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1 Introduction

We propose to study a ‘graded’ generalization of connectives, or operators on truth degrees, including
copulas, t-norms, uninorms, and other aggregation operators. We restrict our attention to unary and
binary connectives here. As a tool we use the framework of higher-order fuzzy logic, also known as
Fuzzy Class Theory (FCT) introduced in [4]. FCT is specially designed to allow a quick and sound
development of graded, lattice-valued generalizations of the notions of traditional ‘fuzzy mathematics’
and is a backbone of a broader program of logic-based foundations for fuzzy mathematics, described
in [5].

This short abstract is to be understood as just a ‘teaser’ of the broad and potentially very in-
teresting area of graded properties of fuzzy connectives. We sketch basic definitions and properties
present a few examples of results in the area of equivalence and order relations (in particular, we
show interesting graded generalization of basic results from [9]). Also some of our theorems are, for
expository purposes, stated in a less general form here and can be further generalized substantively.

Ad motivation: In the traditional, non-graded theory of domination, a theorem says nothing if one
of its precondition fails. Often, however, a precondition is almost satisfied (e.g., the difference of
the actual membership degree from the required one is less than .001). Although the traditional non-
graded theorem is not applicable in such cases, it seems obvious (and indeed is provably the case, as we
shall show) that if the premises of the theorem are almost true, so will be the conclusion. In practice,
however, the imperfection of a premise can influence the imperfection of a conclusion to different
degree (e.g., the truth degree of some premise may be much more important for the conclusion than
that of another premise). We shall study the transmission of guaranteed truth degrees from premises
to conclusions in such cases, and our theorems will express the thresholds guaranteed for conclusions
given the truth degrees of premises.

Such studies are not uncommon in traditional mathematics—cf., e.g., error analysis in probability
theory and statistics, the study of defects of mathematical properties in [1], or the usage of quantifiers
like almost everywhere in various parts of mathematics (where measure theory provides the apparatus
for giving the estimates as to the scope of validity of conclusions). In fuzzy mathematics, graded
properties have been studied esp. in the theory of fuzzy relations [11, 12, 3] and fuzzy topology
[17, 18].

Since we are concerned with the transmission of partial degrees of validity, which is the primary
motivation for deductive fuzzy logics (cf. [2]), we shall use deductive fuzzy logic as a tool for our
study. In particular, as we need a sufficient expressive power of the logical apparatus, we shall use
higher-order fuzzy logic, also known as Fuzzy Class Theory FCT [4].2

Besides deriving general results in the axiomatic framework of FCT, we shall also present some
semantic results for particular classes of aggregation operators, t-norms, and other truth-value opera-
tors on the real unit interval [0, 1]. In the derivation of the latter kind of results we shall not employ
the apparatus of FCT, but rather traditional methods of reasoning about standard models of FCT,
which consist exactly of Zadeh’s fuzzy sets (and fuzzy relations) of all orders over some fixed crisp
domain.

2 Preliminaries

Unless stated otherwise, we work in Fuzzy Class Theory (FCT) over the logic MTL4 of all left-
continuous t-norms [10]. The apparatus of FCT and its standard notation is explained in detail in the
primer [6], which is freely available online. Furthermore we shall use the following useful definitions
and conventions.

2For the deductive framework of FCT to be applicable, the structure of truth degrees has to be at least a (linear)
MTL4-algebra (see [2]), possibly with additional operators. The logical connectives of the logic MTL4 (in the standard
case, a left-continuous t-norm for conjunction and its residuum for implication) will thus be used for logical deductions
to get the estimates of the graded properties. However, the class of operations studied will be much broader: since the
theorems themselves are valid in standard Zadeh models of FCT (consisting of all usual [0, 1]-valued fuzzy sets of all
orders and arities over a fixed crisp domain), they actually apply to all (at most binary) operations on [0, 1].
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Definition 2.1 We define the following derived propositional connectives of MTL4:

ϕ ≤ ψ ≡df 4(ϕ → ψ)
ϕ = ψ ≡df 4(ϕ ↔ ψ)
ϕ 6= ψ ≡df ¬(ϕ = ψ)
ϕ < ψ ≡df (ϕ ≤ ψ) & (ϕ 6= ψ)

and analogously for ≥, >. The priority of these connectives is the same as that of implication.

