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Abstract:

Since the first presentation of fuzzy sets with non-numerical membership degrees by J. A. Goguen in 1969
(cf, [5]) in the greatest part of works dealing with this subject complete lattices have been considered as
the structures in which these non-numerical fuzzy sets, called also possibility or possibilistic distributions in
[8] and later on, take their values. The reasons for such a choice are to simplify mathematical procedures
when processing fuzzy or possibility degrees, nevertheless, in what follows, we will investigate possibilistic
distributions taking their values in incomplete lattices defined over the systems of all finite subsets of an
infinite basic set. This structure is completed in a nonstandard (non-boolean) way in order to minimize the
resulting ontologically independent inputs into the obtained complete lattice. Some results are introduced
and proved, dealing with complete maxitivity of the corresponding lattice-valued possibilistic measures and
with the convergence of sequences of values of such measures given a converging sequence of subsets for
which these measures are defined (continuity of the measures in question).
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1 Introduction, Motivation, Preliminaries

The notion of fuzzy set (fuzzy subset of a crisp basic space, to be more correct) was conceived in
1965 by L. A. Zadeh in his famous pioneering paper [7]. The aim was to propose a real-valued, and
easy to handle within the framework of standard mathematical analysis, characteristic for uncertainty
quantification, alternative to probability measure and oriented rather to process uncertainty of the
kind of fuzziness and vagueness than the uncertainty in the sense of randomness. The dominating
role when processing fuzzy sets (degrees of fuzziness) is played by the operations of supremum and
infimum, which may be defined not only in the unit interval [0, 1] of real numbers equipped by their
standard linear ordering, but also in other structures including some non-numerical ones. Moreover,
there is no immediate analogy of the notion of relative frequency related to fuzzy degrees by something
like a law of large numbers in probability theory. Hence, the idea of fuzzy sets with non-numerical
degrees of fuzziness emerged as soon as in the paper [5] by J. A. Goguen who conceived the idea of
fuzzy sets taking their degrees of fuzziness in a complete lattice. Before analyzing the Goguen’s idea
and approach in more detail, a very brief re-calling of the most elementary notions seems to be of use.

Let T be a nonempty set. A binary relation ≤ on T (i.e., a subset ≤ of the Cartesian product
T × T ) is called a partial pre-ordering on T, if it is reflexive and transitive, i.e., if t1 ≤ t1 holds for
each t1 ∈ T and if t1 ≤ t2 together with t2 ≤ t3 yields t1 ≤ t3 for each t1, t2, t3 ∈ T. If ≤ is moreover,
antisymmetric in the sense that, for each t1, t2 ∈ T, t1 ≤ t2 and t2 ≤ t1 hold together only when
t1 = t2, then the relation ≤ is called partial ordering on T and the pair T = 〈T,≤〉 is called partially
ordered set (p.o.set or poset).

Let ≤ be a partial pre-ordering on T, set t1 ≡ t2 for each t1, t2 ∈ T such that t1 ≤ t2 and t2 ≤ t1
hold together. As can be easily seen, ≡ defines an equivalence relation on T, so that we may define the
factor-space T ∗ = T/ ≡ the elements of which are equivalence classes [t]≡; here [t]≡ = {t1 ∈ T : t1 ≡ t}.
Given t1, t2 ∈ T, set [t1]≡ ≤∗ [t2]≡ if and only if t1 ≤ t2 holds, as can be easily seen, this relation does
not depend on which representants of the equivalence classes [t1]≡ and [t2]≡ are chosen. Consequently,
≤∗ defines a binary relation on the factor-space T/ ≡ and, as can be easily proved, ≤∗ is a partial
ordering on T/ ≡, so that T ∗ = 〈T/ ≡,≤∗〉 defines a p.o.set.

