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1 Introduction

In this report we present a new family of limited-memory variable metric (VM) line
search methods for unconstrained minimization, which are projective, ie. they reduce
the rank of matrices in the inverse Hessian approximation by suitable projection.

VM line search methods, see [5], [3], are iterative. Starting with an initial point
x0 ∈ RN , they generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk,
k ≥ 0, where dk is the direction vector and tk > 0 is a stepsize.

We assume that the problem function f : RN → R is differentiable, dk = −Hkgk

and stepsize tk is chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1.1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and Hk is a
symmetric positive definite matrix. We denote Bk = H−1

k , yk = gk+1 − gk, k ≥ 0 and
by ‖.‖F the Frobenius matrix norm.

Various possibilities how to construct positive definite inverse Hessian approxima-
tions based on the low rank matrices are discussed in Section 2. In Section 3 we show
how properties of the standard scaled BFGS update can be utilized and generalized to
construct new limited-memory methods. Numerical results are presented in Section 4.

2 Positive definite inverse Hessian approximation

A simple form of positive definite matrices Hk based on low rank matrices is ζkI+UkU
T
k ,

k ≥ 0, where ζk > 0 and Uk are N × mk rectangular matrices, 1 ≤ mk � N , but
updating matrices of this form appears to be difficult. To avoid this drawback, shifted
VM methods, see [7], were developed. They appeared to be very efficient, except for
ill-conditioned problems, which is probably caused by the fact that shifted VM updates
are not invariant under linear transformations (significance of the invariance property
of methods for solution of ill-conditioned problems is discussed in [3]).

Another possibility, how to update matrices of this form, is described in [8]. Here
invariant variationally-derived updates are applied, but VM matrices cannot be directly
used to calculate direction vectors dk, and thus complicated corrections are necessary.

Our new methods are based on matrices Hk of the form

Hk = ζkI + UkU
T
k − RkR

T
k , (2.1)

k ≥ 0, where ζk > 0 and Uk, Rk are N ×min(k, m) rectangular matrices, 1 ≤ m � N .
Most of VM matrices in standard VM methods, see [3], [5], can be written in this
way. These methods set usually H0 = I and Hk+1 is obtained from γkHk (γk is a
scaling parameter) by a rank-two VM update to satisfy the quasi-Newton condition;
its generalized form is

Hk+1yk = �ksk, (2.2)

where �k > 0 is a nonquadratic correction parameter (see [5]).
Therefore matrices Hk can be easily updated in starting iterations, i.e. for k < m.

When k ≥ m, the rank of matrices U , R needs to be reduced before each update and
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updating formulas modified, which is described in Section 2.1. Some conditions to have
the result positive definite are discussed in Section 2.2.

We use in this report matrices Uk, Rk with the same number of columns only for
simplicity. Numerical experiments indicate that the number of columns of Rk can
be substantially reduced without significant increasing of the number of function and
gradient evaluations, which can increase efficiency. All methods here can be easily
adapted in this way.

For given qk ∈ RN , qT
k yk 	= 0, we denote by Vqk

the projection matrix I−qky
T
k/q

T
k yk.

To simplify the notation we frequently omit index k and replace index k+1 by symbol +.
In the subsequent analysis we use the following notation

C = ζI − RRT , b = sTy, V = Vs = I − (1/b)syT .

Note that b > 0 by (1.1).

2.1 Limited-memory VM matrices updating

To be able to add next columns, when matrices U , R have rank m, we first need to
make their columns dependent, i.e. we need matrices U , R , near to U , R, and suitable
vectors z1, z2 ∈ Rm, satisfying U z1 = 0, R z2 = 0. Such matrix U can be in a general
way written as the product of any N × m matrix and orthogonal projection matrix
P1 = I−z1z

T
1 /zT

1 z1 = I− z̄1z̄
T
1 , z̄1 = z1/|z1|, similarly for matrix R with P2 = I− z̄2z̄

T
2 ,

z̄2 = z2/|z2|, instead of P1.
The following lemma can be used to find the nearest (in the sense of Frobenius

matrix norm) matrices to U , R.

