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Technical report No. 1246

May 2019

Abstract:

This contribution contains a description and analysis of effective methods for minimization of the nonlinear least
squares function F (x) = (1/2)fT (x)f(x), where x ∈ Rn and f ∈ Rm, together with extensive computational
tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global
convergence is proved in a unified way. Some proofs concerning trust region methods, which are difficult to find
in the literature, are also added. In particular, the report contains an analysis of a new simple hybrid method
with Jacobian corrections (Section 8) and an investigation of the simple hybrid method for sparse least squares
problems proposed previously in [33] (Section 14).
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1 Introduction

Consider an objective function of the form

F (x) =
1

2
fT (x)f(x) =

1

2

m∑
k=1

f2
k (x), (1)

where f : DF → Rm is a mapping defined on the set DF ⊂ Rn (the mapping f is defined on the same
region as the function F ). We use the notation

f(x) =

 f1(x)
...

fm(x)

 , J(x) =
∂f(x)

∂x
=


∂f1(x)

∂x1
, . . . ,

∂f1(x)

∂xn
...

...
...

∂fm(x)

∂x1
, . . . ,

∂fm(x)

∂xn


for the mapping f and its Jacobian matrix J . If the mapping f is continuously differentiable on an open
set D ⊂ DF , then

g(x) = JT (x)f(x) =
m∑

k=1

fk(x)hk(x) (2)

for x ∈ D, where hk(x) = ∇fk(x) are gradients of the functions fk, 1 ≤ k ≤ m, and g(x) = ∇F (x)
is the gradient of the function F (all computed at the point x). If the mapping f is twice continuously
differentiable on D, then

G(x) = JT (x)J(x) + C(x) =

m∑
k=1

hk(x)h
T
k (x) +

m∑
k=1

fk(x)Hk(x), (3)

for x ∈ D, where Hk(x) = ∇2fk(x) are Hessian matrices of the functions fk, 1 ≤ k ≤ m, and G(x) is a
Hessian matrix of the function F (all computed at the point x). Almost all investigated methods generate
a sequence of points xi, i ∈ N , such that Fi+1 ≤ Fi, i ∈ N (the sequence Fi, i ∈ N , is nonincreasing).
Then xi ∈ D(F ) = {x ∈ Rn : F (x) ≤ F}, where F ≥ F (x1). Investigating global convergence, we choose
a set D in such a way that D(F ) ⊂ D and assume that the set D (closure) is compact, which is satisfied,
for example, if the function F is coercive (F (x) → ∞, if ∥x∥ → ∞). Investigating the asymptotic rate of
convergence, we assume that D = U(x∗, ε) = {x ∈ Rn : ∥x − x∗∥ < ε}, where x∗ is the limit point of a
sequence xi, i ∈ N , and ε > 0.

Let D be the open set used in the above considerations. In the investigation of numerical methods for
minimization of sums of squares, we use the following assumptions:

Assumption A1 The set D is compact and the functions fk(x), 1 ≤ k ≤ m, are twice continuously
differentiable on D (then there are constants f , h, H such that fk(x) ≤ f , ∥hk(x)∥ ≤ h, ∥Hk(x)∥ ≤ H,
1 ≤ k ≤ m, if x ∈ D).

Remark 1. Note that Assumption A1 implies inequalities F (x) ≤ (m/2)f
2
, ∥J(x)∥ ≤ J =

√
mh,

∥g(x)∥ ≤ g = mf h and ∥G(x)∥ ≤ G = m(h
2
+ f H), if x ∈ D.

Assumption A2 The Jacobian matrix J(x) has full column rank on D, i.e., there is a constant J such
that ∥J(x)d∥ ≥ J∥d∥, if x ∈ D and d ∈ Rn.

Assumption A3 The point x∗ ∈ Rn is a local minimizer of the function F (x). This function is twice
continuously differentiable at a neighborhood of x∗ and the Hessian matrix G(x∗) is positive definite.

Remark 2. Assumption A3 implies the existence of numbers 0 < G ≤ G and ε > 0 such that

G∥d∥2 ≤ dTG(x)d ≤ G∥d∥2 (4)
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for an arbitrary nonzero vector d ∈ Rn and x ∈ U(x∗, ε) = {x ∈ Rn : ∥x− x∗∥ < ε}. If Assumption A3 is
satisfied, then

1

2
G∥x− x∗∥2 ≤ F (x)− F (x∗) ≤

1

2
G∥x− x∗∥2, (5)

G∥x− x∗∥ ≤ ∥g(x)∥ ≤ G∥x− x∗∥ (6)

for all x ∈ U(x∗, ε) (it follows from the mean value theorem).

Assumption A4 The Hessian matrix G(x) is Lipschitz continuous at a neighborhood of x∗ ∈ Rn, i.e.,
there are numbers L > 0 and ε > 0 such that

∥G(x2)−G(x1)∥ ≤ L∥x2 − x1∥, (7)

if ∥x1 − x∗∥ < ε and ∥x2 − x∗∥ < ε.

2 Trust region methods

There are two basic classes of methods for unconstrained minimization: line-search methods and trust
region methods [42], [36]. Numerical experiments show that trust region methods are more efficient for
minimizing sum of squares than line-search methods. Therefore, we focus our attention on trust region
methods. These methods are based on the idea introduced in [44]. In the description of trust region
methods we utilize the knowledge of gradients gi = ∇F (xi), i ∈ N , and denote

Qi(d) =
1

2
dTBid+ gTi d (8)

(where Bi ≈ G(xi)) for the predicted decrease and

ρi(d) =
F (xi + d)− F (xi)

Qi(d)
(9)

for the ratio of both the actual and the predicted decreases of the objective function. Furthermore, we use
the quantities

ϑi =
(Bi −G(xi))di

∥di∥
, ωi =

Bidi + gi
∥gi∥

, τi =
gi+1 − gi −Bidi

∥gi∥
. (10)

A detailed description of trust region methods is introduced in [12].

Definition 1. We say that an iterative method xi+1 = xi + αidi, i ∈ N , for unconstrained minimization
of function F : Rn → R, is a trust region method, if 0 < ∆1 ≤ ∆ and the following conditions hold.

(T1) The direction vectors di ∈ Rn, i ∈ N , are determined in such a way that

∥di∥ ≤ ∆i, (11)

∥di∥ < ∆i ⇒ ωi ≤ ω, (12)

−Qi(di) ≥ σ

2
∥gi∥min

(
∆i,

∥gi∥
∥Bi∥

)
(13)

where 0 ≤ ω < 1 and 0 < σ ≤ 1.

(T2) The step-sizes αi ≥ 0, i ∈ N , are selected in such a way that

ρi(di) < ρ ⇒ αi = 0, (14)

ρi(di) ≥ ρ ⇒ αi = 1, (15)

0 < ρ < 1.
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(T3) The trust region radii 0 < ∆i ≤ ∆, i ∈ N , are chosen by the rule

ρi(di) < ρ ⇒ β∥di∥ ≤ ∆i+1 ≤ β∥di∥, (16)

ρ ≤ ρi(di) ≤ ρ ⇒ ∆i+1 = min(∆i, γ∥di∥), (17)

ρi(di) > ρ ⇒ ∆i+1 = min(γ∆i, γ∥di∥,∆), (18)

where 0 < β ≤ β < 1 < γ < γ and 0 < ρ < ρ < 1.

Remark 3. Definition 1 is slightly complicated. The condition ∆i+1 ≤ γ∥di∥ is usually omitted, since
Theorems 1 and 4 hold without this assumption. This condition is necessary for obtaining inequality (36)
and, therefore, for correctness of Theorems 2 and 3. The rule (T2) is frequently replaced by a similar rule
with ρ = 0 [47], for which Theorems 1 and 4 hold again. Besides the assertion limi→∞ ∥g(xi)∥ = 0 in

case ∥Bi∥ ≤ B, i ∈ N , (T2) is necessary for obtaining inequality (38) and, therefore, for correctness of
Theorems 2 and 3.

A direction vector di ∈ Rn satisfying conditions (11)–(13) can be computed in various ways. We have
advantageously used the dog-leg method, introduced in [44] and improved in [17]. This method uses the
formulas

di = − ∆i

∥gi∥
, ∥dCi ∥ ≥ ∆i, (19)

di = dCi + λi(d
N
i − dCi ), ∥dCi ∥ < ∆i < ∥dNi ∥, (20)

di = dNi , ∥dNi ∥ ≤ ∆i, (21)

where

dCi = − ∥gi∥2

gTi Bigi
gi, dNi = −B−1

i gi (22)

and λi is a number selected in such a way that ∥di∥ = ∆i. It is known (see [12]) that direction vector di
computed by (19)–(22) satisfies conditions (11)–(13) with ω = 0 and σ = 1. Moreover, this vector satisfies
the additional condition

−dTi gi ≥ σ∥gi∥min

(
∆i,

∥gi∥
∥Bi∥

)
(23)

with σ = 1, so it is a descent direction vector. Note that the optimum step method introduced in [41] and
the iterative method introduced in [52] and [56] are not suitable for solving least squares problems (which
was confirmed by our numerical experiments).

The following four theorems are essential for investigation of convergence properties concerning trust
region methods. The first part of Theorem 1 is proved in [47] and the second part in [53]. The proofs of
the remaining theorems are based on ideas presented in [18] and [46]. We use the notation

N1 = {i ∈ N : ∥di∥ < ∆i}, N2 = {i ∈ N : ρi ≥ ρ}

in the subsequent considerations.

Theorem 1. (Global convergence) Let the mapping f : Rn → Rm satisfy Assumption A1 and xi ∈ Rn,
i ∈ N , be a sequence generated by the trust region method (T1)–(T3) such that

∞∑
i=1

1

Mi
= ∞, (24)

where
Mi = max

1≤j≤i
∥Bj∥. (25)

Then lim infi→∞ ∥g(xi)∥ = 0. If ∥Bi∥ ≤ B, i ∈ N , then limi→∞ ∥g(xi)∥ = 0.
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Remark 4. The proof of the first part of Theorem 1, given in [47], is based on the inequality

∥di∥ ≥ c
∥gk∥
Mk

, c = min

(
1− ω,

σ(1− ρ)∥B1∥
2(G+ ∥B1∥)

,
∥d1∥∥B1∥

∥g1∥

)
< 1, (26)

where k = i, if i ∈ N1 or i ̸∈ N2 or i = 1, and k < i, if i ̸∈ N1 and i ∈ N2 and i ̸= 1.

Theorem 2. (Linear convergence) Let xi, i ∈ N , be a sequence generated by the trust region method
(T1)–(T3) such that ∥Bi∥ ≤ B, i ∈ N . Let xi → x∗, where the point x∗ ∈ Rn satisfies Assumption A3.
Then

∞∑
i=1

∥ei∥
∆
=

∞∑
i=1

∥xi − x∗∥ < ∞. (27)

Proof (a) We first prove that the sequence xi, i ∈ N2, converges linearly. Let i ∈ N2. Remark 4 implies
that there exists an index k ≤ i such that ∥di∥ ≥ c ∥gk∥/Mk, where the number 0 < c < 1 is given by (26).
Since the sequence F (xi), i ∈ N , is non-increasing, we can write

1 ≥ F (xi)− F (x∗)

F (xk)− F (x∗)
≥ G2

2

∥xi − x∗∥2

∥gk∥2
≥ G2

2G
2

∥gi∥2

∥gk∥2

by (5)–(6), so

∥di∥ ≥ c
∥gk∥
Mk

≥ cG√
2GMk

∥gi∥ ≥ cG√
2GMi

∥gi∥ (28)

by (26) and (25). Since i ∈ N2, one has ρi(di) ≥ ρ, which together with (9), (13), (11), (28), (26) and
(5)–(6) gives

Fi − Fi+1 ≥
ρ σ

2
∥gi∥2 min

(
cG√
2GMi

,
1

Mi

)
=

ρ σ cG

2
√
2GMi

∥gi∥2

≥
ρ σ cG3

√
2G

2
Mi

(Fi − F∗)
∆
=

c

Mi
(Fi − F∗), (29)

where

0 <
c

Mi
=

ρ σ cG3

√
2G

2
Mi

<
ρσG3

2
√
2G

3 < 1,

since (26) and (25) imply

c ≤
σ(1− ρ)∥B1∥
2(G+ ∥B1∥)

≤
σ(1− ρ)Mi

2G
<

Mi

2G
.

Let N2 = {k1, k2, k3, . . . } (we assume, without loss of generality, that k1 = 1). Using (29), we obtain

Fkj+1 − F∗ ≤ Fkj+1 − F∗ ≤
(
1− c

Mkj

)
(Fkj − F∗), j ∈ N, (30)

since Fkj+1 − F∗ = Fkj − F∗ + (Fkj+1 − Fkj ), and using the inequality Mkj ≤ B, we can write√
Fkj+1 − F∗ ≤ q

√
(Fkj − F∗), q =

√
1− c

B
< 1

for all j ∈ N , which together with (5) implies

∑
i∈N2

∥xi − x∗∥ =

∞∑
j=1

∥xkj − x∗∥ ≤
√

2

G

∞∑
j=1

√
Fkj − F∗ < ∞. (31)
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(b) We show that if

∥di∥ ≤
σ(1− ρ)

G+B
∥gi∥, (32)

then i ∈ N2. Using (9), the inequality ρi(di) ≥ ρ can be expressed in the form

Fi+1 − Fi −Qi(di) ≤ (ρ− 1)Qi(di) (33)

(since Qi(di) ≤ 0). Using the mean value theorem and (8), we obtain

Fi+1 − Fi −Qi(di) ≤ dTi gi +
1

2
G∥di∥2 − dTi gi +

1

2
B∥di∥2 =

1

2
(G+B)∥di∥2, (34)

so using (13) and (32), we can write

(ρ− 1)Qi(di) ≥
σ(1− ρ)

2
∥gi∥min

(
∥di∥,

∥gi∥
B

)
=

σ(1− ρ)

2
∥gi∥∥di∥. (35)

If inequality (32) is satisfied, then (34) and (35) imply

Fi+1 − Fi −Qi(di) ≤
1

2
(G+B)∥di∥2 ≤

σ(1− ρ)

2
∥gi∥∥di∥ ≤ (ρ− 1)Qi(di),

so (33) holds.

(c) Let kj < i < kj+1. Then

∥di∥ ≤ ∆i ≤ β∥di−1∥ ≤ · · · ≤ β
i−kj−1∥dkj+1∥ ≤ β

i−kj−1
∆kj+1 ≤ γ

β
β
i−kj∥dkj

∥ (36)

by (11) and (16)–(18). Since kj ∈ N2 and, therefore, Fkj+1 = F (xkj + dkj ) ≤ Fkj by (15), Assumption A3
and (8) imply that

0 ≥ Fkj+1 − Fkj ≥ dTkj
gkj +

1

2
G∥dkj∥2 ≥ −∥dkj∥∥gkj∥+

1

2
G∥dkj∥2,

or

∥dkj∥ ≤ 2

G
∥gkj∥. (37)

Using (36) and (37) one can write

∥di∥ ≤ γ

β
β
i−kj∥dkj∥ ≤ 2γ

Gβ
β
i−kj∥gkj∥ =

2γ

Gβ
β
i−kj∥gi∥ (38)

since xi = xkj and, therefore, ∥xi − x∗∥ = ∥xkj − x∗∥ and ∥gi∥ = ∥gkj∥ by (15). Since β < 1, there exists
a minimum integer m such that

2γ

Gβ
β
m ≤

(1− ρ)σ

G+B
. (39)

Since i ̸∈ N2, then (32) cannot hold by (b) and, therefore, i− kj < m by (38) and (39) (if i− kj ≥ m were
satisfied, then (38) and (39) would imply (32)), so

∞∑
i=1

∥xi − x∗∥ < m
∑
i∈N2

∥xi − x∗∥ < ∞

by (31). 2
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Theorem 3. (Local convergence) Let the point x∗ ∈ Rn satisfy Assumption A3. Consider the trust region
method (T1)–(T3) such that ∥Bi∥ ≤ Ci, where C1 = ∥B1∥ and Ci+1 ≤ Ci(1+O(∥ei∥)). Then there exists a
number δ > 0 such that ∥x1−x∗∥ < δ implies ∥Bi∥ ≤ B = 2∥B1∥, i ∈ N , xi → x∗ and

∑∞
i=1 ∥xi−x∗∥ < ∞.

Proof By Assumption A3, there exists a number ε > 0, such that (5) and (6) hold whenever x ∈ U(x∗, ε).

(a) Assume that xi ∈ U(x∗, ε), i ∈ N . Relation Ci+1 ≤ Ci(1+O(∥ei∥)) and inequality (5) imply existence
of a constant C > 0 such that

Ci+1 ≤ Ci(1 + C∥ei∥) ≤ Ci

(
1 + C

√
2

G

√
Fi − F∗

)
, i ∈ N,

and since

1 + C

√
2

G

√
Fi − F∗ ≤ exp

(
C

√
2

G

√
Fi − F∗

)
we can write

Cl+1 ≤ C1

l∏
i=1

(
1 + C

√
2

G

√
Fi − F∗

)
≤ C1 exp

(
C

√
2

G

l∑
i=1

√
Fi − F∗

)
(40)

for an arbitrary index l ∈ N . Let N2 = {k1, k2, k3, . . . } (we assume, without loss of generality, that k1 = 1)
and ki ≤ l < ki+1. Since Fk = Fkj if kj ≤ k < kj+1, (40) can be written in the form

Cl+1 ≤ C1 exp

C

√
2

G

i∑
j=1

mj

√
Fkj − F∗

 ≤ C1 exp

mC

√
2

G

i∑
j=1

√
Fkj − F∗

 , (41)

where mj = kj+1 − kj for 1 ≤ j ≤ i, since (as in the proof of Theorem 2) mj ≤ m for all 1 ≤ j ≤ i, where
m is the minimum integer such that

2γ

Gβ
β
m ≤

(1− ρ)σ

G+ 2C1

(since either kj+1 − 1 = kj , so mj = 1, or kj+1 − 1 ̸∈ N2, so mj − 1 < m).

(b) We show by induction that if√
F1 − F∗ ≤

√
G

2
min

(
c

4mC C1
, ε

)
, (42)

where c > 0 is the number defined in (29), then Ci ≤ 2C1 for all i ∈ N . Since the sequence Fi−F∗, i ∈ N ,
is non-increasing, the inequality

√
Fi − F∗ ≤

√
G/2 ε holds for all i ∈ N by (42), so xi ∈ U(x∗, ε) for all

i ∈ N by (5). Assume that Ck ≤ 2C1 for 1 ≤ k ≤ l, where ki ≤ l < ki+1 (it trivially holds for l = k1 = 1).
Using (30), we can write√

Fkj+1 − F∗ ≤
√
1− c

Mkj

√
Fkj − F∗ ≤

√
1− c

2C1

√
Fkj − F∗ ≤

(
1− c

4C1

)√
Fkj − F∗

for 1 ≤ j ≤ i, since
√
1− a ≤ 1− a/2 for an arbitrary number 0 ≤ a ≤ 1. Therefore

i∑
j=1

√
Fkj − F∗ ≤

√
F1 − F∗

i∑
j=1

(
1− c

4C1

)j−1

≤
√
F1 − F∗

∞∑
j=1

(
1− c

4C1

)j−1

=
4C1

c

√
F1 − F∗.