Let T = 〈T,≤〉 be a p.o.set, let ∅ 6= A ⊂ T hold. The supremum of A w.r.to T (if it exists) is
defined as the smallest upper bound of A and it is denoted by

∨T
A, the infimum of A w.r.to T (if

it exists) is defined as the greatest lower bound of A and it is denoted by
∧T

A. If A = {t1, t2}, or
A = {t1, t2, . . . , tn}, n ∈ N, we write t1 ∨T t2 or

∨T n
i=1 ti, and similarly for infimum, the index T being

omitted, if no misunderstanding menaces.
As a matter of fact, if T = 〈T,≤〉 is a p.o.set, then in general

∨T
A and/or

∧T
A need not be

defined for some A ⊂ T. P.o.set T = 〈T,≤〉 is called a lower semi-lattice (an upper semi-lattice, resp.)
if

∧T
A(

∨T
A, resp.) is defined for each finite A ⊂ T. If this condition holds for each A ⊂ T , then T is

called a complete lower semi-lattice (a complete upper semi-lattice, resp.). If T = 〈T,≤〉 defines, at the
same time, a (complete) lower semilattice and a (complete) upper semilattice, then T is a (complete)
lattice. Hence, p.o.set T = 〈T,≤〉 defines a complete lattice, if for each ∅ 6= A ⊂ T,

∨T
A and

∧T
A

are defined (if A = ∅, the convention
∨T ∅ =

∧
T = ®T and

∧T ∅ =
∨

T = 1T applies). Both the
most often used structures for quantification, the unit interval with the standard linear ordering of
real numbers as well as the power-set of all subsets of a non-empty space partially ordered by the set
inclusion, obviously define complete lattices.

Hence, the Goguen’s decision to limit the investigation of non-numerical fuzzy sets to those taking
their values in complete lattices, followed by the greatest part of researchers oriented toward this or
a close field of investigation, was quite a reasonable simplification enabling to eliminate cumbersome
technical difficulties following from the necessity to analyze in particular each supremum and infimum
operation occurring in particular steps of our mathematical reasoning (for a more detailed discussion
the reader could be referred to [2], [3], [5] or elsewhere).

However, the aim or each rational research effort consists not only in looking for conditions strong
enough in order to deduce some rich, important or interesting results, but also in analyzing which of
these consequences remain (and which not) to be valid when weakening the conditions imposed on
the input structures. In what follows, we will investigate fuzzy sets taking their values in a particular
incomplete lattice to be specified in Section 2. A more detailed discussion on the sensefulness and
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appropriateness of this particular choice will be given in the last section, having already at hand some
results on which the consequences of the discussion should be based on.

The following terminological note should be re-called. Given a nonempty space Ω, a fuzzy set
π : Ω → [0, 1] and a crisp subset A ⊂ Ω, Zadeh defines, in [8], by supω∈A π(ω) the portion of the total
fuzziness, defined by π, located in the subset A. This values is denoted by Π(A) and the mapping
Π : P(Ω) → [0, 1] is called the possibilistic (or possibility) measure defined by π; the mapping π is,
in this context, called a (real-valued) possibilistic distribution on Ω. We will continually apply this
terminology in what follows.

For a more detailed and systematic information dealing with p.o.sets, lattices, Boolean algebras,
and structures in general, the reader is recommended to consult either the already classical monographs
[1], [4], or [6] or some more recent monographs and textbooks.

2 An Incomplete Set-Valued Lattice and Its Non-Boolean
Completion

Let X be an infinte set, let P(X) denote the system of all subsets of X (the power-set induced by
X), let Pf (X) ⊂ P(X) denote the system of all finite subsets of X including the empty set ∅, let ⊂
denote the set inclusion on P(X). We will write A ⊂f X, if X is a finite subset of X so that A ⊂f X
denotes the same as A ∈ Pf (X). Setting T = 〈Pf (X),⊆〉 we obtain easily that T is a lattice on
T = Pf (X) induced by the partial ordering ⊆ . Moreover, T is a complete lower semilattice, however,
for an infinite A ⊂ Pf (X) the supremum

∨T A is not defined in T .
Consider the following binary relation ≤ on P(X) (i.e., ≤⊂ P(X)×P(X)) : (i) if A,B ⊂f X holds,

then A ≤ B coincides with the standard set inclusion A ⊆ B on Pf (X), and (ii) if B is infinite, i.e., if
B ∈ P(X)− Pf (X) is the case, then A ≤ B holds for each A ⊂ X (no matter whether the inclusion
A ⊆ B in the standard sense is valid). As can be easily seen, the binary relation ≤ defines a partial
pre-ordering on the power-set P(X). Hence, we can define an equivalence relation ≡ on P(X), setting
A ≡ B iff A ≤ B and B ≤ A holds together and, consequently, to consider the factor-space P(X)| ≡
with the uniquely defined binary relation ≤∗ between equivalence classes [A]≡, [B]≡ ∈ P(X)| ≡ .