Lemma 2.1. Let T be symmetric positive definite, q ∈ RN , z ∈ Rm, z 	= 0, 1 ≤ m ≤
N , and denote W the set of N × m matrices, W ∈ W. Then the unique solution to

min{‖T−1/2(W − W )‖F : W ∈ W} s.t. W z = 0 (2.3)

is
W = WP, P = I − zzT /zT z, (2.4)

independently on the choice of T . Moreover, we can write

W W T + qqT =
(
W + qzT /|z|

) (
W + qzT /|z|

)T
. (2.5)

Proof. Setting W = (w1, . . . , wm), W = (w 1, . . . , w m), z = (ξ1, . . . , ξm)T , we define
Lagrangian function L = L(W , e), e ∈ RN , as

L =
1

2
‖T−1/2(W − W )‖2

F + eT Wz =
1

2

m∑
i=1

(w i − wi)
T T−1(w i − wi) +

m∑
i=1

ξie
Tw i.

A local minimizer W satisfies the equations ∂L/∂w i = 0, i = 1, . . . , m, which gives
T−1(w i − wi) + ξie = 0, i = 1, . . . , m, yielding W = W − TezT . Using the condition
W z = 0, we have Te = Wz/zT z, i.e. W = WP . Matrix W satisfies (2.3) in view of
convexity of Frobenius norm and the rest follows immediately from (2.4). �
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In view of Lemma 2.1 we set

U = UP1, R = RP2, C = ζI − R RT , H = C + U UT . (2.6)

If matrix H is positive definite and we choose a suitable standard VM update of H in the
form (1/γ)H+ = H + uuT − rrT which maintain positive definiteness of VM matrices,
limited-memory updating of H can be completely covered by Lemma 2.1. Writing
H+ = ζ+I−R+RT

++U+UT
+ and using (2.5), we can set ζ+ = γζ , (1/

√
γ)U+ = UP1+uz̄T

1 ,
(1/

√
γ)R+ = RP2 + rz̄T

2 .
Unfortunately, in general case we cannot find vectors z1, z2 which guarantee positive

definiteness of H . Some conditions that ensure it will be given in the next section.

2.2 Conditions for positive definiteness of reduced VM matrices

In view of P 2
i = Pi, i = 1, 2, we can write

U UT = UP1U
T = UUT − Uz̄1z̄1U

T , R RT = RP2R
T = RRT − Rz̄2z̄2R

T . (2.7)

In view of C = C + Rz̄2z̄2R
T by (2.6), we see that situation is quite simple, when

matrix C is positive definite, since then also matrix C and H = C + U UT are positive
definite for any z1, z2. The next section will be devoted to such standard VM updates
that can be adapted to maintain this property.

Even if matrix C is not positive definite, the choice of z2 has no influence to preserv-
ing of positive definiteness of H after reduction of matrix R, since ζI −R RT +UUT =
H+Rz̄2z̄2R

T by (2.7). The following lemma shows one possibility how to attain positive
definiteness of the VM matrix after reduction of matrix U.

Lemma 2.2. Let A = H + vvT , v ∈ RN , and denote λ(A), λ(H) the minimum
eigenvalues of A, H. If [ U , R ]T v = 0 then λ(H) = λ(A). Conditions UT v = 0,
RT v = 0 can be satisfied e.g. by the choice z1 = UT v, z2 = RT v.

Proof. We first show that λ(A) ≤ ζ . Denoting K1 = {q ∈ RN : [ U , v]Tq = 0, |q| = 1},
we have

λ(A) = min
|q|=1

qTAq ≤ min
q∈K1

qTAq = min
q∈K1

qT (ζI − R RT )q ≤ ζ.

We will consider the following two cases:
(a) If λ(H) = ζ , then λ(H) = λ(A) holds, since ζ = λ(H) ≤ λ(A) ≤ ζ .
(b) If λ(H) 	= ζ , then H w = λ(H) w, w 	= 0, implies U UTw−R RTw = (λ(H)−ζ)w

and thus w ∈ K2
Δ
= {q ∈ range([ U , R ]) : q 	= 0}. By [ U , R ]T v = 0 we get

λ(H) ≤ λ(A) = min
q �=0

qTAq

qT q
≤ min

q∈K2

qTAq

qT q
= min

q∈K2

qTH q

qT q
≤ wTH w

wTw
= λ(H),

therefore we again obtain λ(H) = λ(A).
If z1 = UT v, we have UT v = P1U

T v = P1z1 = 0 and similarly RT v = 0 for
z2 = RT v. �
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Note that in our case v = Uz̄1 by (2.7), thus the choice z1 = UT v leads to the
eigenvalue problem UT Uz1 = |z1|z1; in view of (2.7) the solution of this problem
minimizes matrix UUT damage, measured by ‖Uz̄1z̄1U

T‖ = |Uz̄1|2 = z1U
T Uz1/z

T
1 z1, if

we choose as z1 the eigenvector corresponding to the smallest eigenvalue of UT U . This
is valuable also in situations when we attain positive definiteness of the VM matrix
after reduction of matrix U in another way.

