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Technical report No. 1023

May 2008

Abstract:

Complexity of one-hidden-layer networks is studied using tools from nonlinear approximation and integration
theory. For functions with suitable integral representations in the form of networks with infinitely many
hidden units, upper bounds are derived on the speed of decrease of approximation error with an increasing
number of network units. A unifying framework for derivation of such bounds is obtained using properties
of Bochner integral. The results are applied to perceptron networks.

Keywords:
Model complexity of neural networks, integral representation in the form of network with infinitely many
hidden units, rates of variable-basis approximation, variational norm, Bochner integral, perceptron
networks.

1Department of Mathematics, Georgetown University, Washington, D. C. 20057-1233, USA, kainen@georgetown.edu
2Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 2, 182 07,
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1 Introduction

Some understanding of the dependence of model complexity of neural networks on type of compu-
tational units and properties of training data can be derived by inspection of estimates of rates of
decrease of approximation errors with increasing number of network units. Assuming that training
data are chosen from a given multivariable function, the form of an estimate of error in approximation
of such function by a network with a given type of units tells us which combinations of properties of
the function and of the computational units guarantee fast rates of approximation. With such units,
good accuracy can be achieved by a reasonably small network.

A suitable tool for obtaining estimates of rates of neural network approximation is a result by Mau-
rey (see [Pisier, 1981]), Jones (1992) and Barron (1993). It belongs to nonlinear approximation theory
and applies to approximation by so called variable-basis functions or “dictionaries”. For functions
from the convex hull of a bounded subset G of a Hilbert space, Maurey-Jones-Barron’s theorem gives
an upper bound on the square of the error in approximation by convex combinations of n elements
of G. It implies an upper bound on rates of approximation by linear combinations of n elements G,
which has the form n−1/2 times a certain norm (called G-variation) of the function to be approximated
[Kůrková, 2003]. Investigation of properties of variational norms for G corresponding to various types
of network units can provide some insight into the impact of a choice of the type of units on model
complexity.

Several authors applied Maurey-Jones-Barron’s theorem to functions, which can be represented as
networks with infinitely many units. Barron (1993) considered functions representable as weighted
Fourier transforms, Girosi and Anzelotti (1993) convolutions with suitable kernels. Explicitly in terms
of an upper bound on variation, Kůrková et al.(1997) derived an estimate of rates of approximation
for perceptron networks proving that smooth compactly supported functions can be expressed as
networks with infinitely many Heaviside perceptrons.

In this paper, we develop a rather general framework for investigation of rates of approximation of
functions representable as integrals of the form of networks with infinitely many units of various types.
Our approach is based on the Bochner integral. A special case of this method was sketched by Girosi
and Anzelloti (1993) for convolutions with certain kernels. The Bochner integral extends the concept
of Lebesgue integral to mappings into function spaces (the value of a Bochner integral is a function,
not a number). Bochner integral can be applied to mappings assigning to parameters (such as weights,
biases or centroids) functions computable by units (such as perceptrons or radial-basis-functions) with
such parameters.

Using properties of the Bochner integral and a theorem on the relationship of its evaluations to
corresponding Lebesgue integrals, we derive an upper bound on variational norm and hence on rates
of approximation. For functions representable as networks with infinitely many hidden units, we show
that the size of the L1-norm of the output weight function is a factor in network complexity.

We illustrate our results on perceptron networks. Combining a representation of smooth functions
as an integral combination of Heaviside perceptrons [Kůrková et al., 1997] with estimates on varia-
tional norm, we obtain an upper bound on rates of approximation by perceptron networks for a wide
class of functions.

The paper is organized as follows. Section 2 introduces our approach and states the main results.
Section 3 recalls Maurey-Jones-Barron’s theorem and variational norms. Section 4 gives upper bounds
on variational norms for functions representable as integrals of the form of networks with infinitely
many hidden units. In Section 5, we apply these estimates to perceptron networks. Section 6 is a
brief discussion. Properties of Bochner integral are summarized in the Appendix.

2 Outline of approach and main results

One-hidden-layer feedforward networks belong to a class of computational models, which can math-
ematically be described as variable-basis schemas. Such models compute functions from sets of the
form

spann G =

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G

}
,
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where G is a set of functions, which is sometimes called a dictionary. For example, G can be the
set of functions computable by perceptrons, radial-basis functions, kernel functions, or trigonometric
polynomials. The number n expresses the model complexity (in the case of one-hidden-layer neural
networks, it is the number of units in the hidden layer).

Often, sets G are parameterized; that is they are of the form

Gφ = {φ(., y) | y ∈ Y },

where φ : Ω× Y → R, Y is the set of parameters and Ω is the set of variables. Such a parameterized
set of functions can be represented by a mapping

Φ : Y → X ,

where X is a suitable function space. Φ is defined for all y ∈ Y as

Φ(y)(x) = φ(x, y).

For example, the set of functions computable by perceptrons with an activation function σ : R→ R
can be described by a mapping Φσ on Rd+1 defined for (v, b) ∈ Rd × R = Rd+1 as Φσ(v, b)(x) =
σ(v · x + b).