Analyzing this construction in more detail, we obtain that for each A ⊂f X the equivalence class [A]
reduces to the singleton {A} (singleton when related to P(X)), but all infinite subsets of X are covered
by one equivalence class which may be denoted by [X], hence [X] = P(X)−Pf (X). The corresponding
partial ordering ≤∗ on P(X)| ≡ then reads that [A] ≤∗ [B] holds if A,B ⊂f X and A ⊂ B is the
case, or if [B] = [X]. Simplifying our notation and hoping that no misunderstanding menaces, we may
replace the structure 〈P(X)| ≡,≤∗〉 by an isomorphic structure T ∗ = 〈Pf (X) ∪ {X},⊆〉, where ⊆
may be taken as the standard set inclusion on Pf (X) ∪ {X}.

The following fact is easy to prove.

Fact 1. For T ∗ = Pf (X)∪{X} the structure T ∗ = 〈T ∗,⊆〉 defines a complete lattice with the empty
set ∅ as the minimum or zero (element) of T ∗ (denoted also by ∅T ∗) and with X as the maximum
or unit (element) of T ∗, denoted also by 1T ∗ . The index T ∗ will be omitted, if no misunderstanding
menaces. In particular, this will be the case in the next section when only the complete lattice T ∗
will be considered.

3 T ∗-Lattice-Valued Possibilistic Distributions and Measures

Let Ω be a nonempty set, let π : Ω → Pf (X) ∪ {X} be a mapping ascribing to each ω ∈ Ω a finite
subset of X or the set X itself. Set, for each A ⊂ Ω, σ(E, π) = {π(ω} : ω ∈ E}, hence, σ(E, π) denotes
the set of values taken by π(ω) when ω ranges over E. If σ(E, π) is finite, then the set E is called
π-finite (in particular, it is trivially the case when E is finite). Hence, if E is π-finite, then there exists
a finite subset E0 ⊂ E such that σ(E, π) = σ(E0, π) even if E itself is an infinite subset of Ω.

Definition 1 Given Ω 6= ∅ and π : Ω → T ∗, set Π(E) =
∨T ∗

ω∈σ(E,π) π(ω) for each ∅ 6= E ⊆ Ω. The
mapping π is called a T ∗-(valued) possibilistic distribution on Ω, if Π(Ω) = 1T ∗(= X) holds; if this
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is the case, then the mapping Π : P(Ω) → T ∗ is called the T ∗-(valued) possibilistic measure on P(Ω)
induced by π on Ω.

If E ⊂ Ω is not π-finite, we say that E is π-infinite.

Lemma 1 Let π be a T ∗-possibilistic distribution on a nonempty set Ω. Then Π(E) = 1T (= X) for
each σ-infinite E ⊂ Ω.

Proof. Let E ⊂ Ω be π-infinite, so that π takes infinitely many different values from T ∗ for ω ranging
over E. Hence, the relation π(ω) ≤ ∨T ∗

ω1∈E π(ω) must be valid for infinite number of different values
from T ∗. However, the only element in T ∗ meeting this condition is the unit element 1T ∗ = X, so
that

∨T ∗
ω∈E π(ω) = Π(E) = 1T ∗ follows.

Consequently, if π is a T ∗-possibilistic distribution on Ω and Ω is π-finite, then there exists ω0 ∈ Ω
such that π(ω0) = X(= 1T ∗). 2

Theorem 1 Let π be a T ∗-possibilistic distribution on a nonempty set Ω. Then the T ∗-possibilistic
measure Π on P(Ω), induced by π, is completely maxitive in the sense that for each nonempty system
E of nonempty subsets of Ω the relation

Π
(⋃

E
)

= Π

( ⋃

E∈E
E

)
=

T ∗∨

E∈E
Π(E) (3.1)

is valid.