3 New limited-memory methods

In this section we focus on adaptation of standard VM updates to maintain positive
definiteness of matrix C. Having reduced matrix C positive definite, we want to find
updated matrix H+ satisfying the quasi-Newton condition (2.2), in the form H+ =
C+ +U+UT

+ , where C+ is positive definite. An easy way to do it is shown in Section 3.1
in case of the scaled BFGS method, see [5]. The variant of this approach based on
the partly inverse representation of matrix C is described in Section 3.2. These results
are generalized in Section 3.3, using variational approach, and in Section 3.4, using a
special transformation. The choice of parameters, including z1 and z2, is discussed in
Section 3.5.

3.1 Adaptation of the scaled BFGS method

The standard scaled BFGS update of H can be written in the form (see [5])

1

γ
H BFGS

+ =
�

γb
ssT + V HV T , (3.1)

which in view of H = C + U UT after easy rearrangements leads to

1

γ
H BFGS

+ =
1

γ
C BFGS

+ + V U UT V T = C − rrT + uuT + V U UT V T , (3.2)

where

u = (1/
√

ωb) (ωs − C y) , r = (1/
√

ωb) C y, ω = �/γ + ã/b, ã = yTC y. (3.3)

If we define (1/γ)C+ = C−rrT , we can easily show that matrix C+ is positive definite.

Lemma 3.1. Let matrix C be positive definite and vector r be given by (3.3). Then
matrix C − rrT is also positive definite.

Proof. For any q ∈ RN we obtain by the Schwarz inequality, (3.3) and b > 0

qT (C − rrT )q

qT C qT
= 1 − (qT C y)2

(ωb) qTC qT
≥ 1 − ã

ωb
= 1 − ã

b�/γ + ã
=

b�/γ

b�/γ + ã
> 0.

�

Replacing C − rrT in (3.2) by (1/γ)C+, we see that to get

H+ = C+ + U+UT
+ , (3.4)
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we need matrix U+ satisfying (1/γ)U+UT
+ = V U UT V T + uuT . Similarly, considering

that C = ζI − R RT , we see that to get

C+ = ζ+I − R+RT
+, (3.5)

we need ζ+ > 0 and matrix R+ satisfying (1/γ)R+RT
+ = R RT + rrT . By (2.6) we can

fulfil all these requirements if we define

ζ+ = γζ, (1/
√

γ)U+ = V U + uz̄T
1 , (1/

√
γ)R+ = R + rz̄T

2 . (3.6)

For better clearness, we summarize the updating process. First we choose vectors
z1, z2, see recommendations in Section 3.5, and then we determine matrices U , R, C,
H by (2.6) and compute vectors u, r by (3.3). Finally we compute number ζ+ and
matrices U+, R+ by (3.6) and determine matrices C+ by (3.5) and H+ by (3.4).

In starting iterations we omit reductions of matrices U , R, i.e. C = C, U = U ,
R = R and simply add column u to V U and r to R. Note that then H+ is the BFGS
update of H , unlike C+, which is not any standard VM update of matrix C.

3.2 Partly inverse representation of the scaled BFGS method

In the previous method we can change ζ only by scaling (3.6) to guarantee that C+

will be positive definite. This drawback can be overcome when we use partly inverse
representation of the scaled BFGS update.

