národní
úložiště
šedé
literatury

Overdetermined Absolute Value Equations

Rohn, Jiří
2019
Dostupný z http://www.nusl.cz/ntk/nusl-394153

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložišť̌ šedé literatury (NUŠL).
Datum stažení: 05.05.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Overdetermined Absolute Value Equations

Jǐ̌í Rohn
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1265
04.04.2019

Institute of Computer Science

 Academy of Sciences of the Czech Republic
Overdetermined Absolute Value Equations

Jiří Rohn ${ }^{1}$
http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1265
04.04.2019

Abstract:

We consider existence, uniqueness and computation of a solution of an absolute value equation in the overdetermined case. ${ }^{2}$

Keywords:
Absolute value equations, overdetermined system.

[^0]
1 Introduction

The absolute value equation

$$
\begin{equation*}
A x+B|x|=b \tag{1.1}
\end{equation*}
$$

has been studied so far for the square case only $\left(A, B \in \mathbb{R}^{n \times n}\right)$. In this report we consider the rectangular case ($A, B \in \mathbb{R}^{m \times n}$); the assumption (2.1) made below ensures that $m \geq n$, so that in fact we investigate the overdetermined case only.

Notation used: $|x|$ is the entrywise absolute value of x, ϱ denotes the spectral radius, I is the identity matrix and A^{\dagger} stands for the Moore-Penrose inverse of A.

2 The result

We shall handle the questions of existence, uniqueness and computation of a solution in frame of a single theorem.

Theorem 1. Let $A, B \in \mathbb{R}^{m \times n}$ satisfy

$$
\begin{equation*}
\operatorname{rank}(A)=n \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varrho\left(\left|A^{\dagger} B\right|\right)<1 \tag{2.2}
\end{equation*}
$$

Then for each $b \in \mathbb{R}^{m}$ the sequence $\left\{x^{i}\right\}_{i=0}^{\infty}$ generated by

$$
\begin{align*}
x^{0} & =A^{\dagger} b \tag{2.3}\\
x^{i+1} & =-A^{\dagger} B\left|x^{i}\right|+A^{\dagger} b \quad(i=0,1,2, \ldots) \tag{2.4}
\end{align*}
$$

tends to a limit x^{*}, and we have:
(i) if $A x^{*}+B\left|x^{*}\right|=b$, then x^{*} is the unique solution of (1.1),
(ii) if $A x^{*}+B\left|x^{*}\right| \neq b$, then (1.1) possesses no solution.

Proof. For clarity, we divide the proof into several steps.
(a) From (2.4) we have

$$
\left|x^{i+1}-x^{i}\right| \leq\left|A^{\dagger} B \| x^{i}-x^{i-1}\right|
$$

for each $i \geq 1$ and since $\left|A^{\dagger} B\right|^{j} \rightarrow 0$ as $j \rightarrow \infty$ due to (2.2), proceeding as in the proof of Theorem 1 in [2] we prove that $\left\{x^{i}\right\}$ is a Cauchian sequence, thus it is convergent, $x^{i} \rightarrow x^{*}$. Taking the limit in (2.4) we obtain that $x^{*}=-A^{\dagger} B\left|x^{*}\right|+A^{\dagger} b$, i.e., x^{*} solves the equation

$$
\begin{equation*}
x+A^{\dagger} B|x|=A^{\dagger} b \tag{2.5}
\end{equation*}
$$

(b) Assume that \tilde{x} also solves (2.5). Then

$$
\left|x^{*}-\tilde{x}\right| \leq\left|A^{\dagger} B\right|\left|x^{*}-\tilde{x}\right|,
$$

hence

$$
\left(I-\left|A^{\dagger} B\right|\right)\left|x^{*}-\tilde{x}\right| \leq 0
$$

and premultiplying this inequality by the inverse of $I-\left|A^{\dagger} B\right|$ which is nonnegative due to (2.2) results in

$$
\left|x^{*}-\tilde{x}\right| \leq 0,
$$

hence $x^{*}=\tilde{x}$ which means that x^{*} is the unique solution to (2.5).
(c) We prove that if x solves (1.1), then $x=x^{*}$. Indeed, in that case it also solves the preconditioned equation

$$
\begin{equation*}
A^{\dagger} A x+A^{\dagger} B|x|=A^{\dagger} b \tag{2.6}
\end{equation*}
$$

and since $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$ due to (2.1), $A^{\dagger} A=I$ and x solves (2.5) so that $x=x^{*}$.
(d) If $A x^{*}+B\left|x^{*}\right|=b$, then x^{*} is a solution of (1.1) and it is unique by (c).
(e) If $A x^{*}+B\left|x^{*}\right| \neq b$, then existence of a solution x to (1.1) would mean that $x=x^{*}$ by (c), hence $A x^{*}+B\left|x^{*}\right|=b$, a contradiction.

We have this immediate consequence.
Theorem 2. Under conditions (2.1) and (2.2) the equation (1.1) possesses for each $b \in$ \mathbb{R}^{m} at most one solution.

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125.
[2] J. Rohn, V. Hooshyarbakhsh, and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optimization Letters, 8 (2014), pp. 35-44.

[^0]: ${ }^{1}$ This work was supported with institutional support RVO:67985807.
 ${ }^{2}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