Substituting this expression into (41), we obtain

Cl+1 ≤ C1 exp

mC

√
2

G

i∑
j=1

√
Fkj − F∗

 ≤ C1 exp

(
mC

√
2

G

4C1

c

√
F1 − F∗

)
. (43)
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Since (42) implies
4mC C1

c

√
2

G

√
F1 − F∗ ≤ 1

2

and exp(1/2) < 2, we obtain Cl+1 ≤ 2C1 by (43). Thus the induction step is finished and the assertion,
that the choice of x1 satisfying (42) implies inequalities Ci ≤ 2C1, i ∈ N , is proved.

(c) Using (5) and (42), we can see that xi ∈ U(x∗, ε) (i.e., ∥xi − x∗∥ < ε) and ∥Bi∥ ≤ Ci ≤ 2C1 = 2∥B1∥
hold for all i ∈ N if x1 ∈ U(x∗, δ), where

δ =

√
G

G
min

(
c

4mC C1
, ε

)
. (44)

Then xi → x∗ and
∑∞

i=1 ∥ei∥ < ∞ by Theorem 2. 2

Theorem 4. (Superlinear convergence) Let the mapping f : Rn → Rm satisfy Assumption A1 and xi,
i ∈ N , be a sequence generated by the trust region method (T1)–(T3). Let xi → x∗, where the point
x∗ ∈ Rn satisfies Assumption A3. Let ∥Bi∥ ≤ B for all i ∈ N and

lim
i→∞

ωi = 0, lim
i→∞

ϑi = 0. (45)

Then the sequence xi, i ∈ N , converges Q-superlinearly to the point x∗ ∈ Rn.

Proof (a) By Assumption A3, there exist a number ε > 0 and constants 0 < G ≤ G such that

dTG(x)d ≥ G∥d∥2, dTG(x)d ≤ G∥d∥2, (46)

whenever ∥x− x∗∥ < ε and d ∈ Rn. Using (10), we can write

Bidi = Gidi + ϑi∥di∥,

so
∥Bidi∥ ≤ (G+ ∥ϑi∥)∥di∥, dTi Bidi ≥ (G− ∥ϑi∥)∥di∥2

for ∥xi−x∗∥ ≤ ε. Since xi → x∗, ∥ϑi∥ → 0, ∥ωi∥ → 0, there exists an index k1 ∈ N such that ∥xi−x∗∥ < ε,

∥ϑi∥ ≤ G/2 ≤ G/2, ∥ωi∥ ≤ 1/2 (47)

for i ≥ k1, so ∥Bidi∥ ≤ (3G/2)∥di∥ and dTi Bidi ≥ (G/2)∥di∥2 for all i ≥ k1. The last inequality together
with (8) and (13) imply

0 ≥ Qi(di) = gTi di +
1

2
dTi Bidi ≥

1

4
G∥di∥2 − ∥gi∥∥di∥,

which for i ≥ k1 gives

∥gi∥ ≥ 1

4
G∥di∥. (48)

Using (13) and (48), we obtain

−Qi(di) ≥
σ

2
∥gi∥min

(
∥di∥,

∥gi∥
B

)
≥ σG

8
min

(
1,

G

4B

)
∥di∥2

∆
=

1

2
C∥di∥2 (49)

for all i ≥ k1. At the same time, one can write

Gidi = (Bidi + gi)− (Bi −Gi)di − gi = ωi∥gi∥ − ϑi∥di∥ − gi,

so
(G+ ∥ϑi∥)∥di∥ ≥ ∥Gidi + ϑi∥di∥∥ = ∥ωi∥gi∥ − gi∥ ≥ (1− ∥ωi∥)∥gi∥
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which together with (47) gives
∥gi∥ ≤ 3G∥di∥ (50)

for all i ≥ k1.

(b) We show that there exists an index k2 ≥ k1 such that i ∈ N2 for all i ≥ k2. Using Taylor expansion
we can write

F (xi + di)− F (xi) = dTi gi +
1

2
dTi Gidi + o(∥di∥2) = Qi(di) +

1

2
dTi (Gi −Bi)di + o(∥di∥2),

so

ρi(di) =
F (xi + di)− F (xi)

Qi(di)
= 1 +

dTi (Gi −Bi)di + o(∥di∥2)
2Qi(di)

and (49) together with (10) imply∣∣∣∣dTi (Gi −Bi)di + o(∥di∥2)
2Qi(di)

∣∣∣∣ ≤ 1

C

∥ϑi∥∥di∥2 + o(∥di∥2)
∥di∥2

→ 0,

since ∥ϑi∥ → 0. Therefore, ρi(di) → 1 and since ρ < 1, there exists an index k2 ≥ k1 such that ρi(di) ≥ ρ
for all i ≥ k2.

(c) We show that there exists an index k ≥ k2 such that i ∈ N1 for all i ≥ k. Note first that the set N1 is
infinite. If this set were finite, an index k ≥ k2 would exist such that ∥di∥ ≥ ∆i ≥ ∆k (since ρi ≥ ρ) for
all i ≥ k ≥ k2. This is a contradiction since ∥gi∥ → 0 implies ∥di∥ → 0 by (48). Using Taylor expansion,
we can write

gi+1 = g(xi + di) = gi +Gidi + o(∥di∥) (51)

for i ≥ k2 (since i ∈ N2 for all i ≥ k2). Using (51) together with (10) and (48), we obtain

∥τi∥ =
∥gi+1 − gi −Bidi∥

∥gi∥
=

∥(Gi −Bi)di + o(∥di∥)∥
∥gi∥

≤ ∥ϑi∥∥di∥+ o(∥di∥)
∥gi∥

≤ 4

G
∥ϑi∥+ o(1),

so τi → 0, and since ωi → 0, there exists an index k3 ≥ k2 such that

∥τi∥ <
G

24G
, ∥ωi∥ <

G

24G
(52)

for i ≥ k3. Since the set N1 is infinite, there exists an index k ≥ k3 such that ∥dk∥ < ∆k. Using (48), (10),
(50) and (52), we can write

∥dk+1∥ ≤ 4

G
∥gk+1∥ ≤ 4

G
(∥gk+1 − gk −Bkdk∥+ ∥Bkdk + gk∥)

=
4

G
(∥τk∥+ ∥ωk∥)∥gk∥ ≤ 12G

G
(∥τk∥+ ∥ωk∥)∥dk∥ <

(
1

2
+

1

2

)
∥dk∥ = ∥dk∥.

Since ρk ≥ ρ for k ≥ k3 ≥ k2, one has ∆k+1 ≥ ∆k, which gives

∥dk+1∥ < ∥dk∥ ≤ ∆k ≤ ∆k+1.

Continuing this process, we deduce that ∥di∥ < ∆i (so i ∈ N1) for all i ≥ k.

(d) Using (10), we obtain

∥gi+1∥
∥gi∥

≤ ∥gi+1 − gi −Bidi∥+ ∥Bidi + gi∥
∥gi∥

≤ ∥τi∥+ ∥ωi∥,

which together with ∥τi∥ → 0, ∥ωi∥ → 0 and (6) gives

lim
i→∞

∥xi+1 − x∗∥
∥xi − x∗∥

≤ G

G
lim
i→∞

∥gi+1∥
∥gi∥

= 0.

2
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3 Variable metric methods

Variable metric methods, intended for general unconstrained optimization, are usually realized as line
search methods. Since they will be used for construction of hybrid methods for nonlinear least squares, we
focus our attention on variable metric trust region methods. Unfortunately, these methods have a disad-
vantage consisting in the fact that the forbidden inequality yTi si ≤ 0, which violates positive definiteness
of the generated matrix, can hold for some i ∈ N . We use the notation

N3 = {i ∈ N : yTi si > c∥yi∥2} (53)

with c > 0 in the subsequent considerations. Variable metric trust region methods from the Broyden class
generate matrices Bi ≈ G(xi), i ∈ N , such that B1 is positive definite (usually B1 = I, where I is the unit
matrix of order n) and

Bi+1 = B(Bi, yi, si, βi, γi) if i ∈ N2 ∩N3,
Bi+1 = Bi if i ̸∈ N2 ∩N3,

(54)

where

B(B, y, s, β, γ) =
1

γ

(
B + γ

yyT

yT s
− Bs(Bs)T

sTBs
+

β

sTBs

(
sTBs

yT s
y −Bs

)T (
sTBs

yT s
y −Bs

))
. (55)

In this formula, si = xi+1 − xi, yi = gi+1 − gi, 1 ≤ γi ≤ γ (usually γi = 1) and βi > β∗
i (usually βi = 0),

where β∗
i < 0 is a critical value for which matrix (55) is singular [42], [36] (matrix Bi+1 is positive definite

if Bi is positive definite, yTi si > 0 and βi > β∗
i ). The standard update (54) is sometimes replaced by an

alternative strategy
Bi+1 = B(Bi, yi, si, βi, γi) if i ∈ N3,
Bi+1 = Bi if i ̸∈ N3,

(56)

where si = di and yi = g(xi+di)−gi if i ̸∈ N2 (matrices Bi+1, i ∈ N3, are computed even if i ̸∈ N2). Note
that (56) can be formally obtained by writing N instead of N2 in (54). To simplify particular formulas
derived from (55), we use the notation

ai = yTi B
−1
i yi, bi = yTi si, ci = sTi Bisi (57)

in the subsequent considerations (the value ai can be easily computed if the Choleski decomposition
Bi = LiDiL

T
i is known).

Remark 5. Values βi, i ∈ N , determine individual variable metric methods. The most popular choice
βi = βBFGS

i = 0 corresponds to the BFGS (Broyden [6], Fletcher [22], Goldfarb [27], Shanno [49])
method. The choice βi = βDFP

i = 1 corresponds to the DFP (Davidon [14], Fletcher and Powell [23])
method. The choice βi = βH

i = γibi/(γibi + ci) corresponds to the H (Hoshino [30]) method. The choice
βi = βR1

i = γibi/(γibi − ci) corresponds to the R1 (rank-one [7]) method. The choice βi = βDW
i = bi/ai

corresponds to the DW (Dennis and Wolkowicz [19]) method. Values γi, i ∈ N , serve for scaling, which
usually improve the efficiency of variable metric methods. Let 0 < γ < γ. An efficient scaling technique is
to use values

γi = bi/ai or γi = ci/bi or γi =
√
ci/ai (58)

if γ ≤ γi ≤ γ. If the inequality γ ≤ γi ≤ γ does not hold, we set γi = 1. Note that the choice γ = 1 is
required in convergence proofs. More details are given in [36].

Remark 6. If variable metric methods are used as parts of hybrid methods for nonlinear least squares,
the matrix B in (55) can be singular (positive semidefinite). If in this case Bs = 0, we omit the last two
terms in (55) (so we assume that β = 0). After this arrangement, divisions by zero cannot occur and
variable metric methods (54) or (56) generate positive semidefinite matrices.

First we prove a global convergence theorem for variable metric trust region methods (54) (or (56)).
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Theorem 5. (Global convergence) Let the mapping f : Rn → Rm satisfy Assumption A1 and xi ∈ Rn,
i ∈ N , be a sequence generated by the trust region method (T1)–(T3), where the matrix B1 is positive
semidefinite and matrices Bi+1, i ∈ N , are computed by (54) (or (56)) with 1 ≤ γi ≤ γ and β∗

i < βi ≤ βK
i ,

where

β∗
i =

b2i
b2i − aici

, βK
i =

biK

biK + ci
, (59)

with K > 0. Then lim infi→∞ ∥g(xi)∥ = 0.

Proof Note that β∗
i < 0 is the critical value mentioned above, so matrices Bi, i ∈ N , are positive

semidefinite by Remark 6. We show that there exists a constant C such that

Tr Bi+1 ≤ Tr Bi + C (60)

for all i ∈ N . Then setting C = max(Tr B1, C), we obtain ∥Bi∥ ≤ Tr Bi ≤ iC for all i ∈ N , so
Mi = max1≤j≤i ∥Bj∥ ≤ iC and

∞∑
i=1

1

Mi
≥

∞∑
i=1

1

iC
= ∞, (61)

since the harmonic series is divergent. The considered assertion then follows from Theorem 1.

(a) If i ̸∈ N2 ∩N3 (or i ̸∈ N3), then Bi+1 = Bi, so Tr Bi+1 = Tr Bi and (60) holds with C = 0.

(b) If i ∈ N2 ∩N3 (or i ∈ N3) and β∗
i < βi ≤ 0, we can write

Tr Bi+1 =
1

γi
Tr Bi +

yiy
T
i

yTi si
− (Bisi)

TBisi
γici

+
βi

γici

(
ci
bi
yi −Bisi

)T (
ci
bi
yi −Bisi

)
≤ Tr Bi +

yTi yi
yTi si

≤ Tr Bi +
1

c
(62)

by (55) and (53), since Bi is positive semidefinite and γi ≥ 1. Setting C = 1/c, we obtain (60).

(c) By comparing, we easily find that the formula Bi+1 = B(Bi, yi, si, βi, γi) (given by (55)) can be written
in the form

Bi+1 =
1

γi

(
Bi +

1

bi

(
βici

(1− βi)bi
+ γi

)
yiy

T
i

− 1− βi

ci

(
βici

(1− βi)bi
yi +Bisi

)(
βici

(1− βi)bi
yi +Bisi

)T
)
. (63)

If i ∈ N2 ∩ N3 (or i ∈ N3) and 0 < βi ≤ βK
i < 1, the first part of (62) implies that Tr Bi+1 ≤ Tr BK

i+1,
and since the last term in (63) has a negative trace if βi = βK

i < 1, we can write

Tr BK
i+1 ≤ 1

γi
Tr Bi +

1

γiyTi si

(
βK
i ci

(1− βK
i )bi

+ γi

)
yTi yi ≤ Tr Bi + (K + γ)

yTi yi
yTi si

≤ Tr Bi +
K + γ

c
, (64)

since (59) implies (after substituting) that βK
i ci/((1 − βK

i )bi) = K. Setting C = (K + γ)/c, we obtain
(60). 2

Remark 7. Inequality (60) is satisfied for the Hoshino method since we can choose K = γ in this case.
Inequality (60) is also satisfied for the modified rank-one method, which uses βi = βR1

i , if β∗
i < βR1

i < 0,
or βi = 0, if βR1

i ≤ β∗
i or βR1

i ≥ 0, where

βR1
i =

γibi
γibi − ci

⇒ BR1
i+1 =

1

γi

(
Bi +

(γiyi −Bisi)(γiyi −Bisi)
T

sTi (γiyi −Bisi)

)
by Remark 5 and (55). Evidently βi ≤ 0, so we obtain (60) with C = 1/c as in part (b) of Theorem 5.
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Remark 8. The rank-one method can also be modified in such a way that

Bi+1 = BR1
i+1 if i ∈ N2 ∩N4,

Bi+1 = Bi if i ̸∈ N2 ∩N4,
(65)

where
N4 = {i ∈ N :

∣∣sTi (γiyi −Bisi)
∣∣ ≥ c ∥γiyi −Bisi∥2} (66)

with c > 0. In the first case ∥Bi+1∥ ≤ ∥Bi∥ + 1/c and in the second case ∥Bi+1∥ = ∥Bi∥. Therefore
Mi ≤ iC, where C = max(∥B1∥, 1/c), so

∞∑
i=1

1

Mi
≥

∞∑
i=1

1

iC
= ∞

and the R1 method (65) is globally convergent by Theorem 1.

The convergence rate of variable metric methods is studied, e.g., in [9], [16], [28], [46]. The following
lemma summarizes the results introduced in [28].

Lemma 1. Let xi ∈ Rn, i ∈ N , be a sequence generated by the trust region method (T1)–(T3), where
matrices Bi, i ∈ N , (with B1 positive definite) are updated by (54) with γi = 1 and 0 ≤ βi ≤ 1. Let
xi → x∗, where the point x∗ ∈ Rn satisfies Assumption A3. Let k ∈ N be an index such that xi ∈ U(x∗, ε)
for all i ≥ k, where U(x∗, ε) is the neighborhood defined in Remark 2. Denote

Ri = G̃
−1/2
i BiG̃

−1/2
i , R′

i+1 = G̃
−1/2
i Bi+1G̃

−1/2
i , zi = G̃

1/2
i si = G̃

−1/2
i yi,

R∗
i = G

−1/2
∗ BiG

−1/2
∗ , R∗

i+1 = G
−1/2
∗ Bi+1G

−1/2
∗ ,

where G̃i =
∫ 1

0
G(xi + tsi)dt and G∗ = G(x∗).

(a) If i ∈ N2, then

∥R′
i+1 − I∥2F = ∥Ri − I∥2F − (1− βi)

((
1− zTi R

2
i zi

zTi Rizi

)2

+ 2

(
zTi R

3
i zi

zTi Rizi
−
(
zTi R

2
i zi

zTi Rizi

)2
))

− βi

((
1− zTi Rizi

zTi zi

)2

+ 2βi

(
zTi R

2
i zi

zTi zi
−
(
zTi Rizi
zTi zi

)2
))

− βi(1− βi)

((
zTi R

2
i zi

zTi Rizi

)2

−
(
zTi Rizi
zTi zi

)2
)
,

so ∥R′
i+1 − I∥F ≤ ∥Ri − I∥F (since 0 ≤ βi ≤ 1).

(b) If i ≥ k, then ∥Ri+1 − I∥F + 1 = (∥Ri − I∥F + 1)(1 +O(∥ei∥)).

(c) If i ≥ k, then max(1, ∥R∗
i+1∥) ≤ max(1, ∥R∗

i ∥)(1 +O(∥ei∥)), so denoting Ci = Gmax(1, ∥R∗
i ∥), we can

write

∥Bi∥ = ∥G1/2
∗ R∗

iG
1/2
∗ ∥ ≤ G∥R∗

i ∥ ≤ Gmax(1, ∥R∗
i ∥) = Ci,

where Ci+1 = Ci(1 +O(∥ei∥)).

(d) If ∥si∥ = O(∥ei∥) for i ≥ k and
∑∞

i=1 ∥ei∥ < ∞, then

lim
i→∞

∥(Bi −Gi)si∥
∥si∥

= 0.
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Theorem 6. (Local convergence) Let the point x∗ ∈ Rn satisfy Assumption A3. Consider the trust region
method (T1)–(T3), where matrices Bi, i ∈ N , (with B1 positive definite) are updated by (54) with γi = 1
and 0 ≤ βi ≤ 1. Then there exists a number δ > 0 such that ∥x1 − x∗∥ < δ implies ∥Bi∥ ≤ B = 2∥B1∥ for
all i ∈ N , xi → x∗,

∑∞
i=1 ∥xi − x∗∥ < ∞ and ϑi → 0.