In starting iterations we can in (3.2) rewrite the BFGS update of matrix C = C in
the form

1

γ
C BFGS

+ =

(
C−1 +

γ

�b
yyT

)−1

+ uuT (3.7)

with u given again by (3.2), which can be readily verified. Thus instead of (1/γ)C+ =
C − rrT , we can use equivalent formula

C −1
+ =

1

γ
C−1 +

1

�b
yyT . (3.8)

Starting with C0 = I and updating C−1
0 , . . . , C−1

k−1 according to (3.8), we obtain

C−1 = C−1 = (1/γ̄) I + Y DY T , (3.9)

where γ̄ = γ1 · · · γk, Y = [y1, . . . , yk] and diagonal positive definite matrix D is given
by D1 = [1/(�1b1)] and by update formula

D+ = diag

(
1

γ
D,

1

�b

)
. (3.10)

In view of (3.9), we store matrices Y , D instead of R.
When k ≥ m, we reduce matrix U in the same way as before, i.e. U = UP1, while

in case of matrices Y , D, we can simply delete their first columns, i.e. supposing that
Y = [yk−m, . . . , yk−1], D = diag(d1, . . . , dm) and C−1 = (1/ζ) I + Y DY T , ζ > 0, we set

Y = [yk−m+1, . . . , yk−1], D = diag(d2, . . . , dm), C−1 = (1/ζ) I + Y D Y T . (3.11)
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To get H+ = C+ + U+UT
+ , we define ζ+, U+ again by (3.6) and C+ in view of (3.8) by

C−1
+ =

1

ζ+
I + Y+D+Y T

+ , Y+ = [Y , y], D+ = diag

(
1

γ
D ,

1

�b

)
. (3.12)

To be able to compute C y, we store m×m matrix Y T Y and use the Woodbury formula,
which yields

C =

(
1

ζ
I + Y D Y T

)−1

= ζI − ζY

(
1

ζ
D−1 + Y T Y

)−1

Y T , (3.13)

i.e. to compute C y, we need to solve a linear system with symmetric positive definite
matrix (1/ζ) D−1 + Y T Y . Note that during computation of C y we can save vector
Y T y and use it in updating of matrix Y T Y , since by (3.12) we obtain

Y T
+ Y+ =

(
Y T Y Y Ty
yTY yT y

)
. (3.14)

Now we summarize the updating process. First we choose vector z1, see recom-
mendations in Section 3.5, and then we determine matrices U by (2.6), Y , D, C by
(3.11) and H by (2.6) and compute vector u by (3.3), using (3.13). Finally we compute
number ζ+ and matrix U+ by (3.6) and determine matrices Y+, D+, C+ by (3.12), using
(3.14), and H+ by (3.4).

If we wish to use a different projection instead of deleting the first column of Y and
D (although we are not able to say in this time, how to choose a suitable projection),
we can use another representation of C. In starting iterations we rewrite (3.9) in the
form

C−1 = C−1 = (1/γ̄) I + Ỹ Ỹ T , Ỹ = Y D1/2. (3.15)

Then for k ≥ m we reduce matrix U as before, i.e. U = UP1, and matrix Ỹ in a similar
way, i.e. Ỹ = Ỹ P3, P3 = I − z̄3z̄

T
3 , z̄3 = z3/|z3|, with some z3 ∈ Rm, and set

C−1 = (1/ζ) I + Ỹ Ỹ
T
, ζ > 0. (3.16)

To get H+ = C+ + U+UT
+ , we define ζ+, U+ again by (3.6) and C+ in view of (3.8) by

C−1
+ =

1

ζ+
I + Ỹ+Ỹ T

+ , Ỹ+ =
1√
γ

Ỹ +
1√
�b

yz̄T
3 . (3.17)

To be able to compute C y, we store m×m matrix Ỹ
T
Ỹ and use the Woodbury formula,

which yields

C =

(
1

ζ
I + Ỹ Ỹ

T
)−1

= ζI − ζỸ

(
1

ζ
I + Ỹ

T
Ỹ

)−1

Ỹ
T
.

Note that during computation of C y we can again save vector Ỹ
T
y and use it in

updating of matrix Ỹ T Ỹ , since by (3.17) we obtain

Ỹ T
+ Ỹ+ =

1

γ
Ỹ

T
Ỹ +

1√
�γb

(
Ỹ

T
yz̄T

3 + z̄3y
T Ỹ

)
+

yTy

� b
z̄3z̄

T
3 .
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3.3 Variationally-derived generalization

Although the scaled Broyden class updates of H with positive value of parameter η
can be written in the quasi-product form similar to (3.1), see [7], we cannot construct
limited-memory methods in a similar way as in the previous sections, since then pro-
jection matrix contains vector H y 	= C y and therefore we do not obtain the relation
similar to (3.2). In spite of that, it is possible to generalize this process for the standard
scaled Broyden class updates, as we show in the next section.