Proof. For each ∅ 6= E ⊂ Ω, the relation Π(E) =
∨T ∗{x : x ∈ σ(E, π)} holds by definition. For each

∅ 6= E ⊂ P(Ω) and each x ∈ T ∗ = Pf (X) ∪ {X}, x ∈ σ(∪E , π) holds iff x ∈ σ(E, π) is the for some
E ∈ E , consequently, the relation

σ
(⋃

E , π
)

=
⋃

E∈E
σ(E, π) (3.2)

holds. If X ∈ σ(E1, π) for some E1 ∈ E , then X ∈ σ(
⋃ E , π) holds as well, so that

Π
(⋃

E
)

= X =
T ∗∨

E∈E
Π(E) (3.3)

trivially results.
Let σ(E, π) ⊂f X hold for each A ⊂ E , let

⋃ E be π-finite. Then
⋃

E∈E σ(E, π) ⊂f X holds, so
that

Π
(⋃

E
)

=
T ∗∨
{x : x ∈

⋃

E∈E
σ(E, π)} =

∨

E∈E

(T ∗∨
{x : x ∈ σ(E, π)}

)
=

T ∗∨

E∈E
Π(E) (3.4)

holds. Finally, let
⋃ E be π-infinite, let σ(E, π) ⊂f X hold for each E ∈ E . Then the set

⋃
E∈E σ(E, π)

is infinite, so that the only element of T ∗ containing every σ(E, π), E ∈ E , is the set X, so that also
in this case the relation

T ∗∨

E∈E
Π(E) =

T ∗∨

E∈E
{x : x ∈ σ(E, π)} = X =

T ∗∨ {
x : x ∈

⋃

E∈E
σ(E, π)

}
=

=
T ∗∨ {

x : x ∈ σ
(⋃

E , π
)}

= Π
(⋃

E
)

(3.5)

is valid. The assertion is proved. 2

Corollary 1 Let the notations and conditions of Theorem 1 hold. Then T ∗-possibilistic measure Π
on P(Ω) is monotonous in the sense that Π(A) ≤ Π(B) holds for each A ⊂ B ⊂ Ω.
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Proof. Obviously, for each A ⊂ B ⊂ Ω we obtain that

Π(A) ≤ Π(A) ∨Π(B) = Π(A ∪B) = Π(B)

holds. 2

4 Modified T ∗-Possibilistic Distribution

The following alternative definition of T ∗-valued possibilistic measure purposely neglects the difference
between finite and π-finite subsets of Ω, playing an important role in Definition 1.

Definition 2 Consider the complete lattice T ∗ = 〈Pf (X)∪ {X},⊆〉 as above, a nonempty set Ω and
a mapping π0 : Ω → T ∗ = Pf (X) ∪ {X}. Set, for each E ⊂ Ω, Π0(E) =

∨
ω∈E π(ω), if E is finite,

Π0(E) = X for each infinite E ⊂ Ω. If Π(Ω) = X, then π0 is called modified T ∗-possibilistic distri-
bution on Ω (m-T ∗-distribution, abbreviately) and Π0 is called the modified T ∗-possibilistic measure
(m-T ∗-measure, abbreviately) induced by π0 on P(Ω).

Hence, if Ω is infinite, then each π0 : Ω → T ∗ defines an m-T defines an m-T ∗-distribution on Ω,
if Ω is finite, then this is the case iff π0(ω0) = X for some ω0 ∈ Ω.

Lemma 2 Let π0 be an m-T ∗-possibilistic distribution on Ω, then the induced m-T ∗-measure Π0 on
P(Ω) is finitely maxitive in the sense that Π0(E ∪ F ) = Π0(E) ∨Π0(F ) holds for each E, F ⊂ Ω.