For parameterized sets we use the notation

Φ(Y ) = Gφ = {φ(., y) | y ∈ Y } and sΦ = sup
y∈Y

‖φ(., y)‖X . (2.1)

In this paper, we consider parameterized sets of functions belonging either to an Lq-space with
q ∈ [1,∞) or to a reproducing kernel Hilbert space. For Ω ⊆ Rd, ρ a measure on Ω and q ∈ [1,∞),
we denote by Lq(Ω, ρ) the space of all real-valued functions h satisfying

∫
Ω
|h(y)|qdρ < ∞. When ρ

is the Lebesgue measure, we sometimes write merely Lq(Ω). A Hilbert space X of point-wise defined
real-valued functions on an arbitrary set Ω is called a reproducing kernel Hilbert space (RKHS) when
all evaluation functionals on X are bounded [Aronszajn, 1950].

The distance of an element f of a normed linear space (X , ‖.‖X ) from its subset is denoted

‖f −A‖X = inf
g∈A

‖f − g‖X .

We investigate speed of decrease of distances ‖f − spannΦ(Y )‖ with n increasing for functions f rep-
resentable as one-hidden-layer networks with infinitely many hidden units from Φ(Y ). More precisely,
we consider functions, which can be expressed for a suitable measure µ on Y and almost all x ∈ Ω as
the Lebesgue integrals of the form

f(x) =
∫

Y

w(y)φ(x, y)dµ(y). (2.2)

Such functions are images of the corresponding weight functions w under the integral operator Lφ

defined as Lφ(w)(x) =
∫

Y
w(y)φ(x, y)dµ(y). We show that the “size” of the output weight function w

is critical for the speed of decrease of approximation errors. In Section 4, with rather mild assumptions
on µ, w and φ, we prove that this speed depends on the L1(Y, µ)-norm of the weight function w:

‖f − spannΦ(Y )‖2X ≤
(sΦ‖w‖L1(Y,µ))2 − ‖f‖2X

n
. (2.3)

To derive this upper bound, we use a result by Maurey, Jones and Barron on variable-basis ap-
proximation reformulated in terms of a norm called Φ(Y )-variation. To estimate this norm, we take
advantage of properties of the Bochner integral, which is an extension of the concept of Lebesgue
integral allowing integration of mappings with values in function spaces. We consider the Bochner
integral of the mapping wΦ : Y → X , which is defined for all y ∈ Y via scalar multiplication in X as

wΦ(y) = w(y)Φ(y) = w(y)φ(., y).
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Using the relationship between the Lebesgue integral (2.2) which represents values of the func-
tion f and the Bochner integral of the mapping wΦ, we obtain an estimate of Φ(Y )-variation of
f in terms of the L1-norm of the weight function w. This gives an upper bound (2.3) on rate of
approximation by spannΦ(Y ). Combining this estimate with a representation of smooth functions
as Heaviside perceptron networks with infinitely many units from [Kůrková et al., 1997], we estimate
rate of approximation by perceptron networks.

3 Rates of variable-basis approximation and variational norm

An upper bound on approximation by

convn G =

{
n∑

i=1

aigi | ai ∈ [0, 1],
n∑

i=1

ai = 1, gi ∈ G

}

was derived by Maurey (see [Pisier, 1981], rediscovered by Jones (1992) and refined by Barron (1993).

Theorem 3.1 (Maurey-Jones-Barron) Let G be a bounded nonempty subset of a Hilbert space
(X, ‖.‖) and sG = supg∈G ‖g‖. Then for every f ∈ cl conv G and for every positive integer n,

‖f − convnG‖2 ≤ s2
G − ‖f‖2

n
.

Theorem 3.1 can be reformulated in terms of a norm called G-variation. This variational norm is
defined for any bounded nonempty subset G of any normed linear space (X, ‖.‖) as the Minkowski
functional of the closed convex symmetric hull of G, i.e.,

‖f‖G = inf
{
c > 0 | c−1f ∈ cl conv (G ∪ −G)

}
, (3.1)

where the closure cl is taken with respect to the topology generated by the norm ‖.‖ and conv denotes
the convex hull. Note that G-variation can be infinite (when the set on the right-hand side is empty).
It is a norm on the subspace of X formed by those f ∈ X , for which ‖f‖G < ∞. G-variation depends
on the norm on the ambient space, but as this is implicit, we omit it in the notation. Variational
norms were introduced by Barron (1992) for characteristic functions of certain families of subsets of
Rd, in particular, for the set of characteristic functions of closed half-spaces corresponding to the set
of functions computable by Heaviside perceptrons. For functions of one variable (i.e., d = 1), variation
with respect to half-spaces coincides, up to a constant, with the notion of total variation. The general
concept was defined by Kůrková (1997). The following upper bound is a corollary of Theorem 3.1
from [Kůrková, 1997] (see also [Kůrková, 2003]).

Theorem 3.2 Let (X , ‖.‖) be a Hilbert space, G its bounded nonempty subset, sG = supg∈G ‖g‖.
Then for every f ∈ X and every positive integer n,

‖f − spannG‖2 ≤ s2
G‖f‖2G − ‖f‖2

n
.