In this section we briefly describe two other possibilities. The first approach is based
on the projection variant, see [8], of the well-known Greenstadt’s theorem, see [4]:

Theorem 3.1. Let M, T be symmetric matrices, T positive definite, � > 0, p = Ty
and denote M the set of N × N symmetric matrices. Then the unique solution to

min{‖T−1/2(M+ − M)T−1/2‖F : M+ ∈ M} s.t. M+y = �s

is determined by the relation Vp (M+ − M) V T
p = 0 and can be written in the form

M+ = E + Vp (M − E) V T
p ,

where E is any symmetric matrix satisfying Ey = �s, e.g. E = (�/b)ssT .

Using this theorem with M = γH = γ(C + U UT ), M+ = H+, p = s − α C y, α ∈ R,
and E = (�/b)ssT , we obtain

1

γ
H+ = Vp U UT V T

p +
1

γ
C BC

+ ,
1

γ
C BC

+ =
�

γ

ssT

b
+ Vp

(
C − �

γ

ssT

b

)
V T

p , (3.18)

where by Lemma 2.3 in [8], this C BC
+ is the Broyden class update, see [5], of C with

parameter

ηC =
b2

(b − αã)2

(
1 − α2 �

γ

ã

b

)
. (3.19)

For given ηC satisfying

0 < ηC < ω̃
γ

�
, ω̃

Δ
=

�

γ
+

ã

b
ηC , (3.20)

we can readily verify that the corresponding α can be obtained from

α1 =
ηC +

√
ηC + (1−ηC)�b/(γã)

ω̃
or α2 =

(b/ã)(ηC − 1)

ηC +
√

ηC + (1−ηC)�b/(γã)
. (3.21)

Using the usual form of the Broyden class update of C in (3.18), after straightforward
arrangements we obtain the relation, similar to (3.2)

1

γ
H+ =

1

γ
C BC

+ + Vp U UT V T
p = C − r̃r̃T + ũũT + Vp U UT V T

p , (3.22)
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where

ũ =

√
ω̃

b

(
s − ηC

ω̃
C y

)
, r̃ =

√
1 − �

γ

ηC

ω̃

C y√
ã

. (3.23)

Note that H+ is not here the Broyden class update of H . Similarly as in Section 3.1
we define (1/γ)C+ = C − r̃r̃T = ζI − R RT − r̃r̃T . The following lemma gives simple
conditions for matrix C+ to be positive definite.

Lemma 3.2. Let matrix C be positive definite, ηC satisfy (3.20) and vector r̃ be given
by (3.23). Then matrix C − r̃r̃T is also positive definite.

Proof. For any q ∈ RN we obtain by the Schwarz inequality and b > 0

qT (C − rrT ) q

qT C qT
= 1 −

(
1 − �

γ

ηC

ω̃

) (qT C y)2

ã qT C qT
≥ 1 −

(
1 − �

γ

ηC

ω̃

)
=

�

γ

ηC

ω̃
> 0.

�

To get H+ = C+ + U+UT
+ , we can similarly as in (3.6) for k ≥ m set

ζ+ = γζ, (1/
√

γ)U+ = Vp U + ũz̄T
1 , (1/

√
γ)R+ = R + r̃z̄T

2 , (3.24)

for k < m simply add column ũ to Vp U and r̃ to R.

The second approach utilizes idea of shifting, similarly as shifted VM methods, see
[7]. We again update C, using the scaled standard Broyden class update (3.18) in the
usual form (1/γ)C BC

+ = C−r̃r̃T +ũũT with r̃, ũ given by (3.23), set (1/γ)C+ = C−r̃r̃T

and update ζ and R according to (3.24).
To update matrix U , we use shifted quasi-Newton condition

U+UT
+y = �s̃, (3.25)

where in view of H+ = C+ + U+UT
+ , (2.2) and (3.23) we define

s̃ =
1

�

(
H+y−C+y

)
= s−γ

�

(
C y− r̃Ty r̃

)
= s−γ

�
C y

[
1−

(
1− �

γ

ηC

ω̃

)]
= s−ηC

ω̃
C y. (3.26)

Important property of shifting defined in this way is that number b̃
Δ
= s̃T y is always

positive, since by (3.26)

b̃ =
(
s − ηC

ω̃
C y

)T
y = b − ηC

ω̃
ã =

b ω̃ − ã ηC

ω̃
=

(�/γ) b

ω̃
> 0. (3.27)

Now we define matrix U+ by the following theorem, see [7].