Proof By Lemma 1 (c), there exists a constant C > 0 such that ∥Bi∥ ≤ Ci, where C1 = ∥B1∥ and Ci+1 ≤
Ci(1+C∥ei∥), for xi ∈ U(x∗, ε). Thus choosing δ > 0 as in (44), we obtain xi ∈ U(x∗, ε), ∥Bi∥ ≤ B = 2∥B1∥
for all i ∈ N , xi → x∗ and

∑∞
i=1 ∥ei∥ < ∞ by Theorem 3. Since the sequence Fi, i ∈ N , is non-increasing,

formula (5) implies ∥ei+1∥ = O(∥ei∥) and, therefore, ∥si∥ = ∥ei+1 − ei∥ ≤ ∥ei+1∥ + ∥ei∥ = O(∥ei∥), so
Lemma 1 (d) implies ϑi → 0. 2

Theorem 7. (Superlinear convergence) Let assumptions of Theorem 6 be satisfied and xi → x∗. If ωi → 0,
the rate of convergence is superlinear.

Proof Since xi → x∗, there exists an index k ∈ N such that ∥xk−x∗∥ ≤ δ, where δ is given by (44). Then
∥Bi∥ ≤ B = 2∥Bk∥ for all i ≥ k,

∑∞
i=k ∥xi − x∗∥ < ∞ and ϑi → 0 by Theorem 5. If in addition ωi → 0,

the rate of convergence is superlinear by Theorem 4.

Remark 9. An advantage of variable metric methods consists in the fact that they can update factors
of the Choleski decompositions Bi = LiDiL

T
i , which consumes O(n2) arithmetic operations per iteration

[26] (computation of the Choleski decomposition consumes O(n3) arithmetic operations). If the variable
metric methods are parts of hybrid methods for nonlinear least squares, then sometimes Bi ≈ JT

i Ji where
Ji does not have a full column rank, so JT

i Ji is singular (positive semidefinite). Then we can use the
Gill-Murray decomposition Bi = LiDiL

T
i = JT

i Ji+Ei, where Ei is a (small) diagonal positive semidefinite
matrix obtained recursively in such a way that Bi = LiDiL

T
i is positive definite [25]. Thus the important

assumption, the positive definiteness of matrices Bi, i ∈ N , is always satisfied.

4 Newton method

The Newton trust region method uses matrices Bi = G(xi), i ∈ N , in (8) and (T1). If Assumption A1
is satisfied, then ∥Bi∥ = ∥G(xi)∥ ≤ G, i ∈ N , so this method is globally convergent by Theorem 1. The
choice Bi = G(xi) implies equality ϑi = 0 for all i ∈ N . If xi → x∗, ωi → 0 and Assumption A3 is satisfied,
then the rate of convergence is superlinear by Theorem 4 (if Assumption A4 is satisfied, then the rate of
convergence is quadratic).

The main disadvantage of the Newton method is the necessity of computing second order derivatives.
The second order derivatives of the objective function can be computed by numerical differentiation. In
this case the Hessian matrix is determined inaccurately. The equality Bi = G(xi) does not hold, only the
inequality ∥Bi −Gi∥ ≤ ϑ is satisfied. The upper bound ϑ > 0 is given by the following theorem.

Theorem 8. Let the Hessian matrix G(x) be Lipschitz continuous on D, i.e., there exists a number L > 0
such that

∥G(x2)−G(x1)∥ ≤ L∥x2 − x1∥, (67)

if x1 ∈ D and x2 ∈ D, and let B be a matrix such that

Bvj =
g(x+ δvj)− g(x)

δ
(68)

for 1 ≤ j ≤ n, where vj, 1 ≤ j ≤ n, are columns of the unit matrix of order n and δ > 0 is a small
difference. Then

∥B −G(x)∥ ≤ 1

2
L
√
nδ

∆
= ϑ. (69)
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Proof Using the mean value theorem, we obtain

g(x+ δvj) = g(x) +G(x)δvj +

∫ 1

0

(G(x+ τδvj)−G(x))δvjdτ,

so we can write

∥(B −G(x))vj∥ =

∥∥∥∥g(x+ δvj)− g(x)

δ
−G(x)vj

∥∥∥∥ ≤ 1

δ

∥∥∥∥∫ 1

0

(G(x+ τδvj)−G(x))δvjdτ

∥∥∥∥
≤ 1

2δ
Lδ2∥vj∥2 =

1

2
Lδ.

by (68) and (67). Let w ∈ Rn be an arbitrary vector with the unit norm. Then

∥(B −G(x))w∥ =

∥∥∥∥∥∥
n∑

j=1

(B −G(x))vjv
T
j w

∥∥∥∥∥∥ ≤
n∑

j=1

|vTj w|∥(B −G(x))vj∥ ≤ 1

2
Lδ

n∑
j=1

|vTj w|

≤ 1

2
L
√
nδ∥w∥ =

1

2
L
√
nδ

and since
∥B −G(x)∥ = max

∥w∥=1
∥(B −G(x))w∥,

we obtain (69). 2

Remark 10. The discrete Newton method, based on numerical differentiation, is not recommended for
problems with dense Hessian matrices, since the numerical approximation computed by (68) requires
n + 1 gradient evaluations. If the Hessian matrix is sparse, the number of gradient evaluations can be
substantially reduced by a sophisticated choice of vectors vj , 1 ≤ j ≤ ñ, ñ ≪ n [10], [11]. Thus the discrete
Newton method is really efficient for minimization of functions with sparse Hessian matrices.

5 Gauss–Newton method

The Gauss–Newton method is obtained from the Newton method by deleting the second order term C(xi)
in (3), so

Bi = JT (xi)J(xi) =
m∑

k=1

hk(xi)h
T
k (xi),

where Bi, i ∈ N , are the matrices used in (8) and (T1).

Remark 11. There are two reasons for using such an approximation of the Hessian matrix:

(a) Zero residual problems. Let F (x∗) = 0. Then xi → x∗ implies F (xi) → F (x∗) = 0 and, therefore,
fk(xi) → 0, 1 ≤ k ≤ m. If Assumption A1 is satisfied, then

∥C(xi)∥ =

∥∥∥∥∥
m∑

k=1

fk(xi)Hk(xi)

∥∥∥∥∥ ≤ G

m∑
k=1

|fk(xi)| → 0,

so ∥G(xi) − Bi∥ = ∥C(xi)∥ → 0, which is a sufficient condition for the Q-superlinear rate of convergence
(Theorem 4).

(b) Linearization. We can write

F (xi + s) =
1

2
fT (xi + s)f(xi + s) ≈ 1

2
(f(xi) + J(xi)s)

T (f(xi) + J(xi)s) =

=
1

2
fT (xi)f(xi) + fT (xi)J(xi)s+

1

2
sTJT (xi)J(xi)s,
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so

F (xi + s)− F (xi) ≈ gT (xi)s+
1

2
sTBis,

which is a local quadratic approximation with the matrix Bi = JT
i Ji.

Theorem 9. If the mapping f satisfies Assumption A1, then the Gauss–Newton method, realized as the
trust region method, is globally convergent. If in addition xi → x∗, where F (x∗) = 0, then the rate of
convergence is Q-superlinear.

Proof If the mapping f satisfies Assumption A1, then

∥Bi∥ = ∥JT (xi)J(xi)∥ ≤ mh
2

by Remark 1, so the Gauss–Newton method is globally convergent by Theorem 1. If in addition xi → x∗
and F (x∗) = 0 (or f(x∗) = 0) holds, we obtain, as in Remark 11, relation

∥(G(xi)−Bi)di∥
∥di∥

≤ ∥C(xi)∥ → 0,

which by Theorem 4 implies Q-superlinear rate of convergence. 2

Remark 12. A direction vector corresponding to the Gauss–Newton method can be determined by several
different ways [5]:

(a) Solution of the normal equation system. Substituting Bi = JT
i Ji and gi = JT

i fi into the formula
Bidi + gi = 0, we obtain a system of linear equations JT

i Jidi + JT
i fi = 0, which is called the normal

equation system.

(b) Solution of a linear least squares problem. We solve a linear over-determined system Jidi + fi ≈ 0 in
the least squares sense (by minimization of ∥Jidi + fi∥. In this case, the stable QR-decomposition of the
Jacobian matrix Ji can be used [2].

(c) Solution of the augmented system. Denote ri = −(Jidi + fi). Since the direction vector has to satisfy
the equation JT

i ri = 0, we can write[
I Ji
JT
i 0

] [
ri
di

]
+

[
fi
0

]
= 0,

which is a system of m+n linear equations with an indefinite matrix. This way is advantageous especially
for sparse problems since sparsity of the Jacobian matrix Ji implies sparsity of the augmented system,
while the normal equation matrix can be dense (e.g., if Ji has a dense row). The augmented system is also
suitable for weighted least squares problems. If

F (x) =
1

2
fT (x)Wf(x),

where W is a weighting matrix, then the normal equation system has the form

JT
i WJidi + JT

i Wfi = 0,

and denoting ri = −W (Jidi + fi) we obtain[
W−1 Ji
JT
i 0

] [
ri
di

]
+

[
fi
0

]
= 0.

Thus some weighting coefficients can acquire infinite values, which is useful for solving problems with
equality constraints.
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6 Simple hybrid methods with Hessian approximations

The Gauss–Newton method is very efficient for solving zero-residual problems, but it can fail for large-
residual problems. Therefore, the following strategy seems to be reasonable:

(a) If Fi → F∗ = 0, we use the Gauss–Newton method.

(b) If Fi → F∗ > 0, we use some superlinearly convergent method (either the Newton method or a variable
metric method).

The following theorem gives a reason for the choice of a suitable hybrid method [1].

Theorem 10. Let Fi → F∗ = 0 Q-superlinearly. Then

lim
i→∞

Fi − Fi+1

Fi
= 1.

Let Fi → F∗ > 0. Then

lim
i→∞

Fi − Fi+1

Fi
= 0.

Proof If Fi → F∗ = 0 Q-superlinearly, then

lim
i→∞

Fi − Fi+1

Fi
= 1− lim

i→∞

Fi+1 − F∗

Fi − F∗
= 1− 0 = 1.

If Fi → F∗ > 0, then

lim
i→∞

Fi − Fi+1

Fi
=

1

F∗
lim
i→∞

(Fi − Fi+1) = 0.

2

To describe a hybrid method based on Theorem 10, we choose a value 0 < ϑ < 1 and denote

N5 = {i ∈ N : (Fi − Fi+1)/Fi ≥ ϑ}.

Description 1. (Simple hybrid method) An efficient simple hybrid method arises as a combination of the
Gauss–Newton method and a suitable variable metric method from the Broyden class [1]. Let B1 = JT

1 J1
and ϑ > 0. Set

Bi+1 = JT
i+1Ji+1 if i ∈ N2, i ∈ N5,

Bi+1 = B(Bi, yi, si, βi, γi) if i ∈ N2, i ̸∈ N5, i ∈ N3,
Bi+1 = Bi if i ∈ N2, i ̸∈ N5, i ̸∈ N3,
Bi+1 = Bi if i ̸∈ N2,

(70)

where B is the mapping defined by (55), 1 ≤ γi ≤ γ, 0 ≤ βi ≤ βK
i and βK

i is the number given by (59).
Note that the simple hybrid method (70) passes to the Gauss-Newton method, if ϑ = 0 (so N5 = N), and
to a variable metric method, if ϑ = ∞ (so N5 = ∅).

Remark 13. The procedure introduced in Description 1 will be considered as basic, since it is robust and
efficient. Motivated by (56), we will consider here the following two strategies distinguished by the values
of S1:

S1=1 – The basic strategy (70).

S1=2 – The strategy, where N2 is replaced by N in (70) (so the last case in (70) is redundant).

Efficiency of these strategies is demonstrated in Table 2 in Section 10.

Theorem 11. If the mapping f satisfies Assumption A1, then the simple hybrid (trust region) method
described in Description 1 is globally convergent. If in addition xi → x∗, where the point x∗ ∈ Rn satisfies
Assumption A3, and ωi → 0, then the rate of convergence is Q-superlinear.
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Proof Clearly i ∈ N2 ∩N5 if and only if Bi = JT
i Ji.

(a) If i ∈ N2 ∩ N5, then ∥Bi∥ = ∥Ji∥2 ≤ mh
2
by Remark 1. If i ̸∈ N2 ∩ N5 and k ∈ N is the maximum

index such that k < i and k ∈ N2 ∩ N5, then Bk = JT
k Jk is positive semidefinite and also matrices Bj ,

k < j ≤ i, are positive semidefinite by Remark 6 (since yTj sj > 0 and 0 ≤ βj ≤ βK
j < 1). Therefore,

relation (60) implies that there exists a number C > 0 such that Tr Bj ≤ Tr Bj−1 + C, k < j ≤ i. Thus
we can write

∥Bi∥ ≤ Tr Bi ≤ Tr Bk + (i− k)C ≤ i (n∥Bk∥+ C) ≤ i (nmh
2
+ C) ≤ iC,

where C = max(∥B1∥, nmh
2
+C), so Mi ≤ iC, i ∈ N , and the global convergence follows from Theorem 1.

(b) Let xi → x∗ and F (x∗) > 0. Then (Fi−1−Fi)/Fi−1 → 0 by Theorem 10, so there exists an index k ∈ N
such that (Fi−1 − Fi)/Fi−1 < ϑ ∀i ≥ k, so i ̸∈ N2 ∩ N5 ∀i ≥ k and the superlinear rate of convergence
follows from Theorem 7.

(c) Let xi → x∗ and F (x∗) = 0. If the set N2 ∩ N5 is finite, the superlinear rate of convergence follows

from Theorem 7 (as in part (b)). If the set N2∩N5 is infinite, then Bi+1
N2∩N5−→ Gi+1 by Remark 11, which

gives
∥(Bi+1 −Gi+1)di+1∥

∥di+1∥
N2∩N5−→ 0, (71)

so, similarly as in parts (b) and (c) of the proof of Theorem 4, there exists an index k2 ∈ N2 ∩ N5 such
that i+ 1 ∈ N2 for i ∈ N2 ∩N5, i ≥ k2, and

τi+1 =
gi+2 − gi+1 −Bi+1di+1

∥gi+1∥
N2∩N5−→ 0,

which together with F (x∗) = 0, g(x∗) = 0, (5) and (10) gives

Fi+1 − Fi+2

Fi+1
= 1− Fi+2

Fi+1
≥ 1−

(
G

G

)2(∥gi+2∥
∥gi+1∥

)2

= 1−
(
G

G

)2

(∥τi+1∥+ ∥ωi+1∥)2
N2∩N5−→ 1,

so there exists an index k3 ∈ N2 ∩N5, k3 ≥ k2 such that (Fi+1 − Fi+2)/Fi+1 ≥ ϑ for i ∈ N2 ∩N5, i ≥ k3.
Thus i+1 ∈ N5 and since also i+1 ∈ N2, we can write i+1 ∈ N2 ∩N5 for i ∈ N2 ∩N5, i ≥ k3. Therefore
i ∈ N2 ∩N5 ∀i ≥ k3 holds by induction and the superlinear rate of convergence follows from (71) as in the
proof of Theorem 4. 2

7 Structured hybrid methods with Hessian approximations

In this section we will concentrate on further combinations of the Gauss-Newton and variable metric
methods that are often called structured variable metric methods [16], [36]. To simplify the notation, we
frequently omit index i and replace index i+ 1 by symbol +. We will suppose that B = JTJ + C, where
C is an approximation of C(x), and we will look for a matrix C+ such that the matrix B+ = JT

+J+ + C+

satisfies the quasi-Newton condition B+s = y, where again s = x+ − x and y = g+ − g = JT
+f+ − JT f .

There exist two ways how to achieve this aim. The first one is based on using a transformed quasi-Newton
condition

C+s = z = y − JT
+J+s = JT

+f+ − JT f − JT
+J+s,

which immediately follows from the condition B+s = JT
+J+s + C+s = y, and replacing matrix B with

matrix C in (55). Thus, we will obtain an update C+ = B(C, z, s, β, γ) (a Broyden class), where

B(C, z, s, β, γ) = 1

γ

(
C + γ

zzT

sT z
− Cs(Cs)T

sTCs
+

β

sTCs

(
sTCs

sT z
z − Cs

)(
sTCs

sT z
z − Cs

)T
)

(72)
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(if Cs = 0, the last two terms will be cancelled). A disadvantage of this approach lies in that a number
sT z need not be positive, which complicates using the BFGS method (with β = 0). In this connection,
the rank-one method with an update C+ = CR1

+ , where

CR1
+ =

1

γ

(
C +

(γz − Cs)(γz − Cs)T

sT (γz − Cs)

)
(73)

(the matrix C+ need not be positive definite as it approximates the second order term which is added to
a matrix JT

+J+), is mostly used. However, denominator in (73) may be zero, so this update is used only
if |sT (γz − Cs)| ≥ c∥γz − Cs∥2, where c > 0 is a suitably chosen small constant. It is also possible to use
an update C+ = D(C, z, s, v, γ) (Dennis class [15]), where

D(C, z, s, v, γ) =
1

γ

(
C +

(γz − Cs)vT + v(γz − Cs)T

sT v
− (γz − Cs)T s

sT v

vvT

sT v

)
(74)

and where v = s for the PSB method, v = z for the DFP method, v = z + (zT s/(γsTCs))1/2Cs (or v = z
if Cs = 0) for the BFGS method, and v = z − (1/γ)Cs for the R1 method. Formula (74), which is in the
cases of DFP, BFGS, and R1 methods equivalent to (72), can be derived by a variational approach [16]. In
the case of the PSB (Powell symmetric Broyden [44]) method, a number sT v is positive and this method
is (for least squares problems) relatively efficient.

Remark 14. The vectors y and z may be defined by a various way but it must hold y = z + JT
+J+s.

A standard choice
z = JT

+f+ − JT f − JT
+J+s (75)

corresponds to a quasi-Newton condition (JT
+J+ + C+)s = y = JT

+f+ − JT f . A very efficient choice is
based on an explicit form of the second order term [4]. Suppose that approximations B+

k of the Hessian
matrices Hk satisfy quasi-Newton conditions B+

k s = h+
k − hk, 1 ≤ k ≤ m. Then we can write

z = C+s =
m∑

k=1

f+
k B+

k s =
m∑

k=1

f+
k (h+

k − hk) = (J+ − J)T f+, (76)

so y = (J+−J)T f++JT
+J+s. It is usually more advantageous to use vector (76) than the standard choice

(75). However, two matrices J and J+ appear in formula (76). It is not necessary to store these matrices
simultaneously. A vector JT f+ can be determined recurrently. Let p0 = 0. Since the gradients hk(x+),
1 ≤ k ≤ m, are computed stepwise, we first set pk = pk−1 + JT eke

T
k f+ (the k-th column of JT multiplied

by the k-th component of f+ is added to pk−1) and only then we replace the k-th column of JT with the
gradient hk(x+), thereby we get the k-th column of JT

+ . Finally, we set JT f+ = pm.