Obviously, the semantics of these connectives corresponds to the crisp ordering and equality of truth
degrees as expected.

Convention 2.2 We shall use the following abbreviations in the formulae of FCT:

ϕn ≡df ϕ & . . . & ϕ (n times, with ϕ0 ≡df 1)
ϕ4 ≡df 4ϕ

x1 . . . xn =df 〈x1, . . . , xn〉

Chains of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn can be written as ϕ1 −→ ϕ2 −→ . . . −→ ϕn,
and similarly for the equivalence connective.

Definition 2.3 In FCT, we introduce the following defined notions:

A v B ≡df 4(A ⊆ B) crisp inclusion

RT =df {xy | Ryx} converse relation

For better readability of some complex theorems, we shall adopt the following convention:

Convention 2.4 Formulae of FCT of the form (ϕ1 & . . . & ϕn) → (ψ1 & . . . & ψk) can also be written
as ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk (and similarly for ↔ and ⇔ as the middle symbol). Chains of such
implications will use =⇒ as the middle sign (standing for −→). If no confusion can arise, we shall
also write conjunctions ϕ1 & . . . & ϕn simply as lists ϕ1, . . . , ϕn.

Internal truth values An important feature of FCT is the absence of variables for truth degrees:
in FCT, truth degrees are the semantic values of formulae rather than object of the theory (see
[5] for an explanation of methodological advantages of this approach). However, many theorems
of traditional fuzzy mathematics do speak about truth values or quantify over operators on truth
values like aggregation operators, copulas, t-norms, etc. In order to be able to speak of truth values
within FCT, truth values need be internalized in the theory. This is done in [7] by a rather standard
technique, by representing truth values by subclasses of a crisp singleton.3

The details of the representation are not important in the present paper; we refer the interested
readers to [7, Sect. 3]. For our present purposes it is fully sufficient to assume that we do have variables
α, β, . . . for truth values in FCT, and that the ordering of truth values and the usual propositional
connectives and the quantifiers ∀,∃ are definable in FCT. The class of the internal truth values will
denoted by L.

Internal connectives Binary operators on truth values (including propositional connectives &,∧,∨, . . . )
can be regarded as functions c : L×L → L or as fuzzy relations c v L×L. Consequently, graded class
relations can be applied to such operators, e.g., fuzzy inclusion c ⊆ d ≡ (∀αβ)(α c β → α d β), which
means

∧
α,β(α c β ⇒∗ α d β) in models.

Similarly, unary operators on truth values can be regarded as functions u : L → L, i.e., fuzzy
classes u v L. Again, graded properties are applicable to unary truth-operators, e.g., graded inclusion
u ⊆ v ≡ (∀αβ)(uα → uβ). Nullary operators on truth values can be identified with truth values

3Cf. [15] for an analogous construction in a set theory over a variant of Gödel logic.
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themselves. Instead of “operators on truth values” we shall simply speak of connectives (always
meaning at most binary). By convention, we shall always use Greek variables for truth values,4 the
letters u,v,w for unary connectives, and the letters a,b, c, . . . for binary connectives. In formulae,
binary inner connectives will by convention have the same priority as &: thus, e.g., ¬αcβ → γ means
((¬α) c β) → γ.

3 Graded properties of connectives

Many crisp classes of truth-value operators (e.g., t-norms, uninorms, copulas, negations, etc.) can
be defined by formulae of FCT. The apparatus, however, enables also partial satisfaction of such
conditions. In the following, we therefore give several fuzzy conditions on truth-value operators and
use them as graded preconditions of theorems which need not be satisfied to the full degree. This
yields a completely new graded theory of truth-value operators and allows non-trivial generalizations of
well-known theorems on such operators, including their consequences for properties of fuzzy relations.