This reformulation of Theorem 3.1 in terms of variational norm allows one to formulate an upper
bound on variable-basis approximation for all functions in a Hilbert space. A similar result to Theorem
3.2 can be obtained in the Lq-spaces with q ∈ (1,∞) using a result by Darken et al. (1993); for a
slightly simplified argument see also [Kůrková and Sanguineti, 2005]. For the definition of Radon
measure see Section 4.
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Theorem 3.3 Let G be a bounded subset of Lq(Ω, ρ), q ∈ (1,∞), and ρ a Radon measure. Then for
every f ∈ cl conv G and every positive integer n,

‖f − convnG‖Lq(Ω,ρ) ≤
21+1/r sG‖f‖G

n1/s
,

where 1/q + 1/p = 1, r = min(p, q), s = max(p, q).

In some cases, variational norms with respect to two different sets are the same. For example,
in Lq-spaces with q ∈ (1,∞), variation with respect to Heaviside perceptrons equals variation with
respect to perceptrons with any sigmoidal activation function [Kůrková et al., 1997]. So to obtain from
Theorem 3.2 rates of approximation by perceptron networks, it suffices to study variation with respect
to half-spaces for which estimates in terms of Sobolev seminorms are known [Kůrková et al., 1997,
Kainen et al., 2007b].

Thus investigation of variational norms can provide some insight into properties of multivariable
functions, which can be efficiently approximated by various computational models. The following
proposition summarizes basic properties of variation: (i) and (ii) follow directly from the definition,
for (iii) see [Kůrková and Sanguineti, 2002, Proposition 3(iii)].

Proposition 3.4 Let (X , ‖.‖) be a normed linear space, G,H its nonempty bounded subsets and
sG,H := supg∈G ‖g‖H . Then their variational norms satisfy the following:
(i) for f ∈ X representable as f =

∑k
i=1 wigi with all gi ∈ G and wi ∈ R, ‖f‖G ≤ ∑k

i=1 |wi|;
(ii) for any linear isometry ψ of X and for every f ∈ X , ‖f‖G = ‖ψ(f)‖ψ(G);
(iii) for every f ∈ X , ‖f‖H ≤ sG,H‖f‖G.

The next lemma shows that variation of the limit of a sequence of functions is bounded from above
by the limit of their variations.

Lemma 3.5 Let G be a nonempty, nonzero bounded subset of a normed linear space (X , ‖ · ‖X ),
h ∈ X , {hi}∞i=1 ⊂ X with bi = ‖hi‖G < ∞ for all i. If limi→∞ ‖hi − h‖X = 0 and there exists a finite
b = limi→∞ bi, then ‖h‖G ≤ b.

Proof. For all ε > 0 choose some η > 0 such that η < εb2

2(b+‖h‖X ) . By the convergence assumptions,
there exists i0 such that for all i > i0, ‖h−hi‖X < η and |b−bi| < η. Then by the triangle inequality for
all i > i0,

∥∥∥ h
b+η − hi

bi+η

∥∥∥
X
≤

∥∥∥ h
b+η − h

bi+η

∥∥∥
X

+
∥∥∥ h

bi+η − hi

bi+η

∥∥∥
X
≤ η‖h‖X

(b+η)(bi+η) + η
bi+η ≤ η‖h‖X

b2 + η
b < ε

2 .

By the definition of variation, ‖hi‖G = bi implies that there exists δi < η such that hi

bi+δi
∈

cl conv(G ∪ −G). As conv(G ∪ −G) is symmetric and convex, also hi

bi+η ∈ cl conv(G ∪ −G).

Then
∥∥h

b − cl conv(G ∪ −G)
∥∥
X ≤

∥∥∥h
b − hi

bi+η

∥∥∥
X
≤

∥∥∥h
b − h

b+η

∥∥∥
X

+
∥∥∥ h

b+η − hi

bi+η

∥∥∥
X

≤ η‖h‖X
b2 + ε

2 < ε. Infimizing over ε, we get h
b ∈ cl conv(G ∪ −G) and thus ‖h‖G ≤ b. 2

4 Upper bound on variation with respect to a parameterized
family

Analogy with Proposition 3.4 (i) suggests that for f representable as

f(x) =
∫

Y

w(y)φ(x, y)dµ(y) (4.1)

one should expect

‖f‖Φ(Y ) ≤
∫

Y

|w(y)|dµ. (4.2)

Various special cases of integral representations of the form (4.1) have been investigated. E.g.,
Barron (1993) proved that a function f representable as a weighted Fourier transform belongs to
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a convex hull of trigonometric perceptrons and thus Theorem 3.1 can be used to estimate rates of
approximation of f by networks with trigonometrics perceptrons. Girosi and Anzelotti (1993) proved
a similar estimate for convolutions with suitable kernels. Explicitly as an upper bound on variation,
the estimate in terms of the L1(Y )-norm of the weight function w was derived by Kůrkovaá et al.
(1997) for integral representations

∫
Y

w(y)φ(x, y)dy with both Ω and Y compact and φ continuous in
both variables.

However, the functions of interest may be defined on non-compact domains, their integral rep-
resentations may have parameters in non-compact sets Y such as R, and some computational units
(such as Heaviside perceptrons) are not continuous. The following theorems include these cases.

Arguments are based on Bochner’s extension of Lebesgue’s integral to functions with values in
Banach spaces. A sketch of such an approach was given by Girosi and Anzelotti (1993) for the case
of convolutions.