In the subsequent considerations we use the notation

N ′
3 = {i ∈ N : zTi si ≥ c ∥zi∥2}, N ′

4 = {i ∈ N :
∣∣sTi (γizi − Cisi)

∣∣ ≥ c ∥γizi − Cisi∥2}. (77)

Description 2. An efficient structured hybrid method arises as a combination of the Gauss-Newton
method with the R1 variable metric method. Let C1 be positive definite, B1 = JT

1 J1, ϑ > 0, and c > 0.
Set

Ci+1 = Ci if i ∈ N2, i ∈ N5,
Ci+1 = B(Ci, zi, si, βi, γi) if i ∈ N2, i ̸∈ N5, i ∈ N ′,
Ci+1 = Ci if i ∈ N2, i ̸∈ N5, i ̸∈ N ′,
Ci+1 = Ci if i ̸∈ N2

(78)

and
Bi+1 = JT

i+1Ji+1 if i ∈ N2, i ∈ N5,
Bi+1 = JT

i+1Ji+1 + Ci+1 if i ∈ N2, i ̸∈ N5,
Bi+1 = Bi if i ̸∈ N2,

(79)
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where B is the mapping defined by (72), 1 ≤ γi ≤ γ, βi = βR1
i or 0 ≤ βi ≤ βK

i , βK
i is the value defined by

(59) with bi = zTi si, ci = sTi Cisi, si = xi+1 − xi and either zi = JT
i+1fi+1 − JT

i fi − JT
i+1Ji+1si (formula

(75)) or zi = (Ji+1 − Ji)
T fi+1 (formula (76)). At the same time, either N ′ = N ′

4 and βi = βR1
i for all

i ∈ (N2 \N5) ∩N ′
4 or N ′ = N ′

3 and 0 ≤ βi ≤ βK
i for all i ∈ (N2 \N5) ∩N ′

3 (the chosen variant must be
kept for all iterations).

Remark 15. The procedure introduced in Description 2 will be considered as basic since it is robust and
efficient. Motivated by Remark 13, we will consider here the following eight strategies distinguished by
values of S1, S2 and S3:

S1 = 1 – Update (78) uses the set N2.

S1 = 2 – The set N2 is replaced by N in (78) (as for strategy S1 = 2 in Remark 13), so the last case in
(78) is redundant.

S2 = 1 – Update (78) uses the set N5.

S2 = 2 – The set N5 is replaced by the empty set in (78), so the first case in (78) is redundant (the
matrix Ci is updated even if i ∈ N5).

S3 = 1 – Vector z is computed by (76).

S3 = 2 – Vector z is computed by (75).

Efficiency of these strategies is demonstrated in Table 3 and Table 5 in Section 10.

Remark 16. The values γi = bi/ai and γi =
√

ci/bi, introduced in (58), cannot be used for scaling
structured hybrid methods because computation of a number ai = zTi C

−1
i zi requires O(n3) arithmetic

operations. The value γi = ci/bi, which is optimal for the DFP method, can be used with certain success
for the BFGS and the Hoshino updates. However, this value is absolutely unsuitable for the R1 method,
since in this case γizi − Cisi = 0. For scaling the R1 update, the value

γi =
fT
i fi

fT
i fi+1

, (80)

proposed in [4], is recommended. This value was used for obtaining the results stated in Table 5 and
Table 6 in Section 10.

Theorem 12. If the mapping f satisfies Assumption A1, then the structured hybrid method introduced in
Description 2 with either N ′ = N ′

4 and βi = βR1
i or N ′ = N ′

3 and 0 ≤ βi ≤ βK
i , realized as the trust region

method, is globally convergent.

Proof (a) Let N ′ = N ′
4. If i ∈ (N2 \N5) ∩N ′

4 (so βi = βR1
i ), we can write

∥Ci+1∥ ≤ ∥Ci∥+
∥γizi − Cisi∥2

|sTi (γizi − Cisi)|
≤ ∥Ci∥+

1

c
,

and if i ̸∈ (N2 \N5) ∩N ′
4, then ∥Ci+1∥ = ∥Ci∥. Thus for i ∈ N2 we obtain

∥Bi+1∥ ≤ ∥JT
i+1Ji+1∥+ ∥Ci+1∥ ≤ mh

2
+ ∥C1∥+

i

c
≤ (i+ 1)C, C = max

(
mh

2
+ ∥C1∥,

1

c

)
and for i ̸∈ N2 we can write

∥Bi+1∥ = ∥Bk+1∥ ≤ mh
2
+ ∥C1∥+

k

c
≤ (k + 1)C ≤ (i+ 1)C,

where k ∈ N is the largest index such that k < i and k ∈ N2. Thus Mi ≤ iC and the global convergence
follows from Theorem 1.

(b) Let N ′ = N ′
3. If i ∈ (N2 \N5) ∩N ′

3 (so 0 ≤ βi ≤ βK
i ), we can write

Tr Ci+1 ≤ Tr Ci + (K + γ)
zT z

zT s
≤ Tr Ci +

K + γ

c
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(as in part (c) of the proof of Theorem 5) and if i ̸∈ (N2 \N5)∩N ′
3, then Tr Ci+1 = Tr Ci. Thus for i ∈ N2

we obtain

Tr Bi+1 ≤ Tr (JT
i+1Ji+1) + Tr Ci+1 ≤ nmh

2
+ Tr C1 + i

K + γ

c
≤ (i+ 1)C,

where

C = max

(
nmh

2
+ Tr C1,

K + γ

c

)
,

and for i ̸∈ N2 we can write

Tr Bi+1 = Tr Bk+1 ≤ nmh
2
+ Tr C1 + k

K + γ

c
≤ (k + 1)C ≤ (i+ 1)C,

where k ∈ N is the largest index such that k < i and k ∈ N2. Thus Mi ≤ iC and the global convergence
follows from Theorem 1. 2

Remark 17. Update (78) can be replaced by the update

Ci+1 = Ci if i ∈ N2, i ∈ N5,
Ci+1 = D(Ci, zi, si, vi, γi) if i ∈ N2, i ̸∈ N5, i ∈ N ′,
Ci+1 = Ci if i ∈ N2, i ̸∈ N5, i ̸∈ N ′,
Ci+1 = Ci if i ̸∈ N2,

(81)

where D is the mapping defined by (74). In this case N ′ = N ′
3 for both the BFGS and the DFP methods,

N ′ = N ′
4 for the R1 method and N ′ = N for the PSB method.

A second way that has theoretical justification in the case γ = 1 is based on an update of the matrix
B̄ = JT

+J+ + C so that the matrix B+ = JT
+J+ + C+ satisfies the quasi-Newton condition B+s = y. In

this case, a corresponding update can be written in the form B+ = B(B̄, y, s, β, 1). Subtracting the matrix
JT
+J+ from both sides of this formula and taking account of γ = 1, we obtain

C+ = C +
yyT

sT y
− B̄s(B̄s)T

sT B̄s
+

β

sT B̄s

(
sT B̄s

sT y
y − B̄s

)(
sT B̄s

sT y
y − B̄s

)T

, (82)

where B̄s = JT
+J+s+ Cs. Obviously, y − B̄s = y − JT

+J+s− Cs = z − Cs, so for the rank-one method it
holds

C+ = C +
(y − B̄s)(y − B̄s)T

sT (y − B̄s)
= C +

(z − Cs)(z − Cs)T

sT (γz − Cs)
. (83)

Formula (83) is identical to formula (73), where γ = 1. It is also possible to use a formula

C+ = C +
(y − B̄s)vT + v(y − B̄s)T

sT v
− (y − B̄s)T s

sT v

vvT

sT v

= C +
(z − Cs)vT + v(z − Cs)T

sT v
− (z − Cs)T s

sT v

vvT

sT v
(84)

(Dennis class [15]), where v = s for the PSB method, v = y for the DFPmethod, v = y+(yT s/(sT B̄s))1/2B̄s
for the BFGS method, and v = y− B̄s = z−Cs for the R1 method. Formula (84) has form (74) (they are
identical in the case of PSB and R1 methods). An advantage of this approach is the fact that the number
sT v is always positive (except for the R1 method) if sT y > 0 and B̄ is positive definite. However, another
problem, consisting in that the matrix B̄ = JT

+J+ + C need not be positive definite even if the matrix
B = JTJ + C is positive definite, arises. Note that in (82)–(84), we can use scaling so that matrices C/γ
and B̄ = JT

+J+ + C/γ (thus B̄s = JT
+J+s+ Cs/γ) are used instead of matrices C and B̄. Note also that

in this case we do not scale the matrix B̄, as update B(B̄, y, s, β, γ) requires, but the matrix C.
In the subsequent considerations we use the notation

N ′′
3 = N3 ∩ {i ∈ N : sTi B̄isi = sTi (J

T
i+1Ji+1 + Ci)si > 0}, N ′′

4 = N ′
4. (85)
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Description 3. An efficient structured hybrid method arises as a combination of the Gauss-Newton
method with a suitable variable metric method which uses update (84). Let C1 be positive definite,
B1 = JT

1 J1, ϑ > 0, and c > 0. Set

Ci+1 = Ci if i ∈ N2, i ∈ N5,
Ci+1 = D(Ci, zi, si, vi, 1) if i ∈ N2, i ̸∈ N5, i ∈ N ′′,
Ci+1 = Ci if i ∈ N2, i ̸∈ N5, i ̸∈ N ′′,
Ci+1 = Ci if i ̸∈ N2

(86)

and
Bi+1 = JT

i+1Ji+1 if i ∈ N2, i ∈ N5,
Bi+1 = JT

i+1Ji+1 + Ci+1 if i ∈ N2, i ̸∈ N5,
Bi+1 = Bi if i ̸∈ N2,

(87)

where D is the mapping defined by (74). At the same time, N ′′ = N ′′
3 for both the BFGS and the DFP

methods, N ′′ = N ′′
4 for the R1 method and N ′′ = N for the PSB method. Even if γi = 1 in (86), these

updates can be scaled in such a way that the matrix Ci is preliminary divided by a positive value γi as is
mentioned above.

Remark 18. The procedure introduced in Description 3 will be considered as basic since it is robust and
efficient. Motivated by Remark 15, we will consider here eight strategies distinguished by values of S1, S2
and S3, which concern update (86) and have the same meaning as strategies in Remark 15. Efficiency of
these strategies is demonstrated in Table 4 and Table 5 in Section 10.

Remark 19. The update Ci+1 = D(Ci, zi, si, vi, 1) can be replaced by (82) in (86). These updates are
equivalent if βi = βR1

i or 0 ≤ βi ≤ βK
i .

Theorem 13. If the mapping f satisfies Assumption A1, then the structured hybrid method introduced in
Description 3, with Ci+1 = D(Ci, zi, si, vi, 1) replaced by (82), such that either N ′′ = N ′′

4 and βi = βR1
i or

N ′′ = N ′′
3 and 0 ≤ βi ≤ βK

i (βK
i is the value defined by (59) with bi = yTi si and ci = sTi B̄isi), realized as

the trust region method, is globally convergent.

Proof The proof of this theorem is almost the same as the proof of Theorem 12. For all i ∈ N , vectors zi
are replaced by yi and vectors Cisi are replaced by B̄isi. 2

Remark 20. From these considerations it follows that the methods using BFGS or R1 updates in (86)
are globally convergent. The method using a PSB update in (86) is globally convergent by Theorem 18 of
Section 12 because the PSB update is equivalent to the Toint update if the Hessian matrix is dense.

Totally structured variable metric methods mentioned in [31] offer a very interesting possibility of
automatic scaling a matrix C. In this case, a matrix approximating the expression

T (x) =
m∑

k=1

fk(x)

∥f(x)∥
Hk(x)

is used and updated. Thus, we use model B = JTJ + ∥f∥T (so C = ∥f∥T ) and update the matrix T so
that the matrix B+ = JT

+J+ + ∥f+∥T+ satisfied a quasi-Newton condition B+s = (JT
+J+ + ∥f+∥T+)s = y,

or T+s = (y−JT
+J+s)/∥f+∥ = z/∥f+∥

∆
= z̃ (the first way). Thus, we can write T+ = B(T, z̃, s, β, 1), which

by (55) gives

T+ = T +
z̃z̃T

sT z̃
− Ts(Ts)T

sTTs
+

β

sTTs

(
sTTs

sT z̃
z̃ − Ts

)(
sTTs

sT z̃
z̃ − Ts

)T

. (88)

For the rank-one method it holds

T+ = T +
(z̃ − Ts)(z̃ − Ts)T

sT (z̃ − Ts)
. (89)
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We can also set T+ = D(T, z̃, s, v, 1), which by (74) gives

T+ = T +
(z̃ − Ts)vT + v(z̃ − Ts)T

sT v
− (z̃ − Ts)T s

sT v

vvT

sT v
, (90)

where v = s for the PSB method, v = z̃ for the DFP method, v = z̃ + (sT z̃/sTTs)1/2Ts (or v = z̃ if
Ts = 0) for the BFGS method, and v = z − Ts for the R1 method. Further, we can update the matrix
B̃ = JT

+J+/∥f+∥ + T (the second way) so that the matrix B̃+ = B+/∥f+∥ = JT
+J+/∥f+∥ + T+ satisfied

quasi-Newton condition B̃+s = y/∥f+∥
∆
= ỹ. In this case a corresponding update can be written in the

form B̃+ = B(B̃, ỹ, s, β, 1). Subtracting a matrix JT
+J+/∥f+∥ from both sides of this formula and taking

account of γ = 1, we obtain

T+ = T +
ỹỹT

sT ỹ
− B̃s(B̃s)T

sT B̃s
+

β

sT B̃s

(
sT B̃s

sT ỹ
ỹ − B̃s

)(
sT B̃s

sT ỹ
ỹ − B̃s

)T

, (91)

where B̃s = JT
+J+s/∥f+∥+ Ts. Obviously, ỹ− B̃s = ỹ− JT

+J+s/∥f+∥ − Ts = z̃ − Ts, so for the rank-one
method it holds

T+ = T +
(ỹ − B̃s)(ỹ − B̃s)T

sT (ỹ − B̃s)
= T +

(z̃ − Ts)(z̃ − Ts)T

sT (z̃ − Ts)
. (92)

It is also possible to use a formula

T+ = T +
(ỹ − B̃s)vT + v(ỹ − B̃s)T

sT v
− (ỹ − B̃s)T s

sT v

vvT

sT v

= T +
(z̃ − Ts)vT + v(z̃ − Ts)T

sT v
− (z̃ − Ts)T s

sT v

vvT

sT v
(93)

(Dennis class [15]), where v = s for the PSB update, v = ỹ for the DFP update, v = ỹ+(sT ỹ/sT B̃s)1/2B̃s
for the BFGS update, and v = ỹ − B̃s for the R1 update. By Remark 14, one can use vectors z̃ =
(J+ − J)T f+/∥f+∥ and ỹ = JT

+J+s/∥f+∥ + z̃ instead of vectors z̃ = (y − JT
+J+s)/∥f+∥ and ỹ. In [31], a

vector z̃ = (J+ − J)T f+/∥f∥ is used instead of a vector z̃ = (J+ − J)T f+/∥f+∥ which is utilized in the
proof of asymptotic rate of convergence.

Remark 21. Totally structured variable metric methods can be realized by the same way as standard
structured variable metric methods. We again use updates introduced in Description 2 and Description 3,
where matrices Ci+1, Ci and vectors yi, zi, B̄isi are replaced with matrices Ti+1, Ti and vectors ỹi, z̃i,
B̃isi. Again, it is possible to use eight strategies stated in Remark 15. In order to present results of both
classes of structured variable metric methods in common tables, we introduce the strategies:

S4 = 1 – Standard structured variable metric method is used.

S4 = 2 – Totally structured variable metric method is used.

Remark 22. Let the mapping f satisfy Assumption A1 and xi ∈ Rn, i ∈ N , be a sequence generated by
the totally structured hybrid method realized by Remark 21 such that xi → x∗ where x∗ ∈ Rn is a point in
which function (1) attains its minimum and where the Hessian matrix G(x) = ∇2F (x) is positive definite.
Then if F (x∗) > 0, the rate of convergence is superlinear and if F (x∗) = 0, the rate of convergence is
quadratic [31].

8 Simple hybrid methods with Jacobian corrections

If the matrix Bi is ill-conditioned, then a more advantageous way is to use a full rank approximation Ai of
the Jacobian matrix Ji and to replace the solution of the normal equation di = −B−1

i gi, where Bi = AT
i Ai,
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by the solution to the linear least-squares problem di = −A†
ifi, where A

†
i is a Moore-Penrose pseudoinverse

of Ai. This approach is not quite rigorous, since usually A†
ifi ̸= B−1

i gi. The equality A†
ifi = B−1

i gi is
satisfied only if AT

i fi = gi = JT
i fi. Using a variational principle, we derive an update which satisfies the

quasi-Newton condition AT
i+1Ai+1si = yi together with the condition AT

i+1fi+1 = gi+1 = JT
i+1fi+1.

Let B = ATA, where A = J if the Gauss-Newton step is accepted, so B = JTJ holds. To use the
variational principle, we write the standard quasi-Newton condition B+s = AT

+A+s = y in the form

√
γA+s = z̃,

√
γAT

+z̃ = γy, z̃T z̃ = γsT y, (94)

where γ > 0 is a scalar scaling parameter (as in (55)) and z̃ ∈ Rm is an arbitrary vector. Note that the
last equality, which is a consequence of the first two equalities, is the only restriction on the choice of z̃.

Theorem 14. Let W be an arbitrary symmetric positive definite matrix. Then the Frobenius norm
∥W−1/2(

√
γA+ − A)T ∥F is minimal on the set of all matrices satisfying quasi-Newton condition (94)

if and only if

√
γAT

+ = AT − Ws

sTWs
s̃T +

(
γy − z + sT z

Ws

sTWs

)
z̃T

z̃T z̃
, z̃T z̃ = γsT y, (95)

where s̃ = As and z = AT z̃.

Proof This proof is similar to the proof of Theorem 3.1 proposed in [57]. Denote X =
√
γAT

+. Necessity
will be proven using the Lagrangian function

L(X, ũ, v) =
1

2

∥∥∥W−1/2
(
X −AT

)∥∥∥2
F
+ ũT

(
XT s− z̃

)
+ vT (Xz̃ − γy)

=

m∑
i=1

[
1

2
(xi − ai)

T
W−1 (xi − ai) + ũis

Txi + z̃iv
Txi

]
− ũT z̃ − γvT y,

where AT = [a1, . . . , am], X = [x1, . . . , xm] and where ũ, v are vectors of Lagrange multipliers. Differenti-
ating the Lagrangian function we obtain

∂L(X, ũ, v)

∂xi
= W−1 (xi − ai) + ũis+ z̃iv.

Therefore, the conditions for stationarity of the Lagrangian function have the form W−1(xi − ai) + ũis+
z̃iv = 0, 1 ≤ i ≤ m, or

X −AT = −WsũT −Wvz̃T .