Definition 3.1 In FCT, we define the following graded properties of a unary connective u v L:

Mon(u) ≡df (∀αβ)((α ≤ β) → (uα → uβ)) Monotony
Ant(u) ≡df (∀αβ)((α ≤ β) → (uβ → uα)) Antitony
Lip(u) ≡df (∀αβ)((α ↔ β) → (uα ↔ uβ)) Lipschitz

PosLip(u) ≡df (∀αβ)((α → β) → (uα → uβ)) Positive Lipschitz
NegLip(u) ≡df (∀αβ)((α → β) → (uβ → uα)) Negative Lipschitz

Furthermore, we define the identity connective id v L by idα ≡df α.

The name Lipschitz, or more accurately 1-Lipschitz property wrt ↔, comes from the fact that in
standard models over ÃLukasiewicz logic, the full satisfaction of this property expresses the 1-Lipschitz
property of c. The stronger property called positive Lipschitz expresses the same property wrt the
‘distance’ given by → rather than ↔.

Theorem 3.2 FCT proves the following graded properties of truth-value operators:

(C1) Lip(u) ∧Mon(u) ↔ PosLip(u)

(C2) Lip(u) ∧Ant(u) ↔ NegLip(u)

Proof: We prove (C1), the proof of the second claim is analogous. From α ≤ β by Mon(u) we
get (uα → uβ) and so by weakening we obtain (α → β) → (uα → uβ). From β ≤ α we get
(α → β) → (α ↔ β) and so by Lip(u) we obtain (α → β) → (uα → uβ). The SLP completes the
proof.

The converse direction, first observe that trivially PosLip(u) → Mon(u). Second, from PosLip(u)
we get both (α ↔ β) −→ (α → β) −→ (uα → uβ) and (α ↔ β) −→ (β → α) −→ (uβ → uα). The
rest is simple.

QED

Analogously we proceed for binary connectives.

4By a harmless abuse of language, we shall not distinguish between inner and semantic truth values, as oth-
erwise it would complicate notation too much. In the rigorous notation of [2, Sect. 3], we should, e.g., write

0 ∈ (∀αβγ)(0 ∈ (α c β) c γ) ↔ (α c 0 ∈ (β c α)) instead of the simple formula defining associativity in Definition 3.3.
Similarly we shall not notationally distinguish between inner and semantical logical connectives.
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Definition 3.3 In FCT, we define the following graded properties of a binary connective c v L× L:

Com(c) ≡df (∀αβ)(α c β → β c α) Commutativity
Ass(c) ≡df (∀αβγ)((α c β) c γ) ↔ (α c (β c α)) Associativity

Idem(c) ≡df (∀α)(α c α ↔ α) Idempotence
UnL(c, η) ≡df (∀α)(η c α ↔ α) Left-argument unit element
NulL(c, ν) ≡df (∀α)(ν c α ↔ ν) Left-argument null element
MonL(c) ≡df (∀αβγ)((α ≤ β) → (α c γ → β c γ)) Left-argument monotony
AntL(c) ≡df (∀αβγ)((α ≤ β) → (β c γ → α c γ)) Left-argument antitony
LipL(c) ≡df (∀αβγ)((α ↔ β) → (α c γ ↔ β c γ)) Left-argument Lipschitz

PosLipL(c) ≡df (∀αβγ)((α → β) → (α c γ → β c γ)) Left-argument positive Lipschitz
NegLipL(c) ≡df (∀αβγ)((α → β) → (β c γ → α c γ)) Left-argument negative Lipschitz

The analogous right-argument properties UnR, NulR, MonR, LipR, PosLipR, and NegLipR are de-
fined as the corresponding left-argument properties for the converse connective cT, e.g., MonR(c) ≡df

MonL(cT), i.e., MonR(c) ≡ (∀αβγ)((α ≤ β) → (α c γ → β c γ)). For convenience, we also define

Mon(c) ≡df MonL(c) & MonR(c)
wMon(c) ≡df MonL(c) ∧ MonR(c)

and analogously for Un, Nul, Lip and PosLip.