Theorem 3.2. Let T̃ be a symmetric positive definite matrix, � > 0, γ > 0, p̃ = T̃ y
and denote U the set of N × m, 1 ≤ m ≤ N , matrices. Then the unique solution to

min{ϕ(U+) : U+ ∈ U} s.t. (3.25), ϕ(U+) = yT T̃ y ‖T̃−1/2(U+ −√
γ U)‖2

F ,

is
(1/

√
γ)U+ = Vp̃UP + (1/b̃)s̃zT , z = (1/

√
γ)UT

+y, P = I − zzT /zT z.

8



It follows from (3.25) and (3.27) that vector z defined by this theorem satisfy

zT z = (1/γ)yTU+UT
+y = (�/γ)s̃T y = b̃2(�/γ)/b̃ = b̃2ω̃/b,

which yields by (3.26) and (3.23) (
√

zTz/b̃)s̃ =
√

ω̃/b s̃ = ũ. Setting z1 = z, Theo-
rem 3.2 gives for U+ the updating formula

(1/
√

γ)U+ = Vp̃ U + (
√

zT
1z1/b̃)s̃z̄

T
1 = Vp̃ U + ũz̄T

1 , (3.28)

which is the corresponding formula in (3.24) with Vp̃ instead of Vp, i.e. we see that
the projection matrix in this update formula can be derived not only from update of
matrix C, but also in another way, e.g. from update of H .

Summarizing the updating process, we see that it is very similar to the process in
Section 3.1. First we choose vectors z1, z2, see recommendations in Section 3.5, and
then we determine matrices U , R, C, H by (2.6) and compute vectors ũ, r̃ by (3.23).
Finally we compute number ζ+ and matrices U+ by (3.24) or (3.28) and R+ by (3.24)
and determine matrices C+ by (3.5) and H+ by (3.4).

Previous methods can also be modified to use the partly inverse representation
of updates. We can readily verify the following generalization of (3.7) for the scaled
standard Broyden class update with parameter ηC 	= 0

1

γ
C BC

+ =

[
C−1 +

(
1 − ηC

ηC
+

ã

b

γ

�

)
yyT

ã

]−1

+ ũũT , (3.29)

which can be used instead of (1/γ)C BC
+ = C − r̃r̃T + ũũT in (3.22).

3.4 Generalization to the scaled Broyden class using transformation

Methods based on adaptation of the scaled BFGS method can be generalized to the
standard Broyden class updates with parameter η if we use the following special rep-
resentation of these updates. We denote

a = yTH y, ω =
�

γ
+

a

b
η , μ = η + (1 − η)

�

γ

b

a
.

Theorem 3.3. Let � > 0, γ > 0, a ω 	= 0, μ ≥ 0 and β = (η ± √
μ)/ω. Then the

scaled standard Broyden class update of H with parameter η, scaling parameter γ and
nonquadratic correction parameter � can be expressed in the form

1

γ
H BC

+ =
�

γ
η
ŝŝT

b
+ V̂ HV̂ T , ŝ = s − βH y, V̂ = I ±

√
μ

b
ŝyT . (3.30)

Moreover, if ω̂
Δ
= (�/γ)η + (ã/b)μ > 0, we can write

1

γ
H BC

+ = C − r̂r̂T + ûûT + V̂ U UT V̂ T , r̂ =

√
μ

ω̂b
C y, û =

√
ω̂

b
ŝ ± r̂. (3.31)
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Proof. Consider the scaled Broyden class update with parameters η, γ and � in the
form, see [5],

1

γ
H BC

+ = H +
ω

b
ssT − η

b

(
H ysT + syTH

)
+

η − 1

a
H yyTH .

Setting s = ŝ + ξH y, ξ ∈ R, we obtain

1

γ
H BC

+ = H +
ω

b
ŝŝT +

ξω − η

b

(
H yŝT + ŝyT H

)
+

(
η − 1

a
+

ξ2ω − 2ξη

b

)
H yyTH.

