS method with the same number
of matrix by vector multiplication and number of stored vectors,
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• the suitable choice of parameter η can improve efficiency of limited-memory meth-
ods.

Alg. 3.1 Alg. 3.2 Alg. 3.3
η NFE Time NFE Time NFE Time

0.5 24443 11.45 24025 11.17 22148 8.68
0.6 23379 10.94 24041 11.25 22903 8.69
0.7 23463 11.05 22440 10.35 23176 8.81
0.8 22687 10.50 23020 10.66 22649 8.64
0.9 21513 10.04 22005 10.00 21058 8.03
1.0 22419 10.19 22389 10.08 22139 8.44
1.1 21410 9.64 22478 10.21 21179 8.03
1.2 21813 9.96 21642 10.05 22008 8.27
1.3 21181 9.49 21696 9.61 20848 7.94
1.4 21688 9.67 21589 9.61 21164 8.09
1.5 21525 9.69 22112 9.83 22285 8.23
1.6 22044 9.70 21948 9.66 22311 8.37
1.7 22248 9.87 22220 9.77 21911 7.98
1.8 22006 9.89 21628 9.63 23416 8.66
1.9 23030 10.12 22065 9.73 23259 8.30
2.0 23017 10.06 22418 9.76 24640 8.97

Table 1. Influence of parameter η.
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