It can be observed that the traditional non-graded classes of truth-value operators can be defined
by requiring the full satisfaction of some of the properties defined in Definition 3.3. In particular, a
connective c is a (non-graded)

t-norm iff 4Com(c),4Ass(c),4Mon(c),4Un(c, 1)
uninorm iff 4Com(c),4Ass(c),4Mon(c), (∃η)4Un(c, η)

binary aggregation operator iff 4Mon(c),4(1 c 1),4¬(0 c 0)

Furthermore, in standard ÃLukasiewicz logic, c is a (non-graded)

quasicopula iff 4Un(c, 1), 4Nul(c, 0),4PosLip(c).

Idempotent binary aggregation operators are those which additionally satisfy4 Idem(c), commutative
quasicopulas those which also satisfy4Com(c); etc. The conditions4(1c1),4¬(0c0) in the definition
of aggregation operators are shorter equivalents of the usual conditions 1 c 1 = 1 and 0 c 0 = 0,
respectively. Quasicopulas can in our setting not only be generalized in a graded manner, but also to
analogous operators that satisfy PosLip or Lip wrt an equivalence ↔ other than standard ÃLukasiewicz
as a measure of distance.

The following theorem provides us with samples of basic graded results.

Theorem 3.4 FCT proves the following graded properties of truth-value operators:

(C3) wMon(c), wUn(c, 1) ⇒ c ⊆ ∧
(C4) wMon(c), Idem(c) ⇒ ∧ ⊆ c

(C5) wMon(c), wUn(c, 1) ⇒ (α c α ↔ α) ↔ (∀β)((α c β) ↔ (α ∧ β))

(C6) MonR(c), UnR(c, 1) ⇒ NulL(c, 0)

(C7) Mon(c) ⇒ (α ≤ β) & (γ ≤ δ) → (α c γ → β c δ)

Proof:

(C3) From α ≤ 1 by MonL(c) we get α c β → 1 c β. Further by UnL(c) we get α c β → β.
Analogously using MonR(c) and UnR(c) we get α c β → α. The rest is simple.
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(C4) From α ≤ β be MonR(c) we get α c α → α c β. Using Idem(c) and α ≤ β again we get
α∧β −→ α −→ α cβ. Analogously we get α∧β → α cβ from β ≤ α, MonL(c), and Idem(c).
The rest is simple.

(C5) One direction of the equivalence in the conclusion is trivial (set β = α). The converse one
again consists of proving two implications: using (C3) we get the left-to right direction for
free. The right-to-left one: inspect the proof of the previous part and instead of full Idem(c)
use just (α c α ↔ α).

QED

The three assertions above are generalizations of well-known basic properties of t-norms. Theo-
rem 1.1 corresponds to the fact that the minimum is the greatest (so-called strongest) t-norm. Theorem
1.2 generalizes the basic fact that the minimum is the only idempotent t-norm, while 1.3 is a graded
characterization of the idempotents of c [13].

4 Composition of operations

The operations, being functions c : L2 → L (binary), u : L → L (unary), and α : L0 → L (nullary, for
L0 = {a} an arbitrary fixed crisp singleton), can be composed whenever their domains and codomains
match. In this section we shall investigate the transmission of graded properties under compositions.
Recall the standard definitions for crisp functions:

Definition 4.1 For f : X → Y , g : Y → Z, and x ∈ X, the composition gf : X → Z is defined as
(gf)(x) =df g(f(x)).

Given the projections p1 : X × Y → X and p2 : X × Y → Y , for f : Z → X and g : Z → Y , the
product function (f, g) : Z → X×Y is defined so that (f, g)(z) = (f(z), g(z)), i.e., p1((f, g)(z)) = f(z)
and p2((f, g)(z)) = g(z).