Proof. Let E or F (or both) be infinite subset(s) of Ω, then either Π0(E) or Π0(F ) = X, but E ∪ F
is also an infinite subset of Ω, so that X = Π0(E ∪F ) = Π0(E)∨Π0(F ) follows. If both E and F are
finite subsets of Ω, then

Π0(E ∪ F ) =
∨

ω∈E∪F

π(ω) =
∨

ω∈E

π(ω) ∨
∨

ω∈F

π(ω) = Π0(E) ∨Π0(F ) (4.1)

holds. The assertion is proved. 2

Contrary to the properties of T ∗-possibilistic measure Π introduced and investigated above, m-T ∗-
measure Π0 need not be completely maxitive on P(Ω). Indeed, let {Ωi}∞i=1 be a disjoint decomposition
of an infinite countable set Ω, let each Ωi be finite. Let Y be a finite system of finite subsets of X,
let π(ω) ∈ Y for each ω ∈ Ω. Then Π0(Ωi) =

∨
ω∈Ωi

π0(ω) ≤ ∨
Y =

∨
x∈Y x < X holds for each Ωi,

hence,
∨{Π0(Ωi) : i = 1, 2, . . . } ≤ ∨

Y < X = Π0(Ω) follows, consequently, Π0 is not completely
maxitive on P(Ω).

Let us note that taking the same π0 : Ω → T ∗ but applying the definition of Π instead of that of
Π0 we obtain that the set Ω is π0-finite, as the set σ(Ω, π0) ⊂ Y is finite. Hence, Π(Ω) ≤ ∨

Y < X
holds and π0 is not a T ∗-possibilistic distribution on Ω in the sense of Definition 1 Obviously, each
T ∗-possibilistic distribution on Ω defines also an m-T ∗-distribution on Ω, as Π(Ω) = X holds, but the
inverse implication is not the case in general, as we have just observed.

5 Convergence and Continuity of T ∗-Valued Possibilistic Mea-
sures

According to the standard definition, a sequence E = {E1, E2, . . . } of subsets of a space Ω tends
(converges) to a set E0 ⊂ Ω, if the identity

lim inf{En} =df

∞⋃
n=1

∞⋂

j=n

Ej = lim sup{En} =df

∞⋂
n=1

∞⋃

j=n

Ej = E0 (5.1)

holds. We will write E → E0 or {En} → E0, if (5.1) holds.
This standard definition of convergence can be weakened as follows.
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Definition 3 Let Y be a nonempty set, let ≈ denote an equivalence relation on the power-set P(Y ),
hence, for each E1, E2, E3 ⊆ Y, (i) E1 ≈ E1, (ii) if E1 ≈ E2, then E2 ≈ E1, and (iii) if E1 ≈ E2

and E2 ≈ E3 holds, then E1 ≈ E3 follows. A sequence {E1, E2, . . . } of subsets of Y tends (converges)
to E0 ⊂ Y with respect to equivalence relation ≈ ({En} →≈ E0, in symbols), if there exists, for each
n = 0, 1, 2, . . . , a subset E∗

n ⊂ Y such that En ≈ E∗
n holds and {E∗

n} tends to E∗
0 in the standard sense

of (5.1).
As can be easily seen, if the identity relation on P(Y ) is taken as the equivalence relation ≈ between

subsets of Y, then the convergence w.r.to ≈ reduces to the standard convergence in the sense of (5.1).

Theorem 2 Let T ∗ = 〈Pf (X) ∪ {X},⊆〉 be the complete lattice defined above, let Ω be a nonempty
set, let π : Ω → T ∗ = Pf (X) ∪ {X} be a T ∗-possibilistic distribution Ω, so that Π(Ω) = X, let
E1 ⊂ E2 ⊂ . . . be a sequence of subsets of Ω such that {En} → Ω holds, let ≡ be the equivalence relation
on P(X) such that [x]≡ = {x} for each x ∈ Pf (X), and [x]≡ = [X] = P(X)−Pf (X) for each infinite
x ⊆ X. Then Π(En) →≡ X = Π(Ω) holds, hence, Π(

⋃n
j=1 Ej) tends to Π(

⋃∞
j=1 Ej) = Π(Ω) = X with

respect to the equivalence relation ≡ on P(X).