The last term vanishes for ξ2ω − 2ξη + (b/a)(η − 1) = 0, i.e. for ξ = (η ±√
μ)/ω = β;

then ξω − η = ±√
μ and

1

γ
H BC

+ = H +
ω

b
ŝŝT +

±√
μ

b

(
H yŝT + ŝyTH

)
= V̂ HV̂ T +

(
ω − a

b
μ
)

ŝŝT

b
,

which is (3.30) in view of bω − a μ = (�/γ)b[1 − (1 − η)] + aη − aη = (�/γ)ηb.
Setting H = C + U UT into (3.30), we get

1

γ
H BC

+ =
�

γ
η
ŝŝT

b
+ V̂ U UT V̂ T +

(
I ±

√
μ

b
ŝyT

)
C
(
I ±

√
μ

b
yŝT

)

= V̂ U UT V̂ T + C +
±√

μ

b

(
C yŝT + ŝyTC

)
+

(
�

γ
η +

ã

b
μ

)
ŝŝT

b

= V̂ U UT V̂ T + C +
ω̂

b

(
ŝ ±

√
μ

ω̂
C y

)(
ŝ ±

√
μ

ω̂
C y

)T − μ

ω̂b
C yyTC ,

which is (3.31). �

Note that V̂ is not projection matrix in general and that we prefer the minus sign in
β, V̂ and û, since then for η = 1 (BFGS) we get β = 0, ŝ = s and V̂ = V . For η ≈ 1 it
is also

√
μ ≈ 1, therefore the formula for β above should be rewritten in another form.

In view of

η2 − μ = η2 − η − (1 − η)�b/(γa) = (η − 1)(η + �b/(γa)) = (η − 1)ωb/a

we obtain

β =
η −√

μ

ω
=

η2 − μ

ω(η +
√

μ)
=

(η − 1)ωb/a

ω(η +
√

μ)
=

(η − 1)b/a

η +
√

μ
.

For better understanding, condition μ ≥ 0 can be rewritten as η(�b− γa) ≤ �b, i.e.
η ≤ ηSR1 for ηSR1 > 0, or η ≥ ηSR1 for ηSR1 < 0, where ηSR1 is the value of parameter
η for the SR1 method, ηSR1 = �b/(�b − γa), see [5].

Now we define (1/γ)C+ = C − r̂r̂T and give conditions for matrix C+ to be positive
definite.

Lemma 3.3. Let the assumptions of Theorem 3.3 be satisfied, matrix C be positive
definite, vector r̂ be given by (3.31) and η > 0. Then C − r̂r̂T is also positive definite.
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Proof. For any q ∈ RN we obtain by the Schwarz inequality and b > 0

qT (C − r̂r̂T )q

qTC qT
= 1 − μ(qT C y)2

(ω̂b) qT C qT
≥ 1 − μã

ω̂b
= 1 − μã

ηb�/γ + μã
=

ηb�/γ

ηb�/γ + μã
> 0.

�

To get H+ = C+ + U+UT
+ , we can set for k ≥ m similarly as in (3.6)

ζ+ = γζ, (1/
√

γ)U+ = V̂ U + ûz̄T
1 , (1/

√
γ)R+ = R + r̂z̄T

2 , (3.32)

for k < m simply add column û to V̂ U and r̂ to R.

Summarizing the updating process, we see that it is again very similar to the process
in Section 3.1. First we choose vectors z1, z2, see recommendations in Section 3.5, and
then we determine matrices U , R, C, H by (2.6) and compute vectors ŝ by (3.30) and
û, r̂ by (3.31). Finally we compute number ζ+ and matrices U+, R+ by (3.32) and
determine matrices C+ by (3.5) and H+ by (3.4).

It can be readily verified that the partly inverse representation of (3.31) has the
form

1

γ
H BC

+ =

[
C−1 +

(
1 − η

η
+

a

b

γ

�

)
yyT

a

]−1

+ ûûT + V̂ U UT V̂ T . (3.33)

3.5 Choice of parameters

Efficiency of all methods described in this report depends very much on the suitable
choice of parameters. Since analysis of VM matrix damage caused by projections is
very complicated, recommendations given here have empirical character.

The choice of scaling parameter γ plays the main role. The value γ = 1, i.e.
scaling is omitted in some iterations, is not good here in general. In starting iterations
(H = H , C = C), the value γ = b/a appears to be the best choice; the choices
γ = b/ã, γ = b/

√
aã give approximately the same results. In other iterations the

choice γ = b/
√

aã gives good results, the value γ = b/
√

ã max(a, ã + |UT Bs|2) seems

to be the best choice. In all iterations, if γ computed in this way is less than 10−3, we
set γ = b/ã.