The constant function X → Y assigning a fixed y ∈ Y to all x ∈ X will be denoted by y
X

. The
subscript X may be omitted if known from the context.

The projections p1,p2 : L2 → L are defined as p1(α, β) =df α and p2(α, β) =df β. The identity
on L is denoted by id, i.e., idα =df α (see already Def. 3.1).

Various constructions by composition are frequently used, e.g.,

c(α,v) : L → L . . . c(α,v) (β) = α c (vβ)
c(α, id) : L → L . . . c(α, id) (β) = α c β

c(u, β) : L → L . . . c(u, β) (α) = (uα) c β

c(u, id) : L2 → L . . . c(u, id) (α, β) = (uα) c β

c(u,v) : L → L . . . c(u,v) (α) = (uα) c (vα)

c(up1,vp2) : L2 → L . . . c(up1,vp2) (α, β) = (uα) c (vβ)

c(id, id) : L → L2 . . . c(id, id) (α) = α c α

c(p1,p1) : L2 → L . . . c(p1,p1) (α, β) = α c α

c(p2,p1) : L2 → L . . . c(p2,p1) (α, β) = β c α, i.e., c (p2,p1) = cT

c(d, e) : L2 → L2 . . . c(d, e) (α, β) = (α d β) c (α e β), etc.

Convention 4.2 For the sake of more compact formulation of the following theorems, let us write
PosLip = Lip+1, NegLip = Lip−1, Mon = Mon+1, Ant = Mon−1.

Theorems (C1) and (C2) thus can be jointly formulated as Lipu,Moni u ⇔ Lipi u.

Theorem 4.3 FCT proves:

(C8) Moni(u),4Monj(v) ⇒ Moni·j(uv). The 4 cannot be omitted (counterexamples are easy to
construct).
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(C9) Lip(u), Lip(v) ⇒ Lip(uv)

(C10) Lipi(u),Lipj(v) ⇒ Lipi·j(uv)

Proof:

(C8) We shall only prove the case i = j = −1, the other cases are analogous. We obtain (α ≤ β) →
(vβ ≤ vα) by 4Mon−1(v) and (vβ ≤ vα) → (uvα ≤ uvβ) by Mon−1(u). Transitivity of
implication and generalization completes the proof.

(C9) Analogous.

(C10) Analogous.

QED

Similar theorems can be proved for compositions of binary connectives.

5 Graded dominance

Applying the definition of dominance between at most binary aggregation operators and making them
graded by replacing crisp ≤ by → (i.e., deleting the 4 hidden by Definition 2.1 in ≤ that appears
in the non-graded definition), we obtain the following notions of graded dominance. As usually, the
traditional notion of dominance is expressible as the graded notion satisfied to degree 1, i.e., prepended
by 4.

Definition 5.1 The graded relation ¿ of dominance between binary connectives is defined as follows:

c ¿ d ≡df (∀αβγδ)((α d γ) c (β d δ) → (α c β) d (γ c δ))

The graded relation of dominance (denoted by the same sign ¿) involving unary connectives is
defined as follows:

u ¿ c ≡df (∀αβ)(u(α c β) → (uα c uβ))
c ¿ u ≡df (∀αβ)((uα c uβ) → u(α c β))
u ¿ v ≡df (∀α)(uvα → vuα)

Observation 5.2 u ¿ u

Remark 5.3 Formally, we can also define dominance for nullary connectives as follows:

α ¿ c ≡df α → α c α

c ¿ α ≡df α c α → α

α ¿ u ≡df α → uα

u ¿ α ≡df uα → α

α ¿ β ≡df α → β

These definitions can sometimes be notationally useful. For example the properties ¬(0 c 0) and
1 c 1 occurring in the definition of aggregation operator can be expressed as c ¿ 0 and 1 ¿ c,
respectively (or shortly 0 ¿ c ¿ 1). Various observations can be made on these notions, e.g.,
u ⊆ id ↔ (∀α)(α ¿ u) and id ⊆ u ↔ (∀α)(u ¿ α).