We use the Bochner integral I(wΦ) of the mapping wΦ : Y → X . For the definition of the Bochner
integral, related notation, properties of the Bochner integral and the relationship of its evaluations to
the Lebesgue integral see the Appendix.

We first prove upper bounds for parameterized sets Φ(Y ) with the set of the parameters Y compact
and the dependence Φ on parameters continuous and then we extend these bounds to the case of non-
compact sets of parameters. We assume that the functions from the family Φ(Y ) are either in a
reproducing kernel Hilbert space or in Lq(Ω, ρ)-space, with q ∈ (1,∞) and ρ a Radon measure.

Recall that a triple (Y,S, µ) is called a measure space if Y is a set, S is a σ-algebra of subsets of
Y , and µ is a measure on S.

Theorem 4.1 Let (X , ‖.‖X ) be a reproducing kernel Hilbert space of real-valued functions on a set Ω
and f ∈ X can be represented for all x ∈ Ω as

f(x) =
∫

Y

w(y)φ(x, y)dµ,

where Y,w, φ and µ satisfy both following conditions:
(i) Y is a compact subset of Rp, p a positive integer, and (Y,S, µ) is a measure space,
(ii) Φ(Y ) is a bounded subset of X , w ∈ L1(Y, µ) and wΦ : Y → X is continuous.
Then ‖f‖Φ(Y ) ≤ ‖w‖L1(Y,µ) and all positive integers n,

‖f − spannΦ(Y )‖2X ≤
s2
Φ‖w‖2L1(Y,µ) − ‖f‖2X

n
.

Before proving this theorem, we state a similar result for Lq-spaces and then give a joint proof,
which splits at its last step. Our second theorem holds for Lq(Ω, ρ) spaces where ρ is σ-finite, which
means that there exists a family {Mi} of sets of finite measure such that ∪∞i=1Mi = Ω. For example, the
Lebesgue measure on Rd is σ-finite. The second theorem also requires a slightly stronger assumption
on µ. A triple (Y,S, µ) is called a Radon measure space if Y is a topological space, S is a σ-algebra
which includes all Borel sets, and µ is a Radon measure on S, i.e., for every open subset U of Ω,
ρ(U) = sup{ρ(K) |K ⊂ U, K compact} and for every A ∈ S, µ(A) = inf{µ(U) |A ⊂ U ⊆ Y, Uopen}.
Note that if µ is Radon and K ⊆ Y is compact, then µ(K) < ∞. A property is said to hold for µ-a.e.
y ∈ Y if it holds for all y ∈ Y \ Y0, where µ(Y0) = 0.

Theorem 4.2 Let X = Lq(Ω, ρ), q ∈ [1,∞), where Ω ⊆ Rd and ρ is a σ-finite measure. Let f ∈ X
can be represented for ρ-a.e. x ∈ Ω as

f(x) =
∫

Y

w(y)φ(x, y)dµ,

where Y,w, φ, and µ satisfy all of the following three conditions:
(i) Y is a compact subset of Rp, p a positive integer, and (Y,S, µ) is a Radon measure space,
(ii) Φ(Y ) is a bounded subset of X , w ∈ L1(Y, µ) and wΦ : Y → X is continuous,
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(iii) φ : Ω× Y → R is ρ× µ-measurable.
Then ‖f‖Φ(Y ) ≤ ‖w‖L1(Y,µ) and all positive integers n, when q ∈ (1,∞) and q′ satisfies 1/q+1/q′ = 1,
r = min(q, q′), s = max(q, q′),

‖f − spannΦ(Y )‖X ≤
21/r2sΦ‖w‖L1(Y,µ)

n1/s
,

and when q = 2,

‖f − spannΦ(Y )‖2X ≤
s2
Φ‖w‖2L1(Y,µ) − ‖f‖2X

n
.

Proof of Theorems 4.1 and 4.2.
Let ζ > 0 be arbitrary. We will show that ‖f‖Φ(Y ) ≤ ‖w‖L1(Y,µ) + ζ.

Consider a sequence {Pk} of partitions of Y into µ-measurable sets Pk = {Pkj | j = 1, . . . ,mk},
such that for each k, Pk+1 is a refinement of Pk and the mesh of Pk is at most 1/k (the mesh of Pk is
defined as max{diam(Pkj) | j = 1, . . . , mk}, where diam(A) = supa,b∈A d(a, b), and d(a, b) denotes the
Euclidean distance on Rp).

For each k ≥ 1 and each j = 1, . . . , mk, choose yζ
kj ∈ Pkj such that

|w(yζ
kj)| ≤

ζ

mk
µ(Pkj) + inf

y∈Pkj

|w(y)|.

Define a simple function sζ
k = sk by

sk(y) =
mk∑

j=1

χPkj
(y)w(yζ

kj)Φ(yζ
kj).

By the definition of the Bochner integral, each sk ∈ I(Y, µ;X ).
To show that also wΦ ∈ I(Y, µ;X ), we use Lebesgue dominated convergence (Proposition 7.2).

By compactness of Y and continuity of wΦ : Y → X , c = supy∈Y |w(y)| ‖Φ(y)‖X < ∞. Set g(y) = c
for all y ∈ Y , then g ∈ L1(Y, µ). For every y ∈ Y and k ≥ 1, there is at most one Pkj with y ∈ Pkj .
Thus we have either sk(y) = 0 ≤ c or

‖sk(y)‖X ≤ |w(yζ
kj)| ‖Φ(yζ

kj)‖X ≤ c = g(y).