Using the first condition from (94) we obtain

XT s = As− sTWsũ− vTWsz̃ = z̃ ⇒ ũ =
1

sTWs

(
As− (1 + vTWs)z̃

)
,

which after substitution to the previous equality gives

X −AT = − Ws

sTWs
s̃T + wz̃T ,

where w ∈ Rn is an unknown vector (determined uniquely by the vector v). Using the second condition
from (94) we obtain

Xz̃ = AT z̃ − sTAT z̃
Ws

sTWs
+ z̃T z̃w = γy ⇒ w =

1

z̃T z̃

(
γy − z + sT z

Ws

sTWs

)
,

which after substitution to the previous equality (with using relation X =
√
γAT

+) gives (95). Sufficiency
follows from the convexity of the Frobenius norm. 2

Update (95) contains two vector parameters w = Ws/sTWs and z̃. These parameters should be chosen
in such a way to guarantee the condition AT

+f+ = g+.
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Lemma 2. Equalities √
γA+s = z̃,

√
γAT

+z̃ = γy, AT
+f+ = g+ (96)

can be satisfied simultaneously only if
fT
+f+s

T y ≥ (sT g+)
2. (97)

Proof From the first two equalities in (96), the relation z̃T z̃ = γsT y follows, which determines the norm
of vector z̃. The first and the third equalities imply fT

+ z̃ =
√
γfT

+A+s =
√
γsT g+. Since the distance of

the hyperplane fT
+ z̃ =

√
γsT g+ from the origin is equal to

√
γ|sT g+|/∥f+∥, the norm of vector z̃ cannot

be smaller than this number, which together with equality ∥z̃∥ =
√
γsT y gives

√
γ|sT g+|/∥f+∥ ≤

√
γsT y,

or fT
+f+s

T y ≥ (sT g+)
2. 2

Remark 23. If a perfect line search method is used, i.e., if equality sTi gi+1 = 0 holds in every iteration,
then sTi yi = sTi gi+1 − sTi gi = −sTi gi > 0 and condition (97) is satisfied. If the strong Wolfe condition is
satisfied [42], then |sTi gi+1| ≤ ε2|sTi gi| holds in every iteration, so sTi yi = sTi gi+1 − sTi gi ≥ (1 − ε2)|sTi gi|,
and condition (97) is satisfied whenever

fT
i+1fi+1 ≥ ε22

1− ε2
|sTi gi|. (98)

If xi → x∗ (so gi → 0 and si → 0) and F (x∗) > 0, there exists an index k ∈ N such that condition (98)
(and therefore also condition (97)) is satisfied for all i ≥ k. In our numerical experiments, condition (97)
was always satisfied if Fi − Fi+1 ≤ ϑFi with ϑ = 0.0005.

Theorem 15. Let vectors f+ and As be linearly independent and assume that inequality (97) holds. If we
use the vectors

z̃ =
√
γ(λ1f+ + λ2As), (99)

where

λ2
2 =

sT yfT
+f+ − (sT g+)

2

fT
+f+sTATAs− (sTAT f+)2

, λ1 =
sT g+ − λ2s

TAT f+
fT
+f+

, (100)

and
Ws

sTWs
=

γsT y(AT f+ −√
γg+) +

√
γsT g+(γy −AT z̃)

γsT ysTAT f+ −√
γsT g+sTAT z̃

, (101)

in formula (95), then equalities (96) hold.

Proof Vector z̃ has to satisfy equalities fT
+ z̃ =

√
γsT g+ and z̃T z̃ = γsT y. Setting z̃ =

√
γ(λ1f+ + λ2As),

we obtain the system of equations

λ1f
T
+f+ + λ2s

TAT f+ =
√
γsT g+,

λ2
1f

T
+f+ + 2λ1λ2s

TAT f+ + λ2
2s

TATAs = γsT y

for unknowns λ1 and λ2. Since the vectors f+ and As are linearly independent, these equations have the
unique solution given by (100). Update (95) satisfies the first two equalities in (96) (Theorem 14). Using
the third equality, we obtain

√
γg+ = AT f+ − Ws

sTWs
sTAT f+ +

(
γy −AT z̃ + sTAT z̃

Ws

sTWs

)
z̃T f+
z̃T z̃

= AT f+ −
(
sTAT f+ − sTAT z̃

√
γsT g+

γsT y

)
w +

(
γy −AT z̃

) √γsT g+

γsT y
,

where w = Ws/sTWs. This relation implies that

w = λ

(
AT f+ −√

γg+ +
(
γy −AT z̃

) √γsT g+

γsT y

)
, (102)

24



where λ is an unknown multiplier, and since sTw = sTWs/sTWs = 1, one can write

λ
(
γsT ysTAT f+ −√

γsT g+s
TAT z̃

)
= γsT y.

Substituting this value λ into (102), we obtain (101). 2

Description 4. Theorem 15 is a basis for an efficient simple hybrid method with Jacobian corrections.
Let A1 = J1 and ϑ > 0. Denote

N ′
5 = {i ∈ N : (Fi − Fi+1)/Fi ≥ ϑi},

where

ϑi = min

(
ϑ, 1− (sTi gi+1)

2

sTi yif
T
i fi

)
,

and set
Ai+1 = Ji+1 if i ∈ N2, i ∈ N ′

5,
Ai+1 = A(Ai, yi, si, z̃i, wi, γi) if i ∈ N2, i ̸∈ N ′

5,
Ai+1 = Ai if i ̸∈ N2,

(103)

where A(A, y, s, z̃, w, γ) is (transposed) update (95) with z̃ and w = Ws/sTWs given by (99)–(101). If
i ̸∈ N ′

5, then

fT
i+1fi+1 ≥ (1− ϑi)f

T
i fi ≥

(sTi gi+1)
2

sTi yif
T
i fi

fT
i fi =

(sTi gi+1)
2

sTi yi
,

so condition (97) is satisfied.

Remark 24. The approximation A+ of the Jacobian matrix J+ satisfying condition AT
+f+ = JT

+f+ = g+
can be also determined by residual adjoint quasi-Newton updates [48] (e.g., by the two-sided adjoint
quasi-Newton update [39]). Let A1 = J1. If (Fi − Fi+1)/Fi > ϑi, we set

Ai+1 = Ji+1.

If (Fi − Fi+1)/Fi ≤ ϑi, we set

Ai+1 = Ai +
(fi+1 − fi −As)(gi+1 −Aifi+1)

T

fT
i+1(fi+1 − fi −Aisi)

.

However, numerical experiments show that hybrid methods with adjoint quasi-Newton updates are less
efficient then hybrid methods described in Description 4, so we do not recommend them.

9 Structured hybrid methods with Jacobian corrections

In this section we will concentrate on structured variable metric methods that utilize knowledge of the
Jacobian matrix [58]. In order to express these methods in multiplicative form, we set A = J + L,
A+ = J+ + L+ and update the matrix L in such a way that

B+s = AT
+A+s = (J+ + L+)

T (J+ + L+)s = y.

Since in the case of a sum of squares, only the BFGS method can be efficiently realized in multiplicative
form, we will restrict ourselves to a subclass of variable metric methods that contains the BFGS method
and for which deriving multiplicative form is much simpler than in the general case. For deriving a
multiplicative form we will use a variational principle [58]. In order to use it, we write a quasi-Newton
condition in the form

(J+ + L+)
T z̃ = y, (J+ + L+)s = z̃, z̃T z̃ = sT y, (104)

where z̃ ∈ Rm is an optional vector (parameter). Note that the last equality, which is a consequence of
the first two equalities, is the only restriction put on the choice of the vector z̃. The following theorem is
a modification of a similar theorem proposed in [58].
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Theorem 16. Let W be a symmetric positive definite matrix. Then the Frobenius norm ∥W−1/2(L+−L)∥F
is minimal on the set of all matrices meeting the equality (J+ + L+)

T z̃ = y if and only if

L+ = L+
Wz̃(y − ĀT z̃)T

z̃TWz̃
, (105)

where Ā = J+ + L. Quasi-Newton condition (104) is satisfied in this case if and only if the vector Wz̃ is
parallel with the vector z̃ − Ās, where z̃T z̃ = yT s, so

L+ = L+
(z̃ − Ās)(y − ĀT z̃)T

z̃T (z̃ − Ās)
. (106)

Proof (a) Necessity of the first part of the assertion will be proved using the Lagrangian function

L(L+, u) =
1

2

∥∥∥W−1/2(L+ − L)
∥∥∥2
F
+ uT

(
(J+ + L+)

T z̃ − y
)

=
n∑

i=1

[
1

2

(
l+i − li

)T
W−1

(
l+i − li

)
+ uiz̃

T l+i

]
+ uT (JT

+ z̃ − y),

where L+ = [l+1 , . . . , l
+
n ] and L = [l1, . . . , ln]. Sufficiency is then an immediate consequence of the convexity

of the Frobenius norm. Differentiating the Lagrangian function we obtain

∂L(L+, u)

∂l+i
= W−1

(
l+i − li

)
+ uiz̃, 1 ≤ i ≤ n.

Thus, the condition for stationarity of the Lagrangian function has the form W−1(l+i − li) + uiz̃ = 0,
1 ≤ i ≤ n, or

A+ − Ā = L+ − L = −Wz̃uT .

From equation AT
+z̃ = y we obtain (A+ − Ā)T z̃ = −z̃TWz̃u = y − ĀT z̃, so

u = −y − ĀT z̃

z̃TWz̃
,

which after substitution into the previous equation gives

A+ − Ā = L+ − L =
Wz̃(y − ĀT z̃)T

z̃TWz̃
.

(b) Suppose that quasi-Newton condition (104) is satisfied, so (A+ − Ā)s = z̃ − Ās. Then

Wz̃(y − ĀT z̃)T s

z̃TWz̃
= z̃ − Ās. (107)

From this expression it is obvious that the vector Wz̃ is parallel with the vector z̃ − Ās. Since the matrix
W can be multiplied by an arbitrary number without changing the fraction on the left-hand side, we can
set Wz̃ = z̃ − Ās (it can be performed only if W ̸= I, the case W = I is investigated in Remark 25). On
the other hand, let Wz̃ = z̃ − Ās and z̃T z̃ = sT y. Then (106) holds and

A+s = Ās+ (z̃ − Ās)
(y − ĀT z̃)T s

z̃T (z̃ − Ās)
= Ās+ (z̃ − Ās) = z̃,

so the second condition in (104) is satisfied as well. 2
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Remark 25. Letting W = I we obtain the BFGS method. Then, by (107), the vector z̃ is parallel with
the vector Ās, or Wz̃ = z̃ = λĀs. From the last condition in (104), the equality z̃T z̃ = λ2sT ĀT Ās = sT y
follows, so λ2 = sT y/s̄T s̄, where s̄ = Ās. Substituting vector Wz̃ = z̃ = λs̄ into (105) we obtain

L+ = L+
λs̄(y − λĀT s̄)T

sT y
= L− s̄

s̄T s̄

ĀT s̄±

√
s̄T s̄

sT y
y

T

. (108)

A certain disadvantage of update (108) is that a solution to a linear least squares problem (J+L)s+f ≈
0 is not a solution to a normal system of equations (J + L)T (J + L)s = −g = −JT f , which is used for
computation of a direction vector. Thus, neither efficient methods based on QR decomposition nor the
LSQR method [43] can be used. This disadvantage can be removed by choosing a matrix L such that
(J + L)T f = JT f , or LT f = 0. Thus, it is advantageous to add a constraint LT

+f+ = 0 into a variational
problem defining the BFGS method [50]. If LT

+f+ = 0, then minimization of the Frobenius norm ∥L+−L∥F
is equivalent to minimization of the Frobenius norm ∥P (L+ − L)∥F , where P = I − f+f

T
+/fT

+f+ is an
orthogonal projection matrix (remind that P 2 = P ). From this it follows that PL+ = L+, so

(L+ − L)TP (L+ − L) = LT
+PL+ − LTPL+ − LT

+PL+ LTPL

= LT
+L+ − LTL+ − LT

+L+ LTPL

= (L+ − L)T (L+ − L) + LT (P − I)L,

where the last term is independent of L+. The following theorem is introduced in [50].

Theorem 17. The Frobenius norm ∥P (L+ − L)∥F is minimal on the set of all matrices meeting quasi-
Newton condition (104) and the constraint LT

+f+ = 0 if and only if

L+ = PL− s̃

s̃T s̃

ĀT s̃±

√
s̃T s̃

sT ỹ
ỹ

T

, (109)

where Ā = J+ + L, s̄ = Ās, and

s̃ = P s̄ = s̄−
fT
+ s̄

fT
+f+

f+, ỹ = y −
JT
+f+(J

T
+f+)

T s

fT
+f+

= y −
gT+s

fT
+f+

g+. (110)

Proof (a) First, we show that if (J+ + L+)s = z̃ and LT
+f+ = 0, then the condition (J+ + L+)

T z̃ = y is
equivalent to the condition (J+ + L+)

TP z̃ = ỹ. Actually, fT
+J+s = fT

+ z̃ follows from (J+ + L+)s = z̃ and
LT
+f+ = 0, so

(J+ + L+)
TP z̃ − ỹ = JT

+ z̃ −
JT
+f+f

T
+J+s

fT
+f+

+ LT
+P z̃ − y +

JT
+f+f

T
+J+s

fT
+f+

= JT
+ z̃ + LT

+P z̃ − y = (J+ + L+)
T z̃ − y.

Note that the relation z̃TP z̃ = sT ỹ follows from equations (J+ + L+)s = z̃ and (J+ + L+)
TP z̃ = ỹ.

(b) Necessity will be proved using the Lagrangian function

L(L+, u) =
1

2
∥P (L+ − L)∥2F + uT

(
(J+ + L+)

TP z̃ − ỹ
)

=
n∑

i=1

[
1

2

(
l+i − li

)T
P
(
l+i − li

)
+ uiz̃

TPl+i

]
+ uT (JT

+P z̃ − ỹ),
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where L+ = [l+1 , . . . , l
+
n ] and L = [l1, . . . , ln]. Sufficiency is then an immediate consequence of the convexity

of the Frobenius norm. Differentiating the Lagrangian function we obtain

∂L(L+, u)

∂l+i
= P

(
l+i − li

)
+ uiP z̃.

Thus, the condition for stationarity of the Lagrangian function has the form P (l+i − li) + uiP z̃ = 0,
1 ≤ i ≤ n, or

P (L+ − L) = −P z̃uT .

From equation (J+ + L+)
TP z̃ = ỹ we obtain (L+ − L)TP z̃ = −z̃TP z̃u = ỹ − PĀT z̃, so

u = − ỹ − PĀT z̃

z̃TP z̃
,

which after substitution into the previous equation gives

P (L+ − L) =
P z̃(ỹ − ÃTP z̃)T

z̃TP z̃
. (111)

If we use the second condition in (104), we obtain P (L+ − L)s = P z̃ − PĀs, so we can write

P z̃(ỹ − ĀTP z̃)T s

z̃TP z̃
= P z̃ − PĀs = P z̃ − s̃.

From the last expression it is obvious that the vector P z̃ is parallel with the vector s̃, or P z̃ = λs̃. Using
the relation z̃TP z̃ = sT ỹ, proved in (a), we can write

λ2s̃T s̃ = z̃TP z̃ = sT ỹ ⇒ λ = ±
√

sT ỹ

s̃T s̃
,

which after substitution into P z̃ = λs̃ and then into (111) proves the assertion of theorem. 2

Remark 26. Quasi-Newton methods based on Jacobian approximations described in [6], [39] work sur-
prisingly well for solving nonlinear least squares problem as it is demonstrated in Table 7. Matrices Ai ≈ Ji
are generated using quasi-Newton updates and a direction vector is determined by solving a linear system
Aidi + fi ≈ 0. These methods usually require more (up to twice the amount of) function evaluations
compared to the methods stated in this section. If we use orthogonal decomposition updates, as described
in [13], then the total computational time is usually shorter, see the results of numerical experiments
presented in Table 7 in Section 10.

10 Numerical comparison of methods for least squares problems

All methods described in this report are implemented in the software system for Universal Functional
Optimization (UFO) [37] together with collections of problems for their testing. We have used collection
TEST24 [35] for our computational experiments presented in this section. Collection TEST24 contains
80 different problems with optional dimensions. We have used the first 30 problems with 200 variables
(n = 200) which are a mixture of both zero and nonzero residual problems. The remaining 50 problems
are all zero residual, so they are not suitable for testing hybrid methods.
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The tested methods are distinguished by the following codes:

VM - variable metric methods,

GN - the Gauss-Newton method,

GB - simple hybrid methods,

GS - structured hybrid methods,

GL - simple hybrid method with Jacobian corrections,
QB - the good Broyden quasi-Newton method [6],
QL - the quasi-Newton method proposed in [39].

Individual dog-leg realizations of these methods are distinguished by the following codes:

GM1 - update of an approximation of the Hessian matrix followed by the LDLT decomposition,

GG1 - update of the LDLT (Choleski) decomposition,

GR1 - update of the RTR decomposition obtained by orthogonal transformations,

GA1 - update of an approximation of the Jacobian matrix followed by the QR decomposition,
GQ1 - update of the QR (orthogonal) decomposition.

The strategy GM1 is used in connection with the Gauss-Newton method or with structured hybrid methods.
In this case, the matrix B is factorized in every iteration by the standard Choleski decomposition, if B
is positive definite, or by the Gill-Murray decomposition [25], if B is not positive definite (after the R1
update). The GG1 realization is intended for variable metric or simple hybrid methods. In this case,
the matrix B = JTJ , obtained using the Gauss-Newton method, is factorized in the form B = LDLT .
The matrices L (lower triangular) and D (diagonal) are stored and updated by the method proposed in
[26] if the variable metric method is used. In the GR1 strategy, which is advantageous for the Gauss-
Newton method or for simple hybrid methods, the factorization B = RTR is obtained recursively using
gradients of functions fk(x), 1 ≤ k ≤ m, by the method proposed in [3] and introduced also in [32]. The
GA1 realization is intended for methods with Jacobian corrections. In this case, the complete orthogonal
decomposition of the matrix A is performed in every iteration by the method described in [5] and used
also in [2]. The strategy GQ1 is used in connection with the quasi-Newton methods. In this case, the
matrix A = J , obtained using the Gauss-Newton method, is factorized in the form A = QR. The matrices
Q (orthogonal) and R (upper triangular) are stored and updated by the method proposed in [13] if the
quasi-Newton method is used. In the implementation of tested methods, we have used a simplified trust
region method described in Remark 3 and the values ρ = 0.1, ρ = 0.9, ∆ = 1000 (this value was decreased

for some problems), γ = 0.7 (this value gave better results than γ = 1), γ = 6.0, ϑ = 0.0005, c = 10−32

(the square of machine precision) and K = 1032.
The test results are presented in Tables 1–7 whose columns mean the tested method with the chosen

strategy S1, S2, S3, S4 (values 1 or 2), the scaling used (Y - yes, N - no), the total number of function
evaluations NFV (which is equal to the total number of iterations of the trust region method), the total
number of gradient evaluations NFG, the total number of matrix decompositions NDC, the total computation
time and sometimes the number of failures (the number of problems that were not solved). The asterisk
in some tables indicates that at least one problem was not solved (the maximum number of function
evaluations was exceeded). Note that the problems in the TEST24 collection are essentially sparse, so
the total computational time is primarily determined by the number of arithmetic operations in matrix
computations. When we need to solve problems where computation of function values consumes most of
the machine time, then the values NFV and NFG are crucial (the computational time is then proportional
to these values).