Theorem 5.4 FCT proves the following graded properties of dominance:

(D1) 4Com(c),4Ass(c) ⇒ c ¿ c

(D2) Com(c),Ass4(c),Lip(c) ⇒ c ¿ c

(D3) 4Com(c),4Ass(c), Mon(c),d v c, c ⊆ d ⇒ c ¿ d

6



(D4) Com(c),Ass4(c),Lip(c),Mon(c),d v c, c ⊆ d ⇒ c ¿ d

(D5) 4Com(d),4Ass(d), Mon(d),d v c, c ⊆ d ⇒ c ¿ d

(D6) Com(d), Ass4(d), Lip(d), Mon(d),d v c, c ⊆ d ⇒ c ¿ d

Proof:

(D1) Notice that the proof is almost classical, but we use to get a fuzzy version:

From 4Com(c) we get γ cβ = β cγ and so also (by extensionality) (γ cβ)cδ = (β cγ)cδ. By
4Ass(c) (twice) we get γ c(β cδ) = β c(γ cδ) and so also (by extensionality) αc(γ c(β cδ)) =
α c (β c (γ c δ)). 4Ass(c) twice completes the proof.

(D2) The same proof as above just use graded version of assumptions and Lip(c) instead of exten-
sionality.

(D3) From d v c we get (α d γ) ≤ (α c γ) and (β d δ) ≤ (β c δ). Thus we get (α d γ) c (β d δ) −→
(αcγ)c (β cδ) −→ (αcβ)c (γ cδ) −→ (αcβ)d (γ cδ), where the first implication follows from
Mon(c) by (C7), the second implication is obtained from 4Com(c) and 4Ass(c) by (D1)
and the last one follows from c ⊆ d.

(D4) Analogous, just use (D2) instead of (D1).

(D5) Analogous.

(D6) Analogous.

QED

Theorem 5.5 FCT proves the following graded properties of dominance:

(D7) (∃η)4(Un(c, η) & Un(d, η)), c ¿ d ⇒ c ⊆ d

(D8) (∃η)(Un(c, η) & Un(d, η)), Lip(c), Lip(d), c ¿ d ⇒ c ⊆ d

Proof:

(D7) We assume c ¿ d i.e., in particular: (αdη)c (ηd δ) → (αcη)d (η c δ). From the assumptions
α d η = α c η = α, η d δ = η c δ = δ, we get (α c δ) → (α d δ). Quantifier shift completes the
proof.

(D8) Again the proof is analogous.

QED

Theorem 5.6 FCT proves the following graded properties of dominance:

(D9) Mon(c),& ¿ c ⇒ (α → β) c (γ → δ) → (α c γ → β c δ)

(D10) Mon(c),& ¿ c ⇒ (α ↔ β) c (γ ↔ δ) → (α c γ ↔ β c δ)

(D11) Mon(c),UnR(c, 1), & ¿ c ⇒ PosLipL(c)

(D12) Mon2(c),Un(c, 1), & ¿2 c ⇒ PosLip(c)

(D13) Mon(c),wUn(c, 1), & ¿ c ⇒ wPosLip(c)

Proof:

(D9) MTL4 proves ((α → β)&α) ≤ β and ((γ → δ)&γ) ≤ δ. Thus by Mon(c) and (C7) we obtain
((α → β)&α)c((γ → δ)&γ) → βcδ. As & ¿ c we obtain ((α → β)c(γ → δ))&(αcγ) → βcδ,
which completes the proof.

(D10) Analogous.

(D11) Follows from (D9) for γ = δ, using UnR(c) to obtain (α → β) c (γ → γ) ←→ (α → β) c 1 ←→
(α → β).

(D12) Analogous.
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(D13) Analogous.

