

Overdetermined Absolute Value Equations

Rohn, Jiří 2019 Dostupný z http://www.nusl.cz/ntk/nusl-394153

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL). Datum stažení: 05.05.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

Overdetermined Absolute Value Equations

Jiří Rohn http://uivtx.cs.cas.cz/~rohn

Technical report No. V-1265

04.04.2019

Institute of Computer Science Academy of Sciences of the Czech Republic

Overdetermined Absolute Value Equations

Jiří Rohn¹ http://uivtx.cs.cas.cz/ \sim rohn

Technical report No. V-1265

04.04.2019

Abstract:

We consider existence, uniqueness and computation of a solution of an absolute value equation in the overdetermined case. 2

Keywords: Absolute value equations, overdetermined system.

¹This work was supported with institutional support RVO:67985807.

²Above: logo of interval computations and related areas (depiction of the solution set of the system $[2, 4]x_1 + [-2, 1]x_2 = [-2, 2], [-1, 2]x_1 + [2, 4]x_2 = [-2, 2]$ (Barth and Nuding [1])).

1 Introduction

The absolute value equation

$$Ax + B|x| = b \tag{1.1}$$

has been studied so far for the square case only $(A, B \in \mathbb{R}^{n \times n})$. In this report we consider the rectangular case $(A, B \in \mathbb{R}^{m \times n})$; the assumption (2.1) made below ensures that $m \ge n$, so that in fact we investigate the overdetermined case only.

Notation used: |x| is the entrywise absolute value of x, ρ denotes the spectral radius, I is the identity matrix and A^{\dagger} stands for the Moore-Penrose inverse of A.

2 The result

We shall handle the questions of existence, uniqueness and computation of a solution in frame of a single theorem.

Theorem 1. Let $A, B \in \mathbb{R}^{m \times n}$ satisfy

$$\operatorname{rank}(A) = n \tag{2.1}$$

and

$$\varrho(|A^{\dagger}B|) < 1. \tag{2.2}$$

Then for each $b \in \mathbb{R}^m$ the sequence $\{x^i\}_{i=0}^\infty$ generated by

$$x^0 = A^{\dagger}b, \qquad (2.3)$$

$$x^{i+1} = -A^{\dagger}B|x^{i}| + A^{\dagger}b \qquad (i = 0, 1, 2, ...)$$
(2.4)

tends to a limit x^* , and we have:

- (i) if $Ax^* + B|x^*| = b$, then x^* is the unique solution of (1.1),
- (ii) if $Ax^* + B|x^*| \neq b$, then (1.1) possesses no solution.

Proof. For clarity, we divide the proof into several steps. (a) From (2.4) we have

$$|x^{i+1} - x^{i}| \le |A^{\dagger}B| |x^{i} - x^{i-1}|$$

for each $i \ge 1$ and since $|A^{\dagger}B|^{j} \to 0$ as $j \to \infty$ due to (2.2), proceeding as in the proof of Theorem 1 in [2] we prove that $\{x^{i}\}$ is a Cauchian sequence, thus it is convergent, $x^{i} \to x^{*}$. Taking the limit in (2.4) we obtain that $x^{*} = -A^{\dagger}B|x^{*}| + A^{\dagger}b$, i.e., x^{*} solves the equation

$$x + A^{\dagger}B|x| = A^{\dagger}b. \tag{2.5}$$

(b) Assume that \tilde{x} also solves (2.5). Then

$$|x^* - \tilde{x}| \le |A^\dagger B| |x^* - \tilde{x}|,$$

hence

$$(I - |A^{\dagger}B|)|x^* - \tilde{x}| \le 0$$

and premultiplying this inequality by the inverse of $I - |A^{\dagger}B|$ which is nonnegative due to (2.2) results in

$$|x^* - \tilde{x}| \le 0,$$

hence $x^* = \tilde{x}$ which means that x^* is the unique solution to (2.5).

(c) We prove that if x solves (1.1), then $x = x^*$. Indeed, in that case it also solves the preconditioned equation

$$A^{\dagger}Ax + A^{\dagger}B|x| = A^{\dagger}b \tag{2.6}$$

and since $A^{\dagger} = (A^T A)^{-1} A^T$ due to (2.1), $A^{\dagger} A = I$ and x solves (2.5) so that $x = x^*$.

(d) If $Ax^* + B|x^*| = b$, then x^* is a solution of (1.1) and it is unique by (c).

(e) If $Ax^* + B|x^*| \neq b$, then existence of a solution x to (1.1) would mean that $x = x^*$ by (c), hence $Ax^* + B|x^*| = b$, a contradiction.

We have this immediate consequence.

Theorem 2. Under conditions (2.1) and (2.2) the equation (1.1) possesses for each $b \in \mathbb{R}^m$ at most one solution.

Bibliography

- W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125.
- [2] J. Rohn, V. Hooshyarbakhsh, and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optimization Letters, 8 (2014), pp. 35-44.