Thus to apply Proposition 7.2 it remains to check that for µ-a.e. y ∈ Y , limk→∞ ‖sk(y)−wΦ(y)‖X = 0.
As Y is compact, the continuous map wΦ : Y → X is uniformly continuous. Hence, for all ε > 0,

there exists δ > 0 such that for all y1, y2 ∈ Y , whenever d(y1, y2) < δ, we have ‖w(y1)Φ(y1) −
w(y2)Φ(y2)‖X < ε, where d(y1, y2) denotes the Euclidean distance on Rp. For all k > 1/δ, the mesh
of Pk is smaller than δ and thus for µ-a.e. y ∈ Y , ‖sk(y)− w(y)Φ(y)‖X < ε.

Therefore, according to Proposition 7.2,

wΦ ∈ I(Y, µ;X ) and lim
k→∞

‖I(sk)− I(wΦ)‖X = 0. (4.3)

By Proposition 3.4(i) and the choice of yζ
kj , for all k

‖I(sk)‖Φ(Y ) ≤
mk∑

j=1

µ(Pkj)|w(yζ
kj)| ≤ ‖w‖L1(Y,µ) + ζ. (4.4)

Since the sequence {‖I(sk)‖Φ(Y )} is bounded, replacing it with a subsequence if necessary, we get by
Lemma 3.5, ‖I(wΦ)‖Φ(Y ) ≤ limk→∞ ‖I(sk)‖Φ(Y ) ≤ ‖w‖L1(Y,µ) + ζ. Infimizing over ζ > 0, we obtain
‖I(wΦ)‖Φ(Y ) ≤ ‖w‖L1(Y,µ).
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Thus to get an upper bound on ‖f‖Φ(Y ) it remains to show that the Bochner integral I(wΦ) is
equal to f . Here the proofs of the two theorems split.

In the case of Theorem 4.1, we apply Proposition 7.3 to evaluation functionals denoted for
each x ∈ Ω by Tx. By the definition of a RKHS, all evaluation functionals are bounded. Thus
we get by Proposition 7.3, I(wΦ)(x) = Tx(I(wΦ)) =

∫
Y

Tx(wΦ(y))dµ(y) =
∫

Y
(wΦ(y))(x)dµ(y) =∫

Y
w(y)φ(x, y)dµ(y) = f(x). Hence I(wΦ) = f .
In the case of Theorem 4.2, the equality I(wΦ) = f follows from Theorem 7.4 from the Appendix

with Ψ = wΦ.
The upper bound on ‖f − spannΦ(Y )‖X then follows by Theorem 3.2 (in the Hilbert space case)

and Theorem 3.3 (in the Lq-space case). 2

The next two theorems extend the upper bounds on rates of approximation also to the case when
the parameter set Y is not compact and continuity of wΦ holds merely µ-a.e. on Y .

Theorem 4.3 Let (X , ‖.‖X ) be a reproducing kernel Hilbert space of real-valued functions on a set Ω
and suppose that f ∈ X can be represented for all x ∈ Ω as

f(x) =
∫

Y

w(y)φ(x, y)dµ(y),

where Y,w, φ and µ satisfy both following conditions:
(i) Y ⊆ Rp, p a positive integer, Y \Y0 = ∪∞m=1Ym, where µ(Y0) = 0 and for all m ≥ 1, Ym is compact
and Ym ⊆ Ym+1, and (Y,S, µ) is a Radon measure space,
(ii) Φ(Y ) is a bounded subset of X , w ∈ L1(Y, µ), and wΦ : Y \ Y0 → X is continuous.
Then ‖f‖Φ(Y ) ≤ ‖w‖L1(Y,µ) and all positive integers n,

‖f − spannΦ(Y )‖2X ≤
s2
Φ‖w‖2L1(Y,µ) − ‖f‖2X

n
.

Theorem 4.4 Let X = Lq(Ω, ρ), q ∈ [1,∞), where Ω ⊆ Rd and ρ is σ-finite measure. Let f ∈ X
satisfy for ρ-a.e. x ∈ Ω

f(x) =
∫

Y

w(y)φ(x, y)dµ(y),

where Y , w, φ, and µ satisfy the following three conditions:
(i) Y ⊆ Rp, p a positive integer, Y \Y0 = ∪∞m=1Ym, where µ(Y0) = 0 and for all m ≥ 1, Ym is compact
and Ym ⊆ Ym+1,
(ii) Φ(Y ) is a bounded subset of X , w ∈ L1(Y, µ), and wΦ : Y \ Y0 → X is continuous,
(iii) (Y,S, µ) is a Radon measure space and φ : Ω× Y → R is ρ× µ-measurable.
Then for all positive integers n, for all q ∈ [1,∞)

‖f‖Φ(Y ) ≤ ‖w‖L1(Y,µ),

for all q ∈ (1,∞) and q′ satisfying 1/q + 1/q′ = 1, r = min(q, q′), s = max(q, q′),

‖f − spannΦ(Y )‖X ≤
21/r2sΦ‖w‖L1(Y,µ)

n1/s
,

and for q = 2,

‖f − spannΦ(Y )‖2X ≤
s2
Φ‖w‖2L1(Y,µ) − ‖f‖2X

n
.