QED

Theorems (D1) and (D7) are generalizations of two basic facts, namely that every t-norm domi-
nates itself and that dominance implies inclusion / pointwise order. Theorem (D1) can be informally
explained as saying that self-domination (or Aczél’s property of bisymmetry), holds not only for
t-norms, but to a fair degree also for all fully commutative, very associative and fairly monotone
connectives.

Theorems (D3)–(D6) have no correspondences among known results; they provide us with bounds
for the degree to which (c ¿ d) holds, where the assumption (d v c) & (c ⊆ d) would be obviously
useless in the crisp non-graded framework (as it necessitates that c and d coincide anyway). Theo-
rem (D9) provides us with strengthened monotonicity of an aggregation operator c provided that c
fulfills Mon(c) and dominates the conjunction of the underlying logic. Theorem (D10) is then a kind
of “Lipschitz property” of c (if we view ↔ as a kind of generalized closeness measure).

Theorem 5.7 FCT proves the following graded properties of dominance w.r.t. ∧:

(D14) Mon(c) ⇒ c ¿ ∧
(D15) 4Un(c, 1) ⇒ (∧ ¿ c) ≤ (∧ ⊆ c)

(D16) Un(c, 1), Lip(c) ⇒ (∧ ¿ c) → (∧ ⊆ c)

(D17) 4Mon(c),4Un(c, 1) ⇒ (∧ ⊆ c) ≤ (∧ ¿ c)

(D18) 4Mon(c),4Un(c, 1) ⇒ (∧ ⊆ c) = (∧ ¿ c)

(D19) Mon(c) ⇒ (∧ ¿ c) ↔ (∀α, β)((α c 1) ∧ (1 c β) ↔ (α c β))

Proof:

(D14) From 4(α ∧ γ → α) and 4(β ∧ δ → β) we obtain (α ∧ γ) c (β ∧ δ) → (α c β) using Mon(c)
and (C7). Analogously we obtain (α ∧ γ) c (β ∧ δ) → (γ c δ) and the proof is done.

(D15) As clearly 4Un(∧, 1) we can use (D7).

(D16) As clearly Un(∧, 1) and also Lip(∧) we can use (D8).

(D17) From 4Mon(c) and 4Un(c, 1) we obtain c v ∧ using (C3). Further we observe that
4Com(∧),4Ass(∧),Mon(∧) and thus we can use (D3).

(D18) Trivial.

(D19) From ∧ ¿ c we obtain (α c 1) ∧ (1 c β) −→ (α ∧ 1) c (1 ∧ β) −→ α c β. From MonR(c)
we get α c β → α c 1 and from MonL(c) we get α c β → 1 c β, i.e., from wMon(c) we get
α c β → (α c 1) ∧ (1 c β).

The second direction: assume that α ≤ β and so α ≤ α ∧ β. As γ ≤ 1 we can use Mon(c)
and (C7) to obtain the second implication in: (αcγ)∧(βcδ) −→ αcγ −→ (α∧β)c1. Observe
that we can prove the same from β ≤ α. Thus we have shown (α c γ) ∧ (β c δ) → (α ∧ β) c 1.

Analogously we show (α c γ)∧ (β c δ) → 1 c (γ ∧ δ) Thus together we have (α c γ)∧ (β c δ) →
((α ∧ β) c 1) ∧ (1 c (γ ∧ δ)). Our assumption gives us (α c γ) ∧ (β c δ) → (α ∧ β) c (γ ∧ δ)

QED

Theorem 5.7(1) is a graded generalization of the well-known fact that the minimum dominates any
aggregation operator [14]. Theorem 5.7(2) demonstrates a rather surprising fact: that the degree to
which a monotonic binary operation with neutral element 1 dominates the minimum is nothing else
but the degree to which it is larger. Theorem 5.7(3) is an alternative characterization of operators
dominating the minimum; for its non-graded version see [14, Prop. 5.1].
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Example 5.8 Assertion 2. of Theorem 5.7 can easily be utilized to compute degrees to which standard
t-norms on the unit interval dominate the minimum. It can be shown easily that

(∧ ⊆ c) = inf
x∈[0,1]

(x ⇒ c(x, x))

holds, i.e. the largest “difference” of a t-norm c from the minimum can always be found on the
diagonal. In standard ÃLukasiewicz logic, this is, for instance, 0.75 for the product t-norm and 0.5
for the ÃLukasiewicz t-norm itself. So we can infer that the product t-norm dominates the minimum
with a degree of 0.75 (assuming that the underlying logic is standard ÃLukasiewicz!); with the same
assumption, the ÃLukasiewicz t-norm dominates the minimum to a degree of 0.5.