Proof. Let π(ω0) = X for some ω0 ∈ Ω. As {En} → Ω holds (in the standard sense), then there
exists n0 ∈ {1, 2, . . . } such that ω0 ∈ En for each n ≥ n0, hence, π(ω0) = X = σ(En, π) for each
n ≥ n0, consequently, Π(En) = X = Π(Ω) holds for each n ≥ n0 so that the assertion Π(En) →≡ X
holds trivially. If some Ei ⊂ Ω is π-infinite, then Π(Ej) = X holds for each j ≥ i, as we suppose that
Ei ⊂ Ej is valid for each j ≥ i. Hence, Π(Ej) → X in the standard sense of (5.1) so that Π(Ej) →≈ X
holds for each equivalence relation ≈ on P(X) including the relation ≡.

What remains to be analyzed is the case when each Ei in the sequence {Ei} of subsets of Ω under
consideration is π-finite and that π(ω) 6= X, ω ∈ Ω, as the opposite case has been already solved.
As Π(Ω) = X due to the assumptions imposed on π, it follows that the space Ω is π-infinite, hence
σ(Ω, π) = {π(ω) : ω ∈ Ω} =

⋃∞
j=1 σ(Ej , π) is an infinite subset of X. Indeed, each ω ∈ Ω is in

each Ej for j ≥ n0(ω) ∈ {1, 2, . . . }, consequently, each x ∈ Pf (X), x = π(ω) for some ω ∈ Ω, is in
each σ(Ej , π), j ≥ n0(ω) ∈ {1, 2, . . . } for some n0(ω). Moreover, as each Ei is π-finite, the relation
Π(Ei) =

∨
ω∈Ei

π(ω) =
⋃

ω∈Ei
π(ω) = σ(Ei, π) is valid. Consequently, Π(Ei) tends to

⋃∞
j=1 σ(Ej , π)

in the standard sense of convergence of subsets of X and the equivalence relation
⋃∞

j=1 σ(Ej , π) ≡ X
is valid, as both the last sets are infinite subsets of X. Hence, Π(En) →≡ X = Π(Ω) follows and the
assertion is proved. 2

The result just proved does not hold, in general, for other equivalence relations ≈ on P(X), in
particular, it does not hold for the relation of identity of subsets of X. In other terms, the sets σ(En, π)
tend in the standard sense to

⋃∞
n=1 σ(En, π), but this subset of X, even if infinite, need not be identical

with X. Indeed, let Ω = {ω1, ω2, . . . } and X = {x1, x2, . . . } be infinite countable sets, let π(ωi) =
{x2i} ⊂ Pf (X) hold for each i = 1, 2, . . . , let En = {ω, ω2, . . . , ωn} ⊂ Ω for each n = 1, 2, . . . . Then
{En} tends to

⋃∞
n=1 En = Ω in the standard sense and σ(En, π) = {π(ω) : ω ∈ En} = {x2, x4, . . . , x2n}

for each n = 1, 2, . . . . So, the space Ω is π-infinite, as σ(Ω, π) =
⋃∞

n=1 σ(En, π) = {x2, x4, . . . } is an
infinite subset of X, hence,

∨∞
n=1 σ(En, π) = X, as the supremum is defined in the sense of complete

lattice T ∗ = 〈Pf (X)∪{X},⊆〉. However,
⋃∞

n=1 σ(En, π) = {x2, x4, . . . } 6= X, so that Theorem 2 does
not hold when replacing the equivalence relation ≡ by identity = on P(X).

Let us consider the problem of convergence and continuity for the case of the modified T ∗-
possibilistic measure Π0 on P(Ω). Let Ω be an infinite countable set, let π0(ω) = x0 ⊂f X for
each ω ∈ Ω, so that π0 defines an m-T ∗-possibilistic distribution on Ω (let us recall that in the modi-
fied case Π(Ω) = X due to the simple fact that the set Ω is infinite no matter which the values π0(ω)
may be). Let {En} be a sequence of finite subsets of Ω such that {En} tends to Ω in the standard
sense. So, Π0(En) = x0 for each n = 1, 2, . . . , so that Π0(En) tends to x0 in the standard sense.
However, x0 ⊂f X yields that x0 6= X, x0 6≡ X is the case. So, Π0(En) does not tend to Π0(Ω) neither
in the standard sense nor (contrary to the case of T ∗-possibilistic measure Π) with respect to the
equivalence relation ≡ on P(X).
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6 Comments and Conclusions