As most steps of the proofs of Theorems 4.3 and 4.4 are the same, we give a joint proof, which
splits only at the step verifying the equality of evaluations of the Bochner integral I(wΦ) at ρ-a.e.
x ∈ Ω to Lebesgue integrals

∫
Y

w(y)φ(x, y)dµ(y).
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Proof of Theorems 4.3 and 4.4.
For all m ≥ 1 and all x ∈ Ω, let wm : Y → R, φm(x, .) : Y → R, and Φm : Y → X , resp., be defined
as w, φ(x, .), and Φ on Ym and as 0 on Y \ Ym. As µ is a Radon measure, all compact sets Ym have
finite measures, and so

fm(x) :=
∫

Y

wm(y)φm(x, y)dµ(y) =
∫

Ym

w(y)φ(x, y)dµ(y)

are finite for all m. Thus by Theorems 4.1 and 4.2, I(wmΦm) = fm and ‖fm‖Φ(Ym) ≤ ‖w|Ym
‖L1(Ym) ≤

‖w‖L1(Y ). As Φ(Ym) ⊂ Φ(Y ), we get ‖fm‖Φ(Y ) ≤ ‖fm‖Φ(Ym) ≤ ‖w‖L1(Y ).
We show that limm→∞ ‖f − fm‖X = 0 by first using Lebesgue dominated convergence to verify

that wΦ is Bochner integrable with limm→∞ ‖I(wΦ)− I(wmΦm)‖X = 0 and then by showing that

I(wΦ) = f. (4.5)

By definition of wm and Φm, for every y ∈ Y \ Y0, there exists my such that for all m ≥ my,
wm(y)Φm(y) = w(y)Φ(y) and so for µ-a.e. y ∈ Y , limm→∞ ‖wm(y)Φm(y)− w(y)Φ(y)‖X = 0. For all
y ∈ Y , ‖wm(y)Φm(y)‖X ≤ sΦw(y). As sΦw ∈ L1(Y, µ), by Proposition 7.2 wΦ ∈ I(Y, µ;X ) and

lim
m→∞

‖I(wΦ)− I(wmΦm)‖X = 0.

To establish (4.5), we distinguish two cases. When X is a RKHS (Theorem 4.3), we use boundedness of
evaluation functionals. For each x ∈ Ω, let Tx denote the evaluation functional at x. By Proposition
7.3, I(wΦ)(x) = Tx(I(wΦ)) =

∫
Y

Tx(wΦ(y))dµ(y) =
∫

Y
(wΦ(y))(x)dµ(y) =

∫
Y

w(y)φ(x, y)dµ(y) =
f(x). So (4.5) holds. When X = Lq(Ω, ρ) (Theorem 4.4), the equation follows from Theorem 7.4
from the Appendix with Ψ = wΦ. In both cases limm→∞ ‖f − fm‖X = 0 and thus by Lemma 3.5,
‖f‖Φ(Y ) ≤ ‖w‖L1(Y ).

The upper bound on ‖f − spannΦ(Y )‖X then follows by Theorems 3.2 (in the Hilbert space case)
and Theorem 3.3 (in the Lq-space case). 2

Thus for functions representable as networks with infinitely many units, the growth of model
complexity with increasing accuracy depends on the L1-norm of the output weight function.

5 Approximation by perceptron networks

To apply results from Section 4 to neural networks, we use the following straightforward corollary
of Theorem 4.4 about parameterized families in L2(Ω) = L2(Ω, λ), where λ denotes the Lebesgue
measure.

Corollary 5.1 Let Ω ⊆ Rd be Lebesgue measurable, f ∈ L2(Ω) be such that for a.e. x ∈ Ω,

f(x) =
∫

Y

w(y)φ(x, y)dy,

where Y , w, and φ satisfy the following three conditions:
(i) Y ⊆ Rp is Lebesgue measurable, p is a positive integer, Y \ Y0 = ∪∞m=1Ym, where λ(Y0) = 0 and
for all positive integers m, Ym is compact and Ym ⊆ Ym+1,
(ii) Φ(Y ) is a bounded subset of L2(Ω), w ∈ L1(Y ), and wΦ : Y \ Y0 → X is continuous,
(iii) φ : Ω× Y → R is Lebesgue measurable.
Then ‖f‖Φ(Y ) ≤ ‖w‖L1(Y ) and for all positive integers n,

‖f − spannΦ(Y )‖2L2(Ω) ≤
s2
Φ‖w‖2L1(Y ) − ‖f‖2L2(Ω)

n
.
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A function σ : R → R is called sigmoidal when it is nondecreasing and limt→−∞ σ(t) = 0 and
limt→∞ σ(t) = 1. For every compact Ω ⊂ Rd, the mapping

Φσ : Rd × R→ L2(Ω),

which is defined for all x ∈ Ω as Φσ(v, b)(x) = σ(v · x + b), maps parameters (input weights v and
biases b) of perceptrons with the activation function σ to functions computable by such perceptrons.