6 Graded dominance and graded properties of fuzzy relations

Definition 6.1 In FCT, we define basic properties of fuzzy relations as follows:

Refl(R) ≡df (∀x)Rxx reflexivity
Irrefl ≡df (∀x)¬Rxx irreflexivity

Sym(R) ≡df (∀x, y)(Rxy → Ryx) symmetry
Transc(R) ≡df (∀x, y, z)(Rxy c Ryz → Rxz) transitivity

AntiSym(E),c(R) ≡df (∀x, y)(Rxy c Ryx → Exy) (E)-antisymmetry
ASymc(R) ≡df (∀x, y)¬(Rxy c Ryx) asymmetry

The following theorems show the importance of graded dominance for graded properties of fuzzy
relations. Theorem 4 is a graded generalization of the well-known theorem by De Baets and Mesiar
that uses dominance to characterize preservation of transitivity by aggregation [9, Th. 2].

Theorem 6.2 FCT proves:

Mon(d), c ¿ d ⇒ (∀E, F )(4Transc(E) & 4Transc(F ) → Transc(E d F ))

and
4Nul(c, 0), (∀E, F )(4Transc(E) & 4Transc(F ) → Transc(E d F )) ⇒ c ¿ d

where c is the class operation given by c, i.e., 〈x, y〉 ∈ c(E,F ) ≡ Exy c Fxy. We use infix notation.

Proof: Right-to-left direction: from (c ¿ d) we obtain (Exy d Fxy) c (Eyz d Fyz) → (Exy c
Eyz) d (Fxy d Fyz). From 4Transc(E) and 4Transc(F ) we know that (Exy c Eyz) ≤ Ezx and
(Fxy c Fyz) ≤ Fzx. Mon(d) completes the proof.

The second direction: let us fix three elements a 6= b 6= c 6= a and define two relations:

Exy = (x = a ∧ y = b ∧ α) ∨ (x = b ∧ y = c ∧ β) ∨ (x = a ∧ y = b ∧ α c β)

and
Exy = (x = a ∧ y = b ∧ γ) ∨ (x = b ∧ y = c ∧ δ) ∨ (x = a ∧ y = b ∧ γ c δ)

Observe that from 4Nul(c, 0) we easily get 4Transc(E) and 4Transc(F ). Thus we infer Transc(Ed
F ), which for x = a, y = b, and z = c yields (Eab d Fab) c (Ebc d Fbc) → (Eac d Fac), to complete
the proof use the definitions of E and F .

QED

The following theorem provides us with results on the preservation of various properties by sym-
metrizations of fuzzy relations.

Theorem 6.3 FCT proves the following properties of the symmetrization of relations:

1. Com(c) ⇒ Sym(R c R−1)

2. & ⊆ c,Refl2 R ⇒ Refl(R c R−1)
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3. & ⊆ c ⇒ AntiSymRcR−1 R

4. Mon(c), & ¿ c,4TransR ⇒ Trans(R c R−1)

In the crisp case, the commutativity of an operator trivially implies the symmetry of symmetriza-
tions by this operator. In the graded case, Theorem 5.1 above states that the degree to which a
symmetrization is actually symmetric is bounded below by the degree to which the aggregation opera-
tor c is commutative. Theorems 5.2–4 are also well-known in the non-graded case [8, 9, 16]. Obviously,
5.4 is a simple corollary of Theorem 6.2.

Acknowledgments
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