Table 1 contains the results of comparison of particular variable metric methods defined in Remark 5.
These methods use updates of Choleski decomposition, so there is no need to perform this decomposition.
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Update S1 Scaling NFV NFG NDC Time Fail
BFGS 1 N 12683 11102 - 4.85 -
BFGS 1 Y 9139 8340 - 3.82 -
BFGS 2 N 12448 12434 - 5.19 -
BFGS 2 Y 8172 8160 - 3.58 -
DFP 1 N 82844 81670 - 33.50 14
DFP 1 Y 22001 20457 - 9.53 2
DFP 2 N 107081 107079 - 44.55 20
DFP 2 Y 21304 21284 - 9.62 2
H 1 N 11585 10465 - 4.46 -
H 1 Y 8510 7933 - 3.52 -
H 2 N 13194 13184 - 5.36 -
H 2 Y 8541 8527 - 3.58 -
DW 1 N 11377 10121 - 5.10 -
DW 1 Y 8366 7817 - 3.83 -
DW 2 N 12729 12717 - 6.17 -
DW 2 Y 8389 8378 - 3.99 -

Table 1: Variable metric methods (VM)

Choleski decomposition Recursive QR decomposition
Update S1 Scaling NFV NFG NDC Time NFV NFG NDC Time
BFGS 1 N 2295 2061 1547 14.27 4227 3382 2146 7.39
BFGS 1 Y 2280 2023 1543 14.07 4201 3356 2159 7.72
BFGS 2 N 2353 2345 1574 14.71 4963 4953 2535 11.26
BFGS 2 Y 2371 2362 1578 15.14 4993 4978 2543 11.45
DFP 1 N 2738 2512 1472 14.11 3739 2898 2079 7.23
DFP 1 Y 2427 2118 1451 13.75 3467 2741 2043 6.89
DFP 2 N 2610 2601 1496 14.43 9225 9512 2228 *9.40
DFP 2 Y 2351 2344 1483 14.07 3799 3787 2083 6.08
H 1 N 2090 1881 1428 13.05 3609 2906 2213 6.55
H 1 Y 2096 1837 1428 13.33 3592 2872 2221 6.58
H 2 N 2289 2279 1560 14.74 3332 3322 2078 5.50
H 2 Y 2204 2196 1563 14.47 3239 3224 2059 5.49
DW 1 N 2054 1838 1426 13.35 3340 2659 2047 6.34
DW 1 Y 2051 1836 1429 13.07 3342 2628 2035 6.31
DW 2 N 2229 2218 1556 14.52 3329 3316 2109 5.56
DW 2 Y 2194 2186 1554 14.55 3330 3315 2155 5.56
GN - - 3714 3323 3207 29.59 4480 3936 3936 *9.26

Table 2: Simple hybrid methods (GB)

In Table 2 we can see comparison of simple hybrid methods (with BFGS, DFP, H, DW updates) using
different strategies (S1 and scaling) namely in two versions. In the first version, a matrix JTJ is constructed
and its Choleski decomposition JTJ = LDLT is computed. In the second version, decomposition JTJ =
RTR is directly recursively determined using orthogonal transformations. In both cases, variable metric
methods update a triangular decomposition, so arithmetic operations are saved. In Table 2, the results
obtained by the Gauss-Newton method are also shown.

The next two tables contain comparison of different structured hybrid methods (Table 3 the first way
and Table 4 the second way) for S1=1 and S2=1, with different strategies S3, S4 and without scaling
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realized using updates from the Broyden class (formulas (72), (88), (82), (91)) or from the Dennis class
(formulas (74), (90), (84), (93)). Here H/PS means that the results of both the Hoshino method from the
Broyden class and the PSB method from the Dennis class are presented in the same row.

Broyden class (72) or (88) Dennis class (74) or (90)
Update S3 S4 NFV NFG NDC Time NFV NFG NDC Time
BFGS 1 1 2523 2314 2313 21.18 2522 2312 2312 20.85
BFGS 1 2 2882 2618 2609 24.07 2878 2619 2614 24.05
BFGS 2 1 2865 2621 2609 23.55 2885 2636 2620 23.68
BFGS 2 2 3191 2896 2884 26.50 3190 2895 2884 26.44
DFP 1 1 3185 2928 2927 26.50 2904 3216 2929 26.50
DFP 1 2 4111 3780 3795 *34.88 4141 3814 3824 *35.20
DFP 2 1 2624 2383 2380 21.54 2548 2317 2310 20.88
DFP 2 2 4738 4499 4491 *43.88 4739 4480 4475 *43.68
H/PS 1 1 2845 2565 2557 23.19 2253 2068 2083 18.56
H/PS 1 2 2947 2680 2669 24.69 2319 2185 2180 19.70
H/PS 2 1 3200 2980 2973 *26.80 2378 2118 2167 19.03
H/PS 2 2 3470 3211 3204 *29.37 2389 2205 2209 19.82
R1 1 1 2241 1995 2014 17.83 2205 1997 2018 17.90
R1 1 2 2141 1975 1963 17.72 2201 1990 1982 17.86
R1 2 1 2221 1993 2005 17.81 2188 1995 2005 17.79
R1 2 2 2337 2028 2029 18.19 2228 2007 2001 17.95

Table 3: Structured hybrid methods (GS) - the first way

Broyden class (82) or (91) Dennis class (84) or (93)
Update S3 S4 NFV NFG NDC Time NFV NFG NDC Time
BFGS 1 1 2215 2001 2010 18.15 2220 1996 2005 18.14
BFGS 1 2 2254 2054 2046 18.75 2266 2064 2058 18.84
BFGS 2 1 2222 1997 2014 17.51 2255 2016 2042 17.73
BFGS 2 2 3314 3012 2025 *25.00 3289 3017 2038 *25.06
DFP 1 1 2180 2039 2045 18.51 2183 2045 2060 18.61
DFP 1 2 3494 3187 3201 *30.29 3453 3183 3187 *30.26
DFP 2 1 2441 2094 2181 18.56 2386 2075 2123 18.33
DFP 2 2 3860 3433 3574 *30.95 2756 2464 2478 22.13
H/PS 1 1 2198 1993 1985 18.08 2253 2068 2083 18.82
H/PS 1 2 2369 3131 2128 19.53 2319 2185 2180 19.99
H/PS 2 1 3202 2913 2068 24.25 2378 2118 2167 18.72
H/PS 2 2 2313 2083 2117 18.45 2389 2205 2209 19.51
R1 1 1 2240 1995 2009 18.14 2192 1990 2005 18.09
R1 1 2 2212 1992 1992 18.12 2154 1987 1979 18.04
R1 2 1 2202 1982 1995 17.36 2214 1987 1996 17.42
R1 2 2 2315 2021 2027 17.80 2311 2029 2031 17.87

Table 4: Structured hybrid methods (GS) - the second way

Table 5 contains more detailed comparison of different structured hybrid methods with BFGS and R1
updates, realized using formulas (72) and (93), depending on the choice of strategies S1, S2 and on scaling
(the value (80) is used as a scaling parameter). In Table 5, the choice S3=1 is used.
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Broyden class (72) Dennis class (93)
Method S1 S2 Scaling NFV NFG NDC Time NFV NFV NDC Time
BFGS 1 1 N 2523 2314 2313 21.18 2220 1996 2005 18.14
BFGS 1 1 Y 2514 2312 2310 21.06 2166 1992 1992 18.09
BFGS 1 2 N 2622 2391 2778 21.55 4136 3929 1994 *32.13
BFGS 1 2 Y 2946 2593 2642 23.43 4932 4740 1883 *41.82
BFGS 2 1 N 2523 2511 2246 22.54 6998 6995 1874 *54.83
BFGS 2 1 Y 2590 2575 2269 23.22 7078 7072 1992 *55.49
BFGS 2 2 N 3172 3160 2898 *28.06 7916 7907 1798 *63.18
BFGS 2 2 Y 3603 3582 2236 *30.12 7854 7851 1720 *64.30
R1 1 1 N 2141 1975 1963 17.72 2154 1987 1979 18.04
R1 1 1 Y 2127 1987 1984 17.98 2135 1989 1978 18.09
R1 1 2 N 2279 2013 2046 18.03 2258 2017 2042 18.22
R1 1 2 Y 2324 2008 2035 17.97 2260 2011 2037 18.15
R1 2 1 N 2490 2484 2231 21.66 2496 2484 2142 21.94
R1 2 1 Y 2518 2512 2226 21.91 2453 2441 2122 21.68
R1 2 2 N 2698 2683 2292 23.93 2761 2743 2283 24.57
R1 2 2 Y 2583 2574 2296 22.54 2692 2677 2315 24.05

Table 5: Structured hybrid methods (GS) - various strategies

The next two tables contain comparison of selected methods using Choleski decomposition or recursive
QR decomposition. The results stated in these tables are also demonstrated in more detail using graphs
showing the performance profiles [20].

Method Update S1 S2 S3 S4 Scaling NFV NFG NDC Time Fail
GN - - - - - - 3714 3323 3207 29.59 -
VM H 1 - - - Y 8510 7933 - 3.52 -
GB DW 1 - - - Y 2051 1836 1429 13.07 -
GS R1 1 1 1 2 N 2141 1975 1963 17.72 -

Table 6a: Methods with the Choleski decomposition

Method Update S1 S2 S3 S4 Scaling NFV NFG NDC Time Fail
GN - - - - - - 4480 3936 3936 9.26 1
VM H 2 - - - Y 8541 8527 - 3.63 -
GB H 2 - - - Y 3239 3224 2059 5.49 -

Table 6b: Methods with the recursive QR decomposition
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Figure 1a: Methods with Choleski decomposition
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Figure 1b: Methods with recursive QR decomposition

Method S2 S1 NFV NFG NDC Time Fail
GL - 1 1875 1741 1648 22.15 -
GL - 2 1963 1959 1813 24.02 -
GS 1 1 1935 1746 1663 21.93 -
GS 1 2 1763 1760 1634 21.43 -
GS 2 1 1875 1752 1690 23.15 -
GS 2 2 1799 1796 1668 22.83 -
QB - - 7636 1026 1019 22.35 1
QL - - 6858 7593 760 21.10 1
GN-C - - 2683 2494 2391 33.11 -
GN-R - - 2751 2571 2460 141.60 -

Table 7: Hybrid methods with Jacobian corrections

The last table contains the results obtained using the methods with Jacobian corrections. Besides
the methods described in Section 8 and Section 9, using strategies S1 and S2, the results obtained using
the quasi-Newton methods QB [6] and QL [39] are also stated. These methods, originally developed for
solving systems of nonlinear equations, can be also used for minimization of the sum of squares. However,
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a generalized update of orthogonal decomposition described in [13] must be used. In Table 7, the results
obtained by the Gauss-Newton method using the QR decomposition of the Jacobian matrix stored column-
wise (GN-C) or row-wise (GN-R) are also stated.
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Figure 2: Hybrid methods with Jacobian corrections

From the results in this section we can draw several conclusions.

• Variable metric methods are relatively reliable and their advantage is that matrix decompositions
need not be performed. We setB1 = I in the first iteration step, so fromB1 = L1D1L

T
1 it follows L1 =

I and D1 = I. In the next iteration steps, matrices Li and Di are updated using O(n2) arithmetic
operations. However, variable metric methods converge slowly, so they require a higher number
of function (and gradient) evaluations which can be disadvantageous if the minimized function is
computationally complicated.

• The Gauss-Newton method is very efficient for solving problems with zero residua. Nevertheless,
convergence can substantially slow down if the problems have large residua. Moreover, the Gauss-
Newton method requires solving of a system of linear equations (using Choleski decomposition)
or linear least squares problem (using orthogonal decomposition) which requires O(n3) arithmetic
operations.

• The Gauss-Newton method can be substantially improved by combination with variable metric meth-
ods namely using a simple combination (Description 1) or using structured updates (Description 2
and Description 3). An advantage of simple hybrid methods consists in that variable metric methods
use the Choleski decomposition update which requires only O(n2) arithmetic operations (structured
hybrid methods determine the Choleski decomposition in each iteration step).

• It is advantageous to use H and DW updates in simple hybrid methods which are more efficient
than BFGS updates and much more efficient than DFP updates. Using the R1 update is the most
advantageous for realization of structured methods. Here, indefiniteness of matrices C or T is no
problem (the PSB update from the Dennis class is also good for the same reason). There is no
significant difference between structured methods (S4=1) and totally structured methods (S4=2).
The choice S3=1 (formula (76)) is usually more advantageous than the choice S3=2 (formula (75)).

• It is becoming apparent that the standard choice S1=1 and S2=1 is the most advantageous strategy.
The choice S1=2 leads in some cases to a lower number of evaluations (function values and gradients
of the minimized functions) but a higher number of updates slows down the computation. The
choice S1=2 and S2=2 is very unsuitable in the case of structured methods with BFGS, DFP, and
H updates.

• The methods based on stable orthogonal decomposition of the Jacobi matrix or its approximation
converge a bit faster than the methods using Choleski decomposition of the matrix JTJ or its
approximation (they require a smaller number of function and gradient evaluations of the minimized
function). However, more demanding orthogonal transformations slow down computation.
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• Hybrid methods with Jacobian corrections are again more efficient than the Gauss-Newton method
whose version based on the orthogonal decomposition of the Jacobi matrix is more robust than
the standard version using the Choleski decomposition of the matrix JTJ . Since determination of
matrices Q and R in the orthogonal decomposition J = QR, needed for performing updates described
in [13], is time consuming, it is not worth performing these updates. Thus, the simple hybrid methods
lose their main advantage and structured hybrid methods are a bit more efficient.

• Quasi-Newton methods, developed for solving systems of nonlinear equations, are surprisingly effi-
cient when using the updating technique described in [13]. Although they require up to three times
more function and gradient evaluations of the minimized function than the Gauss-Newton method,
their lower complexity causes that their consumed computational time to be comparable with the
computational time of hybrid methods.

• The methods based on orthogonal decomposition of the Jacobi matrix require this matrix to be saved
column-wise. Row-wise storage substantially slows down computation.

11 Methods for sparse least-squares problems

If the objective function F (x) has the form (1), the expression (3) implies that the Hessian matrix G(x)
has the same sparsity pattern as the matrix JT (x)J(x), so the Hessian matrix G(x) is sparse only if the
Jacobian matrix J(x) has sparse rows (if the vector hk has nk nonzero elements, then the matrix hkh

T
k

has n2
k nonzero elements). In this case, every partial function fk : Rn → R, 1 ≤ k ≤ m, depends only

on nk = O(1) variables. Therefore, we obtain a special case of a partially separable problem. Partially
separable problems can be solved by the separable Newton method or by separable variable metric methods
[29]. However, the special form of the objective function allows us to use separable modifications of the
Gauss-Newton method, which are more efficient.

The definition domains of the functions fk, 1 ≤ k ≤ m, lie in subspaces Rn
k ⊂ Rn of dimension

nk ≪ n. Since the subspace Rn
k is isomorphic to the subspace Rnk , it is advantageous to introduce reduced

quantities. Then the structurally zero elements of the Hessian matrix need not be considered.

Definition 2. Let Ik, 1 ≤ k ≤ m, be the sets of indices of variables defining the subspaces Rn
k (contain-

ing the definition domains of the functions fk(x)), and let Zk ∈ Rn×nk be matrices whose columns are
orthogonal bases of Rn

k (i.e. columns of the unit matrix of order n with indices from Ik). Then the vectors

x̂k = ZT
k x of dimension nk are called reduced vectors of variables, the functions f̂k : Rnk → R, for which

f̂k(x̂k) = fk(x), are called reduced functions, the vectors ĥk(x̂k) = ZT
k hk(x) of dimension nk are called

reduced gradients of functions fk(x) and the symmetric matrices Ĥk(x̂k) = ZT
k Hk(x)Zk of order nk are

called reduced Hessian matrices of functions fk(x).

Remark 27. From the practical point of view, we assume that nk > 0 (i.e. Ik ̸= ∅), 1 ≤ k ≤ m, and
I1 ∪ · · · ∪ Im = {1, . . . , n}. Therefore, all matrices Zk, 1 ≤ k ≤ m, are nonempty (they have at least one
column) and contain all columns of the unit matrix of order n.

The reduced gradients ĥk(x̂k) and the reduced Hessian matrices Ĥk(x̂k), 1 ≤ k ≤ m, determine
explicitly the gradient g(x) and the sparse Hessian matrix G(x) of function (1). We can write

F (x) =

m∑
k=1

f̂2
k (x̂k), g(x) =

m∑
k=1

f̂k(x̂k)Zkĥk(x̂k), (112)

G(x) =
m∑

k=1

Zkĥk(x̂k)(Zkĥk(x̂k))
T +

m∑
k=1

f̂k(x̂k)ZkĤk(x̂k)Z
T
k . (113)

The trust region Newton method uses matrices

Bi = Gi =
m∑

k=1

Zkĥ
k
i (Zkĥ

k
i )

T +
m∑

k=1

f̂k
i ZkĤ

k
i Z

T
k
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in (8) and (T1), where f̂k
i = f̂k(xi), ĥ

k
i = ĥk(xi), Ĥ

k
i = Ĥk(xi), i ∈ N . There are two ways of computing

an approximation of the Hessian matrix B ≈ G(x) by numerical differentiation. The first way, intended
for general sparse problems, uses formulas (68), where vectors vj , 1 ≤ j ≤ l, are not columns of the unit
matrix, but they contain more unit elements chosen in a way that allows us to compute more elements of
B in one differentiation. The choice of vectors vj , 1 ≤ j ≤ l, (which corresponds to grouping of columns
in the Hessian matrix) is a difficult combinatorial problem, solved e.g. in [11] (the resulting algorithm is
presented in [10]). The second way, intended for partially separable problems, consists in approximation
of elements of B̂k ≈ Ĥk(x̂k), 1 ≤ k ≤ m, by formulas

B̂kv
j
k =

ĥ(x̂k + δvjk)− ĥk(x̂k)

δ
. (114)

where vjk, 1 ≤ j ≤ nk, are columns of the unit matrix of order nk. This quite straightforward way is
competitive with the method based on grouping columns of the Hessian matrix described in [11].

The trust region Gauss-Newton method uses matrices

Bi = JT
i Ji =

m∑
k=1

Zkĥ
k
i (Zkĥ

k
i )

T

in (8) and (T1), where ĥk
i = ĥk(xi), i ∈ N . If the matrix Bi = JT

i Ji is sparse, then the best way for
computing a direction vector di is to use the sparse Choleski decomposition [5] of Bi for computing dNi by
(22). If the matrix Ji is sparse but it has dense columns, then an efficient possibility for obtaining dNi is
to use the sparse Bunch-Parlett decomposition [21] of the augmented system matrix (Remark 12 (c)).