Our approach to the problems arising when weakening the assumptions imposed on the structures in
which uncertainty degrees take their values seems to be rather conservative in the sense that we tried
to complete somehow the incomplete lattice under consideration, keeping in mind that this completion
should be ontologically as weak as possible. In other terms expressed, the new inputs enriching the
original incomplete lattice should be just the minimum and weakest ones leading to a completion of
the original lattice, but implying as small as possible portion of further properties in which both the
lattices differ from each other (this is obviously not the case when completing T = 〈Pf (X),⊆〉 by
extending Pf (X) to P(X)). The shift from Pf (X) to Pf (X) ∪ {X} seems to meet much better the
ontological minimization principle sketched above.

Taking the problem of completion at its most abstract level, we could consider an abstract in-
complete lattice T0 = 〈T0,≤0〉 subsequently enriched by the abstract entity 1T0 endowed by the only
property that x ≤0 1T0 holds for each x ∈ T0. The reason for choosing just the particular case
T = 〈Pf (X),⊆〉 of 〈T0,⊆〉 as the starting point of our considerations and constructions is that in this
case also some entities beyond the support Pf (X) of T , namely, infinite subsets of X, can be analyzed
and processed, using the tools of elementary set theory, even if those entities (infinite subsets of X)
cannot be taken as fuzziness degrees ascribed to some subsets of the space Ω.

Given a complete lattice T1 = 〈T1,≤1〉, a T1-possibilistic distribution π on a nonempty space Ω,

and a subset A of Ω, the relation Π(A) =
∨T1

ω∈A π(ω) may be taken either as a definition of the value
Π(A), but also as the only tool enabling to compute the value Π(A) given the value π(ω) for each
ω ∈ A. From this point of view, if A is finite (or at least if the set σ(A, π) = {π(ω : ω ∈ A} is
finite) we are able, at least in principle, to compute the supremum value Π(A) =

∨T1
ω∈A π(ω). If the

set A (or the set σ(A, π) is infinite, such a computation is impossible and we have to accept that
Π(A) = 1T1(= X, if T1 = T ∗) as it describes the case with the greatest nonspecificity degree for Π(A).
Both these approaches are formalised by T ∗-possibilistic measures Π and their modified versions Π0

introduced and analyzed above.
The idea according to which the values Π(A) can be effectively computed only when the set σ(A, π)

(or the set A itself in the modified case) is finite may be strenghened in the sense that the value Π(A)
is effectively accessible only when the cardinality of the set σ(A, π) or A does not exceed on apriori
given natural number R. Hence, if card(σ(A, π)) > R (in the case of T ∗-possibilistic measure Π) or
if card(A) > R (in the modified case of T ∗-possibilistic measure Π0) holds, we set Π(A) = X (or
Π0(A) = X), so that the sets the cardinality of which exceeds R are processed as infinite subsets
of X (or of Ω) in both the models introduced and analyzed above. Another way how to introduce
a finite restriction into our former models may read as follows: given a T ∗-possibilistic distribution
π on a space Ω and given a fixed finite subset Y ⊂ X, we reduce π to πY : Ω → P(Y ), setting
πY (ω) = π(ω) ∩ Y for each ω ∈ Ω; the resulting mapping then defines a T Y -possibilistic distribution
of T Y = 〈P(Y ),⊆〉.

Both these finite restrictions of the complete lattice T ∗ = 〈Pf (x),⊆〉, as well as their mutual
relations, deserve perhaps a more detailed analysis, in particular, from the point of view whether, and
in which sense and degree, these finite restrictions approximate the complete lattice T ∗, e.g., with
the value R of the free parameter increasing. A further investigation in this direction, as well as the
looking for some qualitatively new approaches, different from the idea of a conservative completion
of the original incomplete lattice (T = 〈Pf (X),⊆〉, in our case) as applied above, seems to be useful
and interesting, and the author hopes to have an opportunity to go on in this effort at an appropriate
future occasion.
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