Let ϑ : R → R denote the Heaviside function, i.e., ϑ(t) = 0 for t < 0 and ϑ(t) = 1 for t ≥ 0,
and Sd−1 denote the unit sphere in Rd. It is easy to see that for any bounded subset Ω of Rd,
Φϑ(Sd−1 ×R) = Φϑ(Rd ×R). It was shown by Kůrková et al. (1997) that for every Ω ⊂ Rd compact
and every continuous sigmoidal function σ, Φσ(Rd ×R)-variation in L2(Ω) is equal to Φϑ(Sd−1 ×R)-
variation. Thus by Theorem 3.2, upper bounds on variation with respect to Heaviside perceptrons give
estimates of rates of approximation by perceptron networks with an arbitrary continuous sigmoidal
activation function.

It is easy to check that for Ω compact, Φϑ : Sd−1 × R → L2(Ω) is continuous, Φϑ(Sd−1 × R) is a
bounded subset of L2(Ω) and ϑ : Ω × Sd−1 × R → R is Lebesgue measurable. Moreover, Sd−1 × R
can be expressed as a union of a nested family of compact sets. Thus by Corollary 5.1 for function
f ∈ L2(Ω) representable for all x ∈ Ω as f(x) =

∫
Sd−1×R w(e, b)ϑ(e ·x+b)dedb with w ∈ L1(Sd−1×R),

Φϑ(Sd−1 × R)-variation of f is bounded from above by ‖w‖L1(Sd−1×R).
Sufficiently smooth functions which are either compactly supported or decay fast at infinity can

be expressed as networks with infinitely many Heaviside perceptrons. It was shown by Kůrková et
al. (1997) that, for d odd, compactly supported d-variable real-valued functions which are sufficiently
differentiable have a representation of the form

f(x) =
∫

Sd−1×R
wf (e, b)ϑ(e · x + b)dedb, (5.1)

where the weight function wf (e, b) is a product of a function a(d) of the number of variables d con-
verging with d increasing exponentially fast to zero and a “flow of the order d through the hyperplane”
He,b = {x ∈ Rd |x · e + b = 0}. More precisely,

wf (e, b) = a(d)
∫

He,b

(D(d)
e (f))(y)dy,

where
a(d) = (−1)(d−1)/2(1/2)(2π)1−d

and D
(d)
e denotes the directional derivative of the order d in the direction e.

The integral representation (5.1) was extended in [Kainen et al., 2007b] to functions of a weakly
controlled decay. Such functions have to satisfy for all multi-indexes α with 0 ≤ |α| = α1 + . . . αd < d,
lim‖x‖→∞(Dαf)(x) = 0 (where Dα = (∂/∂x1)α1 . . . (∂/∂xd)αd) and there exists ε > 0 such that for
each multi-index α with |α| = d, lim‖x‖→∞(Dαf)(x)‖x‖d+1+ε = 0. The class of functions with weakly
controlled decay contains all d-times continuously differentiable functions with compact support as
well as all functions from the Schwartz class S(Rd) (for the definition see [Adams and Fournier, 2003,
p.251]). In particular, it contains the Gaussian function γd(x) = exp(−‖x‖2).

Thus applying Corollary 5.1 to the integral representation (5.1) we get for a large class of functions
the following upper bound on rates of approximation by perceptron networks. To avoid complicated
notation, in the upper bound in L2(Ω)-norm in the next theorem we assume that all functions are
restricted to the set Ω.

Theorem 5.2 Let σ : R → R be a continuous sigmoidal function or σ be the Heaviside function, d
be an odd positive integer, f ∈ Cd(Rd) be either compactly supported with Ω = supp(f) or f be of a
weakly controlled decay and Ω be any compact subset of Rd. Then for all positive integers n,

‖f − spannΦσ(Rd+1)‖2L2(Ω) ≤
λ(Ω)2‖wf‖2L1(Sd−1×R) − ‖f‖2L2(Ω)

n
,

where wf (e, b) = a(d)
∫

He,b
(D(d)

e (f))(y)dy, and a(d) = (−1)(d−1)/2(1/2)(2π)1−d.
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An estimate in terms of the maximal value of the L1-norms of the partial derivatives of the function
to be approximated can be derived from Theorem 5.2 by combining it with an upper bound on the
L1-norm of the weighting function wf from [Kainen et al., 2007b]. This bound is formulated in terms
of a Sobolev seminorm ‖.‖d,1,∞, which is defined as

‖f‖d,1,∞ = max
|α|=d

‖Dαf‖L1(Rd).

It was shown by Kainen et al. (2007b) that for all d odd and all f of a weakly controlled decay

‖wf‖L1(Sd−1×R) ≤ k(d)‖f‖d,1,∞,

where k(d) ∼ (
4π
d

)1/2 (
e
2π

)d/2.

Corollary 5.3 Let σ : R→ R be a continuous sigmoidal function or the Heaviside function, d be an
odd positive integer, f ∈ Cd(Rd) be either compactly supported with Ω = supp(f) or f be of a weakly
controlled decay and Ω be any compact subset of Rd. Then for all positive integers n,

‖f − spannΦσ(Rd+1)‖2L2(Ω) ≤
k(d)2λ(Ω)2‖f‖2d,1,∞ − ‖f‖2L2(Ω)

n
,

where k(d) ∼ (
4π
d

)1/2 (
e
2π

)d/2.