The sparse Gauss-Newton method can be improved by using an approximation of the second order
terms f̂k

i Ĥ
k
i , 1 ≤ k ≤ m. The following method is proposed in [33].

Description 5. (Combined method for partially separable problems) An efficient method arises as a
combination of the partitioned Gauss-Newton method and a difference version of the partitioned Newton
method. Let B1 = JT

1 J1 and 0 < ϑ < 1. Set

Bi+1 = JT
i+1Ji+1 if i ∈ N5,

Bi+1 = JT
i+1Ji+1 +

∑m
k=1 f̂

k
i+1ZkB̂

k
i+1Z

T
k if i ̸∈ N5,

(115)

where Ji+1 = J(xi+1), f̂k
i+1 = f̂k(x̂

k
i+1) and B̂k

i+1 ≈ Ĥk(x̂
k
i+1) for 1 ≤ k ≤ m, (B̂k

i+1 is a difference

approximation of Ĥk(x̂
k
i+1) determined by the formula (114)).

Global and superlinear convergence of the combined method for partially separable problems (with
B̂k

i+1 = Ĥk(x̂
k
i+1)) follow from Theorem 1, Theorem 4 and Theorem 9.

12 Variable metric methods for sparse problems

Variable metric updates for sparse problems should preserve symmetry and the sparsity pattern of the
Hessian matrix and satisfy a quasi-Newton condition. Denote

VQ = {B ∈ Rn×n : Bs = y},
VS = {B ∈ Rn×n : BT = B},
VG = {B ∈ Rn×n : Bij = 0, if Gij = 0}.

Here Gij = 0 denotes structural zeroes, i.e. elements such that Gij(x) = 0 for all x ∈ Rn. Since the Hessian
matrix is symmetric, one has Gij = 0 ⇔ Gji = 0. Since the Hessian matrix should be positive definite,
we assume that Gii ̸= 0, 1 ≤ i ≤ n (diagonal elements of the Hessian matrix are structurally nonzero).
Clearly, VQ ⊂ Rn×n, VS ⊂ Rn×n, VG ⊂ Rn×n are linear manifolds (VS and VG are linear subspaces) in
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Rn×n. Since the Frobenius norm of a matrix is an Euclidean norm in Rn×n (if matrices are considered as
vectors of dimension n × n), we can define orthogonal projection operators PQ, PS , PG into VQ, VS , VG

by expressions

PQB = argmin
B̃∈VQ

∥B̃ −B∥F ,

PSB = argmin
B̃∈VS

∥B̃ −B∥F ,

PGB = argmin
B̃∈VG

∥B̃ −B∥F .

Similarly, we can define orthogonal projection operators PQS , PQG, PSG and PQSG into linear manifolds

VQ ∩VS , VQ ∩VG, VS ∩VG and VQ ∩VS ∩VG. Clearly, VQ ∩VS ∩VG ̸= ∅, since G̃ ∈ VQ ∩VS ∩VG, where

G̃ =
∫ 1

0
G(x+ ts)dt.

It is obvious that the requirements for the sparse variable metric update are satisfied by the Toint [55]
update

B+ = PQSGB. (116)

This update is relatively difficult to realize (it requires solving an additional linear system) and its efficiency
is not excellent since the generated matrices may be indefinite. Therefore, additional updates, which in
some sense violate the quasi-Newton condition, were proposed. We are concerned with the Marwil [40]
update

B+ = PSPQGB, (117)

the Powell [45] update
B+ = PGPQSB (118)

and the Steihaug [51] update
B+ = PSGPQB. (119)

Formulas (116)–(119) can be written in the form B+ = PBPAB, where PA, PB are orthogonal projec-
tion operators into VA, VB , where VA ⊂ VQ and VA ∩ VB = VQ ∩ VS ∩ VG (PB is an identical operator in
(116)). Thus the trust region variable metric methods for sparse problem use updates

Bi+1 = PBPABi if i ∈ N2,
Bi+1 = Bi if i ̸∈ N2.

(120)

The update (120) is basic. However, we can use two strategies distinguished by the value S1 in the same
way as in Remark 13.

The following theorems, valid for trust region methods, are variants of theorems proved in [51].

Theorem 18. Let xi ∈ Rn, i ∈ N , be a sequence of points generated by the trust region method (T1)–(T3),
where matrix B1 is positive definite and matrices Bi+1, i ∈ N , are computed by (120) (PBPABi is one
of sparse updates (116)–(119)). If the mapping f : Rn → Rm satisfies Assumption A1 and the second
derivatives are Lipschitz continuous (so (69) holds) on D, then matrices Bi, i ∈ N , have bounded norms
and

lim inf
i→∞

∥gi∥ = 0.

Theorem 19. Let the assumptions of Theorem 18 be satisfied and xi → x∗, where the point x∗ ∈ Rn

satisfies Assumption A3. If ωi → 0, then the rate of convergence is Q-superlinear.

Variable metric methods for sparse problems are less efficient than corresponding methods for dense
problems as demonstrated in Table 8. The most sophisticated is the Toint method with the update (116),
but the best results are usually obtained by the Marwil method with the update (117).
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Remark 28. Let B be a symmetric matrix. Then the Toint update (116), proposed in [55], can be
expressed in the form

PQSGB = PG(B + usT + suT ), (121)

where u ∈ Rn is a solution of the linear system Qu = y− (PGB)s with the symmetric positive semidefinite
matrix

Q = PG(ss
T ) +

n∑
i=1

∥si∥2eieTi .

Vectors si ∈ Rn, 1 ≤ i ≤ n, are defined by formulas

eTj s
i = eTj s if Gij ̸= 0,

eTj s
i = 0 if Gij = 0,

where ej , 1 ≤ j ≤ n, are columns of the unit matrix of order n, and

(PGM)ij = Mij if Gij ̸= 0,
(PGM)ij = 0 if Gij = 0

for an arbitrary matrix M of order n.

Remark 29. Let B be a symmetric matrix. Then the Marwil update (117), proposed in [40] and intro-
duced also in [51], can be expressed in the form

PSPQGB = PG(B + (usT + suT )/2), (122)

where u ∈ Rn is a solution of the linear system Qu = y − (PGB)s with the diagonal matrix

Q =
n∑

i=1

∥si∥2eieTi .

13 Variable metric methods for partially separable problems

In the subsequent considerations, we use the notation

Nk
3 = {i ∈ N : (ŷki )

T ŝki > c∥ŷki ∥2}, Nk
4 =

{
i ∈ N :

∣∣∣(ŝki )T (γk
i ŷ

k
i − B̂k

i ŝ
k
i

)∣∣∣ ≥ c
∥∥∥γk

i ŷ
k
i − B̂k

i ŝ
k
i

∥∥∥2}
for 1 ≤ k ≤ m, where ŷki = f̂k

i+1ĥ
k
i+1 − f̂k

i ĥ
k
i = ZT

k yi, ŝ
k
i = x̂k

i+1 − x̂k
i = ZT

k si are vectors of dimension
nk. Line search variable metric methods for partially separable problems (partitioned variable metric
methods) were proposed in [29]. Trust region partitioned variable metric methods generate matrices

B̂k
i ≈ ĥk

i (ĥ
k
i )

T + f̂k
i Ĥ

k
i , 1 ≤ k ≤ m, which serve for construction of the matrix

Bi =
m∑

k=1

ZkB̂
k
i Z

T
k (123)

used in (8) and (T1). The matrices B̂k
i , 1 ≤ k ≤ m, are generated in such a way that B̂k

1 , 1 ≤ k ≤ m, are
positive definite and

B̂k
i+1 = B(B̂k

i , ŷ
k
i , ŝ

k
i , β

k
i , γ

k
i ) if i ∈ N2, i ∈ Nk,

B̂k
i+1 = B̂k

i if i ∈ N2, i ̸∈ Nk,

B̂k
i+1 = B̂k

i if i ̸∈ N2

(124)

for 1 ≤ k ≤ m, where B is the mapping defined by (55) and βk
i , γ

k
i are free parameters. At the same time,

Nk = Nk
3 for a general update and Nk = Nk

4 for the R1 update. Update (124) will be considered as basic.
However, we can use two strategies distinguished by the value S1 in the same way as in Remark 13.
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Remark 30. A disadvantage of update (124) consists in the fact that i ̸∈ Nk
3 can hold for majority of

indices i ∈ N for some 1 ≤ k ≤ m, so the matrix B̂k
i is mostly unchanged if a general update is used. To

overcome this difficulty, we use the following three strategies distinguished by the value S5:

S5 = 1 – Basic strategy (124) is used.

S5 = 2 – If i ̸∈ Nk
3 for some 1 ≤ k ≤ m and i ∈ N , we use (for this k) the R1 update in the current

iteration and in all subsequent iterations, i.e., a general update of B̂k
i , where k is given, is

switched to the R1 update in the current iteration and in all subsequent iterations (with Nk
3

replaced by Nk
4 ).

S5 = 3 – If i ̸∈ Nk
3 for at least m/2 indices 1 ≤ k ≤ m, we use the R1 update for all matrices B̂k

i ,
1 ≤ k ≤ m, in the current iteration and in all subsequent iterations, i.e., a general update
of B̂k

i , where k is arbitrary, is switched to the R1 update in the current iteration and in all
subsequent iterations (with Nk

3 replaced by Nk
4 ).

Theorem 20. (Global convergence) Let the mapping f : Rn → Rm satisfy Assumption A1 and xi ∈ Rn,
i ∈ N , be a sequence generated by the trust region method (T1)–(T3) with the matrices Bi given by (123),
where the matrices B̂k

1 , 1 ≤ k ≤ m, are positive definite and the matrices B̂k
i+1, 1 ≤ k ≤ m, are computed

by (124) with 1 ≤ γk
i ≤ γ and either βk

i = γk
i b

k
i /(γ

k
i b

k
i − cki ) (R1 method) or 0 ≤ βk

i ≤ β
k

i , where

β
k

i =
K

K + cki /b
k
i

, (125)

with bki = (ŷki )
T ŝki , c

k
i = (ŝki )

T B̂k
i ŝ

k
i and K > 0. Then lim infi→∞ ∥g(xi)∥ = 0.

Proof Formulas (124) for reduced matrices B̂k
i , 1 ≤ k ≤ m, are the same as formulas (54) (or (65) if the

R1 update is used) for matrices Bi. Therefore, there exist constants Ck, 1 ≤ k ≤ m, such that

Tr B̂k
i+1 ≤ Tr B̂k

i + Ck, 1 ≤ k ≤ m. (126)

Since the matrices Zk, 1 ≤ k ≤ m, contain columns of the unit matrix, we can write

Tr Bi = Tr

m∑
k=1

ZkB̂
k
i Z

T
k =

m∑
k=1

Tr ZkB̂
k
i Z

T
k =

m∑
k=1

Tr B̂k
i , (127)

so

Tr Bi+1 =
m∑

k=1

Tr B̂k
i+1 ≤

m∑
k=1

(Tr B̂k
i + Ck) = Tr Bi + C, C =

m∑
k=1

Ck, (128)

and global convergence is proved as in the proof of Theorem 5. 2

If the objective function has the form (1), superlinear convergence cannot be proved by the approach
used in [28]. The functions (fk(xi))

2, 1 ≤ k ≤ m, are usually not all convex (if fk(x) is convex and
fk(x) < 0, then function (fk(xi))

2 may not be convex). Therefore, i ̸∈ Nk
3 can hold for some k even if

xi is close to x∗. Nevertheless, the globally convergent trust region variable metric method, described in
this section, is relatively efficient for solving partially separable least squares problems, so it is a suitable
choice for the construction of hybrid methods.

14 Simple hybrid methods for sparse least squares problems

There are two classes of simple hybrid methods for sparse least squares problems [33]. The first class com-
bines the Gauss-Newton method with variable metric methods for sparse problems described in Section 12
[33].
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Description 6. (Simple hybrid method for sparse problems) An efficient hybrid method arises as a com-
bination of the sparse Gauss-Newton method and a suitable variable metric method for sparse problems.
Let B1 = JT

1 J1 and 0 < ϑ < 1. Set

Bi+1 = JT
i+1Ji+1 if i ∈ N2, i ∈ N5,

Bi+1 = PBPABi if i ∈ N2, i ̸∈ N5,
Bi+1 = Bi if i ̸∈ N2,

(129)

where PBPABi is one of the updates (116)–(119). Update (129) will be considered as basic. We will
consider two strategies here distinguished by the value S1 in the same way as in Remark 13.

Theorem 21. If the mapping f satisfies Assumption A1 and its second derivatives are Lipschitz contin-
uous (so (67) holds), then the simple hybrid (trust region) method introduced in Description 6 is globally
convergent. If in addition xi → x∗, where the point x∗ ∈ Rn satisfies Assumption A3, and ωi → 0, then
the rate of convergence is Q-superlinear.

Proof (a) The matrices Bi, i ∈ N , have bounded norms by Remark 1 and Theorem 18, so g(xi) → 0 by
Theorem 1.

(b) Let xi → x∗ and F (x∗) > 0. Then (Fi−1 − Fi)/Fi−1 → 0 by Theorem 10, so there exists an index
l ∈ N such that (Fi−1−Fi)/Fi−1 < ϑ ∀i ≥ l, so i ̸∈ N2∩N5 ∀i ≥ l and the superlinear rate of convergence
follows from Theorem 19.

(c) Let xi → x∗ and F (x∗) = 0. If the set N2∩N5 is finite, the superlinear rate of convergence follows from

Theorem 19 (as in part (b)). If the set N2 ∩N5 is infinite, then Bi
N2∩N5−→ Gi by Remark 11, which gives

(71) and, similarly as in the proof of Theorem 4, there exists an index l2 ∈ N2 ∩ N5 such that (48)–(50)
hold for i ∈ N2 ∩N5, i ≥ l2 and i ∈ N2, so

τi =
gi+1 − gi −Bidi

∥gi∥
N2∩N5−→ 0.

Let i ∈ N2 ∩N5, i ≥ l2. Since i ∈ N2, we can write

gi+1 = g(xi + di) = gi +Gidi + o(∥di∥),

which together with F (x∗) = 0 and g(x∗) = 0 gives

Fi − Fi+1

Fi
= 1− Fi+1

Fi
≥ 1−

(
G

G

)2(∥gi+1∥
∥gi∥

)2

= 1−
(
G

G

)2

(∥τi∥+ ∥ωi∥)2
N2∩N5−→ 1,

so there exists an index l3 ≥ l2 such that (Fi − Fi+1)/Fi ≥ ϑ, or i+ 1 ∈ N2 ∩N5, for i ∈ N2 ∩N5, i ≥ l3.
Therefore we obtain i ∈ N2 ∩N5 ∀i ≥ l3 by induction and the superlinear rate of convergence follows from
(71) (Theorem 4). 2

The second class uses partitioned variable metric methods described in Section 13.

Description 7. (Simple hybrid method for partially separable problems) An efficient hybrid method
arises as a combination of the partitioned Gauss-Newton method and a suitable partitioned variable metric
method. Let B̂k

1 = ĥk
1(ĥ

k
1)

T , 1 ≤ k ≤ m, and 0 < ϑ < 1. Set

B̂k
i+1 = ĥk

i+1(ĥ
k
i+1)

T if i ∈ N2, i ∈ N5,

B̂k
i+1 = B(B̂k

i , ŷ
k
i , ŝ

k
i , β

k
i , γ

k
i ) if i ∈ N2, i ̸∈ N5, i ∈ Nk

3 ,

B̂k
i+1 = B̂k

i if i ∈ N2, i ̸∈ N5, i ̸∈ Nk
3 ,

B̂k
i+1 = B̂k

i if i ̸∈ N2

(130)

for 1 ≤ k ≤ m, where B is the mapping defined by (55), ŷki = f̂k
i+1ĥ

k
i+1 − f̂k

i ĥ
k
i = ZT

k yi, ŝ
k
i = x̂k

i+1 − x̂k
i =

ZT
k si are vectors of dimension nk, 1 ≤ γk

i ≤ γ and 0 ≤ βk
i ≤ β

k

i , where β
k

i is the value determined by
(125). Update (130) will be considered as basic. We will consider here two strategies distinguished by the
value S1 in the same way as in Remark 13.
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Theorem 22. If the mapping f satisfies Assumption A1, then the simple hybrid (trust region) method
introduced in Description 7 is globally convergent.

Proof If i ∈ N2 ∩ N5, then Tr B̂k
i+1 = (ĥk

i+1)
T ĥk

i+1 = ∥ĥk
i+1∥2 = ∥hk

i+1∥2 ≤ h
2
, 1 ≤ k ≤ m, by

Assumption A1. If i ̸∈ N2∩N5, then there exist numbers Ck, 1 ≤ k ≤ m, such that Tr B̂k
i+1 ≤ Tr B̂k

i +Ck

by (126). Since matrices Zk, 1 ≤ k ≤ m, contain columns of the unit matrix, we can use an analogy of

(128), so Tr Bi+1 ≤ h
2
+ iC ≤ (i+ 1)C, C = max(h

2
, C), so Mi ≤ iC, i ∈ N , and the global convergence

follows from Theorem 5. 2

15 Structured hybrid methods for sparse least squares problems

As in Section 7, we will investigate two classes of structured hybrid methods for sparse least squares
problems [54], [33]. Methods from the first class use approximations T̂ k

i ≈ Ĥk(x̂i), 1 ≤ k ≤ m, so the

matrices T̂ k
i+1 should satisfy quasi-Newton conditions T̂ k

i+1ŝ
k
i = ĥk

i+1 − ĥk
i

∆
= z̃ki , 1 ≤ k ≤ m [56]. These

quasi-Newton conditions are satisfied if matrices T̂ k
i+1 are generated by the variable metric methods from

the Broyden class as shown in the following description, where we use the notation

N
′k
3 = {i ∈ N : (z̃ki )

T ŝki ≥ c∥z̃ki ∥2}, N
′k
4 =

{
i ∈ N :

∣∣∣(ŝki )T (γk
i z̃

k
i − T̂ k

i ŝ
k
i

)∣∣∣ ≥ c
∥∥∥γk

i z̃
k
i − T̂ k

i ŝ
k
i

∥∥∥2} .