Also the choice of the projection vector z1 has great influence. The good choices

are z
(1)
1 = UTBs − (yTUUTBs/|UTy|2)UTy, z

(2)
1 = UTBs − (|UTBs|/

√
yTHy) UTy, we

use combination z1 = (1− θ)z
(1)
1 + θz

(2)
1 with θ = |UTy|2/(|UTy|2 + |UTBs|2). Note that

yTUz
(1)
1 = 0.

On the other hand, the choice of the vector z2 has only little influence. We use the
vector z2 = (yTRRTBs) RTBs − (|RTBs|2)RTy, which satisfies sTBRz2 = 0.

As regards nonquadratic correction parameter �, no value seems to be the best,
therefore we choose � = 1.

11



4 Computational experiments

Our new limited-memory VM methods were tested, using the collection of sparse and
partially separable test problems from [6] (Test 14 and Test 15, 22 problems each) with
N = 1000, m = 10, � = 1, η = 0.8 in starting iterations and η = 1 otherwise, the final
precision ‖g(x�)‖∞ ≤ 10−6 for Test 14 and ‖g(x�)‖∞ ≤ 10−5 for Test 15.

In Table 1 we compare our method described in Section 3.4 (PLM) with the follow-
ing methods: method given in [2] (BNS), shifted limited-memory method (SLM), see
[7], and variationally-derived limited-memory method (VLM), see[8]. We present the
total numbers of function and also gradient evaluations over all problems (NFE) and
the total computational time (Time) in seconds.

Collection BNS SLM VLM PLM

of problems NFE Time NFE Time NFE Time NFE Time
Test 14 22101 12.3 18693 10.3 19410 13.8 19684 18.2
Test 15 33241 21.3 38323 26.2 30862 24.5 31126 32.3

Table 1. Comparison with other methods for Test 14 and Test 15.

We see that the numerical results of the new methods are comparable with other
methods as regards the number of evaluations. The longer total computational time
is caused by the fact that the number of columns of matrices U , R are the same in
this test version of method. We plan to reduce the number of columns of matrix R in
future, see Section 2.

For a better comparison with method BNS, we performed additional tests with
problems from the widely used CUTE collection [1] with various dimensions N and the
final precision ‖g(x�)‖∞ ≤ 10−6. The results are given in Table 2, where NFE is the
number of function and also gradient evaluations and Time the computational time in
seconds.

CUTE BNS SLM VLM PLM
Problem N NFV Time NFV Time NFV Time NFV Time
BROYDN7D 2000 3021 10.14 3597 11.63 2858 10.61 2815 11.64
CURLY30 1000 7010 6.78 8246 7.50 6544 7.34 6761 8.97
DIXMAANI 3000 877 1.95 1368 2.84 2653 7.42 1020 3.52
DQRTIC 5000 236 0.43 242 0.51 967 3.02 288 1.24
FLETCBV2 1000 1182 1.09 1132 1.05 1248 1.45 919 1.34
GENHUMPS 1000 2271 3.63 4159 6.61 2698 5.06 2884 5.75
GENROSE 1000 2374 1.52 2347 1.51 2199 1.80 2102 2.17
MSQRTALS 529 2947 6.16 3501 7.13 3142 6.99 2832 6.91
NCB20B 1010 1715 8.86 2492 12.41 2204 11.47 2103 11.59
NONCVXU2 1000 3685 3.09 2917 2.59 2493 2.42 4027 5.17
NONDQUAR 5000 3588 8.47 7330 14.56 16090 54.03 5082 22.23
POWER 1000 110 0.01 135 0.03 496 0.13 99 0.04
QUARTC 5000 236 0.53 242 0.50 967 3.20 288 1.28

Table 2: Comparison with other methods for CUTE.
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Our limited numerical experiments indicate that the additional improvements and
testing of the new methods could be useful.
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[5] L. Lukšan, E. Spedicato: Variable metric methods for unconstrained optimization
and nonlinear least squares, J. Comput. Appl. Math. 124 (2000) 61-95.

[6] L. Lukšan, J. Vlček: Sparse and partially separable test problems for unconstrained
and equality constrained optimization, Report V-767, Prague, ICS AS CR, 1998.
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