6 Conclusion

To apply tools from nonlinear approximation theory (the Maurey-Jones-Barron’s theorem) to inves-
tigation of model complexity of neural networks, we developed a unifying framework for estimation
of variational norms. Our proof technique is based on the idea of Girosi and Anzelotti (1993) of
utilization of Bochner integral of mappings of parameters to functions computable by hidden units.
Our estimates hold under mild assumptions on hidden units and output-weight functions and can be
applied to a wide range of computational models of variable-basis type or “dictionaries”.

We have shown that for functions representable as networks with infinitely many units, the growth
of model complexity with increasing accuracy depends on the L1-norms of the output weight func-
tions. Applying these estimates to integral representations in the form of networks with infinitely
many Heaviside perceptrons, we derived estimates of rates of approximation by sigmoidal percep-
tron networks. Our estimates can be combined with many other integral representations, such as
convolutions with Gaussian and Bessel kernels [Girosi and Anzellotti, 1993], [Kainen et al., 2007a].

7 Appendix: Properties of Bochner integral

The Bochner integral is a generalization of the Lebesgue integral to functions with values in a Banach
space. Here, we recall the definition of the Bochner integral and some related concepts, notations,
results and techniques needed in the proofs in our paperto understand following theorems and proofs
(for more details see, e.g., [Zaanen, 1961]).

Let (Y,S, µ) be a measure space. Let X be a Banach space with norm ‖ · ‖X . Call s : Y → X a
simple function if for m ≥ 1, f1, . . . , fm ∈ X ;P1, . . . , Pm ∈ S such that for all j = 1, . . . , m, µ(Pj) < ∞,
for all distinct pairs i, j = 1, 2, . . . ,m, Pi ∩ Pj = ∅, and

s =
m∑

j=1

fjχPj ,

where χP denotes the characteristic function of the subset P of Y .
Let

I(s) :=
m∑

j=1

µ(Pj)fj ∈ X .
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Then I(s) is independent of the representation of s as a linear combination of characteristic functions
[Zaanen, 1961, pp.130–132].

A function h : Y → X is called strongly measurable (with respect to µ) provided there exists a
sequence {sk} of simple functions such that, for µ-a.e. y ∈ Y ,

lim
k→∞

‖sk(y)− h(y)‖X = 0.

A function h : Y → X is Bochner integrable (with respect to µ) if it is strongly measurable and there
exists a sequence {sk} of simple functions sk : Y → X such that

lim
k→∞

∫

Y

‖sk(y)− h(y)‖Xdµ(y) = 0. (7.1)

If (7.1) holds, the sequence {I(sk)} converges to an element I(h) ∈ X , independent of the sequence
of simple functions, called the Bochner integral of h (with respect to µ).

Let I(Y, µ;X ) denote the family of all functions from Y to X which are Bochner integrable with
respect to µ.

The following theorem asserts that, for h strongly measurable, Bochner integrability of a mapping
h : Y → X is equivalent to Lebesgue integrability of ‖h‖ : Y → R.

Theorem 7.1 (Bochner) Let (X , ‖ · ‖X ) be a Banach space and (Y,S, µ) a measure space. Let
h : Y → X be strongly measurable. Then

h ∈ I(Y, µ;X ) if and only if
∫

Y

‖h(y)‖Xdµ(y) < ∞.

The next two results, which can be found, e.g., in [Zaanen, 1961, p. 132], [Mart́ınez and Sanz, 2001,
p. 324], are used in proofs in Section 4. The first one generalizes Lebesgue dominated convergence,
while the second one describes a key linearity property.

Proposition 7.2 Let (Y,S, µ) be a measure space and X a Banach space. If {hn}∞n=1 ⊂ I(Y, µ;X )
and h : Y → X satisfies

lim
n→∞

‖hn(y)− h(y)‖X = 0

for µ-a.e. y ∈ Y , and if there exists g ∈ L1(Y, µ) with ‖hn(y)‖X ≤ g(y) for µ-a.e. y in Y , then

h ∈ I(Y, µ;X ) and lim
n→∞

‖I(h)− I(hn)‖X = 0.

Proposition 7.3 Let (Y,S, µ) be a measure space and let X be a Banach space. Let h ∈ I(Y, µ;X )
and let T be a bounded linear functional on X . Then

T (I(h)) =
∫

Y

T (h(y)) dµ(y).

The following theorem on evaluation of Bochner integrals of mappings to Lq-spaces was proven in
[Kainen, 2007].

Theorem 7.4 Suppose (Y,S, µ) is a Radon measure space with Y ⊆ Rp, p ≥ 1, ρ a σ-finite measure
on Ω, and ψ : Ω × Y → R is ρ × µ-measurable, and for some Y0 ∈ S with µ(Y0) = 0, and Y \ Y0 is
a countable union of compacta. Also suppose that for some q, 1 ≤ q < ∞, Ψ : Y \ Y0 → Lq(Ω, ρ)
defined by Ψ(y)(x) = ψ(x, y) is continuous and Ψ(Y \ Y0) is bounded. If for ρ-a.e. x ∈ Ω, f(x) =∫

Y
ψ(x, y)dµ(y), then Ψ is Bochner integrable and I(Ψ) = f .
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