Description 8. (Totally structured hybrid method for partially separable problems) An efficient hybrid
method arises as a combination of the partitioned Gauss-Newton method and a suitable partitioned variable
metric method. Let T̂ k

1 = 0, B̂k
1 = ĥk

1(ĥ
k
1)

T , 1 ≤ k ≤ m, and 0 < ϑ < 1. Set

T̂ k
i+1 = T̂ k

i if i ∈ N2, i ∈ N5,

T̂ k
i+1 = B(T̂ k

i , z̃
k
i , ŝ

k
i , β

k
i , γ

k
i ) if i ∈ N2 i ̸∈ N5, i ∈ N

′k,

T̂ k
i+1 = T̂ k

i if i ∈ N2, i ̸∈ N5, i ̸∈ N
′k,

T̂ k
i+1 = T̂ k

i if i ̸∈ N2

(131)

and
B̂k

i+1 = ĥk
i+1(ĥ

k
i+1)

T if i ∈ N2, i ∈ N5,

B̂k
i+1 = ĥk

i+1(ĥ
k
i+1)

T + f̂k
i+1T̂

k
i+1 if i ∈ N2, i ̸∈ N5,

B̂k
i+1 = B̂k

i if i ̸∈ N2

(132)

for 1 ≤ k ≤ m, where B is the mapping defined by (55), z̃ki = ĥk
i+1 − ĥk

i , ŝ
k
i = x̂k

i+1 − x̂k
i are vectors of

dimension nk, 1 ≤ γk
i ≤ γ and either βk

i = γk
i b

k
i /(γ

k
i b

k
i − cki ) (R1 method) or 0 ≤ βk

i ≤ β
k

i , where β
k

i is the

value determined by (125) with bki = (z̃ki )
T ŝki , c

k
i = (ŝki )

T B̂k
i ŝ

k
i and K > 0. At the same time, N

′k = N
′k
4

for the R1 method or N
′k = N

′k
3 if 0 ≤ βk

i ≤ β
K

i .

Theorem 23. If the mapping f satisfies Assumption A1, then the structured hybrid (trust region) method
introduced in Description 8 is globally convergent.

Proof We use the same idea as in the proof of Theorem 12.
(a) If N

′k = N
′k
4 , then (similarly as in part (a) of the proof of Theorem 12) we obtain

∥T̂ k
i+1∥ ≤ ∥T̂ k

i ∥+
∥γk

i z̃
k
i − T̂ k

i ŝ
k
i ∥2

(ŝki )
T (γk

i z̃
k
i − T̂ k

i ŝ
k
i )

≤ ∥T̂ k
i ∥+

1

c
,

so

∥B̂k
i+1∥ = ∥B̂k

l+1∥ ≤ ∥ĥk
l+1∥2 + ∥T̂ k

l+1∥ ≤ h
2
+ ∥T̂ k

1 ∥+
l

c
≤ (l + 1)Ck ≤ (i+ 1)Ck,

Ck = max

(
h
2
+ ∥T̂ k

1 ∥,
1

c

)
,
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where l ∈ N is a maximum index such that l ≤ i and l ∈ N2. Thus (123) implies

∥Bi+1∥ ≤
m∑

k=1

∥ZkB̂
k
i+1Z

T
k ∥ ≤

m∑
k=1

∥B̂k
i+1∥ ≤ (i+ 1)

m∑
k=1

Ck
∆
= C,

so Mi ≤ iC, i ∈ N , and the global convergence follows from Theorem 1.

(b) If N
′k = N

′k
3 , then (similarly as in part (b) of the proof of Theorem 12) we obtain

Tr T̂ k
i+1 ≤ Tr T̂ k

i + (K + γ)
(z̃ki )

T z̃ki
(z̃ki )

T ŝki
≤ Tr T̂ k

i +
K + γ

c
, (133)

so

Tr B̂k
i+1 = Tr B̂k

l+1 ≤ ∥ĥk
l+1∥2 + Tr T̂ k

l+1 ≤ h
2
+ Tr T̂ k

1 + l
K + γ

c
≤ (l + 1)Ck ≤ (i+ 1)Ck,

Ck = max

(
h
2
+ Tr T̂ k

1 ,
K + γ

c

)
,

where l ∈ N is a maximum index such that l ≤ i and l ∈ N2. Thus (123) implies

Tr Bi+1 ≤
m∑

k=1

Tr (ZkB̂
k
i+1Z

T
k ) ≤

m∑
k=1

Tr B̂k
i+1 ≤ (i+ 1)

m∑
k=1

Ck
∆
= C,

so Mi ≤ iC, i ∈ N , and the global convergence follows from Theorem 1. 2

Methods from the second class use approximations Ĉk
i ≈ f̂k(x̂i)Ĥk(x̂i) ≈ f̂k

i T̂
k
i , 1 ≤ k ≤ m. Since we

assume that T̂ k
i+1ŝ

k
i = ĥk

i+1−ĥk
i , quasi-Newton conditions for Ĉk

i have the form Ĉk
i+1ŝ

k
i = f̂k

i+1(ĥ
k
i+1−ĥk

i )
∆
=

ẑki , 1 ≤ k ≤ m. These quasi-Newton conditions are satisfied if matrices Ĉk
i+1 are generated by the variable

metric methods from the Broyden class as shown in the following description, where we use the notation

N
′′k
3 = {i ∈ N : (ẑki )

T ŝki ≥ c∥ẑki ∥2}, N
′′k
4 =

{
i ∈ N :

∣∣∣(ŝki )T (γk
i ẑ

k
i − B̂k

i ŝ
k
i

)∣∣∣ ≥ c
∥∥∥γk

i ẑ
k
i − B̂k

i ŝ
k
i

∥∥∥2} .

Description 9. (Structured hybrid method for partially separable problems) An efficient hybrid method
arises as a combination of the partially separable Gauss-Newton method and a suitable variable metric
method for partially separable problems. Let Ĉk

1 = 0, B̂k
1 = ĥk

1(ĥ
k
1)

T , 1 ≤ k ≤ m, and 0 < ϑ < 1. Set

Ĉk
i+1 = Ĉk

i if i ∈ N2, i ∈ N5,

Ĉk
i+1 = B(Ĉk

i , ẑ
k
i , ŝ

k
i , β

k
i , γ

k
i ) if i ∈ N2 i ̸∈ N5, i ∈ N

′′k,

Ĉk
i+1 = Ĉk

i if i ∈ N2, i ̸∈ N5, i ̸∈ N
′′k,

Ĉk
i+1 = Ĉk

i if i ̸∈ N2

(134)

and
B̂k

i+1 = ĥk
i+1(ĥ

k
i+1)

T if i ∈ N2, i ∈ N5,

B̂k
i+1 = ĥk

i+1(ĥ
k
i+1)

T + f̂k
i+1Ĉ

k
i+1 if i ∈ N2, i ̸∈ N5,

B̂k
i+1 = B̂k

i if i ̸∈ N2

(135)

for 1 ≤ k ≤ m, where B is the mapping defined by (55), ẑki = f̂k
i+1(ĥ

k
i+1− ĥk

i ), ŝ
k
i = x̂k

i+1− x̂k
i are vectors of

dimension nk, 1 ≤ γk
i ≤ γ and either βk

i = γk
i b

k
i /(γ

k
i b

k
i − cki ) (R1 method) or 0 ≤ βk

i ≤ β
k

i , where β
k

i is the

value determined by (125) with bki = (ẑki )
T ŝki , c

k
i = (ŝki )

T B̂k
i ŝ

k
i and K > 0. At the same time, N

′′k = N
′′k
4

for the R1 method or N
′′k = N

′′k
3 if 0 ≤ βk

i ≤ β
K

i .

Theorem 24. If the mapping f satisfies Assumption A1, then the structured hybrid (trust region) method
introduced in Description 9 is globally convergent.
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Proof The proof of this theorem is almost the same as the proof of Theorem 23. Only inequality (133) is
replaced by the inequality

Tr Ĉk
i+1 = Tr Ĉk

i + (K + γ)
(ẑki )

T ẑki
(ẑki )

T ŝki
≤ Tr Ĉk

i +
K + γ

c
. (136)

2

16 Numerical comparison of methods for sparse least squares problems

We have used the collection TEST26 [35] for our computational experiments described in this section.
Collection TEST26 contains 60 different sparse problems with optional dimensions. We used the first 30
problems with 1000 variables (n = 1000) which are a mixture of both zero and nonzero residual problems.
The remaining 30 problems are all zero residual, so they are not suitable for testing hybrid methods.

The tested methods are distinguished by the following codes:

VM - the Marwil sparse variable metric method,

VT - the Toint sparse variable metric method,

VB - partitioned variable metric methods,

MN - the partitioned Newton method with numerical differentiation,

GN - the partitioned Gauss-Newton method,

MG - combined method introduced in Description 5,

GM - simple hybrid method introduced in Description 6 with the Marwil update,

GT - simple hybrid method introduced in Description 6 with the Toint update,

GB - simple hybrid methods introduced in Description 7,

GD - structured hybrid methods introduced in Description 8,

GS - structured hybrid methods introduced in Description 9.

The code GM1 has the same meaning as in Section 10. We used the sparse Choleski (or Gill-Murray)
decomposition described in [24]. The tested methods were implemented in the same way as the methods
investigated in Section 10, i.e., we used the values ρ = 0.1, ρ = 0.9, ∆ = 1000, γ = 0.7, γ = 6.0, ϑ = 0.0005,

c = 10−32 and K = 1032.
The test results are presented in several following tables whose columns mean the tested method

with chosen strategy S1, S2 (values 1 or 2), the scaling used (Y - yes, N - no), the total number of
function evaluations NFV (which is equal to the total number of iterations of the trust region method),
the total number of gradient evaluations NFG, the total number of matrix decompositions NDC, the total
computational time and sometimes the number of failures (the number of problems that were not solved).
The asterisk in some tables indicates that at least one problem was not solved (the maximum number of
function evaluations was exceeded).

Table 8 contains the results of comparing the particular sparse variable metric methods VM and VT.

Update S1 NFV NFG NDC Time Fail
VM 1 28476 24719 23887 11.57 1
VM 2 30538 30535 29251 14.07 1
VT 1 30565 25879 24972 18.36 2
VT 2 41347 41342 39864 29.20 2

Table 8: Sparse variable metric methods

Table 9 contains the results of comparing the particular partitioned variable metric updates and various
strategies S1 and S5.
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Update S5 S1 NFV NFG NDC Time Fail
BFGS 1 1 28939 27025 26782 20.21 -
BFGS 2 1 28953 23865 20394 13.22 1
BFGS 3 1 19209 16828 16216 12.04 -
BFGS 1 2 30126 30102 24948 21.38 1
BFGS 2 2 35214 35209 17344 17.30 2
BFGS 3 2 35292 35287 17355 17.42 2
H 1 1 53217 52272 52027 47.47 3
H 2 1 29562 24353 20758 13.55 1
H 3 1 37409 35878 35268 30.77 2
H 1 2 52873 52831 49682 43.33 1
H 2 2 35481 35476 17394 17.45 2
H 3 2 30386 30344 27076 19.14 1
R1 1 1 30138 28436 28196 21.66 -
R1 2 1 29261 24119 20537 13.69 1
R1 3 1 28939 27025 26782 20.21 -
R1 1 2 32770 32766 31798 23.93 -
R1 2 2 35514 35504 17095 17.20 2
R1 3 2 30533 30524 27966 20.46 -

Table 9: Partitioned variable metric methods (VB)

In Table 10 we can see a comparison of simple hybrid methods with sparse updates GM and GT using
different choices of S1.

Method S1 NFV NFG NDC Time Fail
GM 1 6480 6302 6191 3.10 -
GM 2 6572 6568 6380 3.55 -
GT 1 7209 6912 6800 4.30 -
GT 2 7826 7824 7634 4.30 -

Table 10: Simple hybrid methods with sparse updates

In Table 11 we can see a comparison of simple hybrid methods with partitioned updates GB using
different choices of S1 and scaling.
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Update S1 Scaling NFV NFG NDC Time Fail
BFGS 1 N 6816 6614 6510 3.79 -
BFGS 1 Y 6797 6606 6503 3.77 -
BFGS 2 N 9108 9104 7938 5.64 -
BFGS 2 Y 7754 7747 7070 4.71 -
DFP 1 N 7898 7647 7509 5.10 -
DFP 1 Y 7506 7244 7120 4.50 -
DFP 2 N 12488 12483 11395 10.56 1
DFP 2 Y 13405 13403 12862 13.57 1
H 1 N 6882 6745 6636 3.93 -
H 1 Y 8219 7821 7711 4.99 -
H 2 N 9260 9252 8208 6.22 -
H 2 Y 8156 8148 7599 5.63 -
R1 1 N 7752 7490 7385 4.33 -
R1 1 Y 7002 6855 6754 3.80 -
R1 2 N 7693 7692 6893 4.85 -
R1 2 Y 9236 9238 7903 6.06 -

Table 11: Simple hybrid methods (GB) with partitioned updates

Tables 12 contains a comparison of different structured hybrid methods GS and GD with different
strategies S1, S2 and scaling.

Methods GS Methods GD
Update S2 S1 Scaling NFV NFG NDC Time NFV NFG NDC Time
BFGS 1 1 N 7253 7083 7062 4.35 7778 7529 7491 4.74
BFGS 1 1 Y 6902 6711 6681 3.72 8100 7818 7815 5.10
BFGS 1 2 N 12768 12765 7198 *11.85 8786 8774 7671 5.27
BFGS 1 2 Y 12522 12519 6926 *11.66 10678 10669 10080 7.97
BFGS 2 1 N 11939 11458 7496 *11.31 7957 7635 7671 5.27
BFGS 2 1 Y 11929 11761 6712 *11.32 10396 10175 10194 9.26
BFGS 2 2 N 13024 13021 6760 *12.87 10078 10069 9440 8.06
BFGS 2 2 Y 13946 13943 6673 *14.04 10606 10591 9960 7.20
R1 1 1 N 6488 6368 6354 3.46 6768 6615 6630 3.65
R1 1 1 Y 7262 6998 7129 4.15 7368 7134 7237 4.04
R1 1 2 N 8280 8280 7379 5.38 7652 7651 6976 4.71
R1 1 2 Y 6743 6743 6349 4.13 7549 7549 6905 4.64
R1 2 1 N 6483 6364 6355 4.27 7640 7353 7500 5.16
R1 2 1 Y 7202 6955 7068 4.97 7461 7205 7321 5.13
R1 2 2 N 6323 6587 6587 4.74 7034 7034 6585 4.99
R1 2 2 Y 8453 8449 7418 6.63 8348 8344 7383 6.38

Table 12: Structured hybrid methods

The last Table 13 contains the results obtained by various methods for sparse nonlinear least squares
problems studied in this report. The results stated in this table are also demonstrated in more detail using
graphs showing performance profiles [20].
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Method NFV NFG NDC Time Fail
VM 28476 24719 23887 11.57 1
VT 30565 25879 24972 18.36 2
VB 19209 16828 16216 12.04 -
MN 37793 37365 6440 8.26 -
GN 7525 7265 7139 4.16 -
MG 7236 7592 6802 4.10 -
GM 6480 6302 6191 3.10 -
GT 7209 6912 6800 3.72 -
GB 6816 6614 6510 3.79 -
GS 6488 6368 6354 3.46 -
GD 6768 6615 6630 3.65 -

Table 13: Comparison of various methods
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Figure 3: Methods for sparse problems
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Figure 4: Methods for partially separable problems
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Figure 5: Comparison of efficient methods

From the results in this section we can draw several conclusions.

• Variable metric methods for sparse least squares problems are not too efficient because they lack
the main advantage of classical variable metric methods (triangular decomposition update). It is
necessary to decompose matrices Bi, i ∈ N , at each iteration step which requires a lot of arithmetic
operations and slower convergence increases the number of function and gradient evaluations of the
minimized function. Both prolong computational time.

• A difference version of the Newton method is relatively efficient (concerning the number of matrix
decompositions which corresponds to the number of iterations) but a higher number of function
and gradient evaluations of the minimized function needed for numerical computation of the Hessian
matrix prolongs computation time, so this method is not competitive with the Gauss-Newton method.

• The Gauss-Newton method is rather efficient for solving sparse least squares problems (at least those
contained in our collection TEST26).

• The combination of the Gauss-Newton method and the Newton method is very efficient for solving
sparse least squares problems. A higher number of function and gradient evaluations of the mini-
mized function needed for numerical computation of the Hessian matrix in corrected steps somewhat
prolongs computational time.

• A simple hybrid method using a Marwil sparse update is surprisingly efficient even though it uses
a variable metric method that gives bad results when used separately. A Marwil update is more
efficient than a Toint update.

• A simple hybrid method using partitioned BFGS and R1 updates is less efficient because partitioned
updates require a higher number of numerical operations than sparse updates and, furthermore, there
is no possibility of a Choleski decomposition update which saves arithmetic operations.

• Structured hybrid methods GD and GS (together with the GM method) seem to be the most efficient
for solving sparse (partially separable) least squares problems.
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[41] J.J.Moré, D.C.Sorensen: Computing a trust region step. SIAM J. on Scientific and Statistical Com-
puting 4 (1983) 553-572.

[42] J.Nocedal, S.J.Wright: Numerical Optimization. Springer, New York, 2006.

49



[43] C.C.Paige, M.A.Saunders: LSQR: An algorithm for sparse linear equations and sparse least squares.
ACM Transactions on Mathematical Software 8 (1982) 43-71.

[44] M.J.D.Powell: A new algorithm for unconstrained optimization. In: Nonlinear Programming
(J.B.Rosen O.L.Mangasarian, K.Ritter eds.) Academic Press, London, 1970.

[45] M.J.D. Powell: A note on quasi-Newton formulae for sparse second derivative matrices. Mathematical
Programming 20 (1981) 144-151.

[46] M.J.D.Powell: Convergence properties of a class of minimization algorithms. In: Nonlinear Program-
ming 2 (O.L. Mangasarian, R.R.Meyer, S.M.Robinson, eds.) Academic Press, London, 1975.

[47] M.J.D.Powell: On the global convergence of trust region algorithms for unconstrained minimization.
Mathematical Programming 29 (1984) 297-303.

[48] S.Schlenkrich, A.Walther: Global convergence of quasi-Newton methods based on adjoint Broyden
updates. Applied Numerical Mathematics 59 (2009) 1120-1136.

[49] D.F.Shanno: Conditioning of quasi-Newton methods for function minimization. Mathematics of Com-
putation 24 (1970) 647-656.

[50] S.B.Sheng, Z.H.Zou: A new secant method for nonlinear least squares problems. Numerical Mathe-
matics, A Journal of Chinese Universities 2 (1993) 125-137.

[51] T.Steihaug: Local and superlinear convergence for truncated iterated projections methods. Mathe-
matical Programming 27 (1983) 176-190.

[52] T.Steihaug: The conjugate gradient method and trust regions in large-scale optimization. SIAM J.
Numerical Analysis 20 (1983) 626-637.

[53] S.W.Thomas: Sequential estimation techniques for quasi-Newton algorithms. Thesis, Cornell Univer-
sity, Ithaca, New York, 1975.

[54] P.L.Toint: On large scale nonlinear least squares calculations. SIAM J. on Scientific and Statistical
Computations 8 (1987) 416-435.

[55] P.L.Toint: On sparse and symmetric matrix updating subject to a linear equation. Mathematics of
Computation 31 (1977) 954-961.

[56] P.L.Toint: Towards an efficient sparsity exploiting Newton method for minimization. In: Sparse
Matrices and Their Uses (I.S.Duff, ed.), Academic Press, London, 1981, 57-88.
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