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Abstract:

In the article we propose randomized algoritms based on a modification of probabilistic proof of theorem on

rates of approximation in convex closures from [DDGS93]. On high-level we derive time complexities of the

proposed algorithms and compare them to iterative algorithms in several concrete situations. Observing

properties of one type of probabilistic algorithm we propose it as a solution for pruning a too big neural

network. We derive theoretically bounds on error such introduced.

Too big networks arise for example from regularized minimization problems. We overview kernel-based

regularization and propose use of the probabilistic algorithm. Further we discuss new types of composite

kernels and their advantages. Experiments on use of probabilistic pruning on these schemas are running.

Keywords:

probabilistic algorithm, randomized pruning, error estimate, time complexity, regularization, kernel

methods



Along the Barron-type investigation there are two established ways to estimate rates of approxima-
tion in Hilbert (and more generally Banach) spaces. The first one (pioneered by Jones [Jo92] and
Barron [Ba93], and generalized to Banach spaces by Darken et al. [DDGS93]) analyzes the process of
iteratively improving the approximating function. The intrinsic feature of this approach is, that to
get the n-th approximating function, fn, we first compute f0, f1, . . . , fn−1. This makes each of the
iterative steps easier to manage, but it also may constitute unnecessary work.

The other approach (established by Maurey [Ps81], and also pursued by Barron [Ba93], Darken et
al. [DDGS93], and Makovoz [Mk96]) is nonconstructive: it is possible to show that there exists a good
approximant using the so-called probabilistic method; that is in appropriately chosen probability
space, the probability of getting a good approximant is nonzero.

In first part of this article we extend this second approach – we suggest a randomized algorithm
and compare it to the iterative approach. To this end, we also analyze complexity of the iterative
algorithm, a task, which seems not to be addressed in existing literature.

By its nature the randomized algorithm is very well suited to prune networks with too many units
to obtain smaller ones with still good approximation abilities (probability estimates on error with
respect to error of original big network can be expressed). We propose how to use the randomized
algorithm to prune any kernel-method attained network to obtain reasonable number of hidden units.
Experiments towards this end are running in cooperation with Petra Kudov-Vidnerov on kernel-based
neural network schemas.

We start by analyzing the iterative algorithm in Section 1. In Section 2 we propose and study the
randomized algorithm. In Section 3 we briefly discuss the complexity of various “subprocedures” used
in the algorithms under study. Finally, in Section 4 we compare the suggested algorithms in various
situations. In Section 5 we briefly introduce theory of reproducing kernel Hilbert spaces (RKHS)
following [Ar50]. This is utilized in further sections: In Section 6 learning from data using Tikhonov
regularization employing kernels is presented. As has been mentioned in various detail in many works
existence, uniqueness and form of solution to the basic problem can be proven. In Section 7 we
present how to use the randomized algorithm to yield approximations that use less terms than the
above derived one. Section 8 shows applications of some concrete regularization networks, part of the
section comes from joint work with Petra Kudov-Vidnerov [KS05b], in cooperation with her we are
also working on experiments employing randomized algorithm to these specific schemas.

1 Iterative Algorithms

In this section we analyze time complexity of the algorithm suggested by Jones [Jo92] and Bar-
ron [Ba93], and further analyzed by Darken et al. [DDGS93]. In these papers, the authors concentrate
on the estimate of approximating abilities of some approximation schemas (in particular neural net-
works), without addressing the amount of computations needed to achieve such approximation. In
this section we try to clarify this point. We start by specifying the algorithm under study – or, more
precisely, the algorithms, as there are (at least) two distinct ways to organize the computations. Then
we do a “high-level” estimate of complexity, postponing the discussion of how some standard tasks
can be implemented to Section 3.

Let us present basic assumptions. We consider approximations of a function f using convex combi-
nations of functions from G, a subset of some function space X (which is a Banach space). We are
given n, the upper bound on the number of elements of G we are allowed to use. The key idea is to
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use the following iterative transformation.

f0 = 0

fk+1 = αfk + (1− α)gk, gk ∈ G, α ∈ [0, 1] (1.1)

We will use a result that appears as Theorem 3.5 in [DDGS93]:

Theorem 1.1 (Iterative rates in smooth Banach spaces [DDGS93]) Let X be a uniformly
smooth Banach space having modulus of smoothness ρ(u) ≤ γut with t > 1. Let G be a bounded
subset of X and let f ∈ cl conv G be given. Select ρ > 0 such that ‖f − g‖ ≤ ρ for all g ∈ G and fix
η > 0. We choose sequences {fk} ⊂ conv G and {gk} ⊂ G recursively so that

1. f1 ∈ G
2. Fk(gk − f) ≤ 2γ

kt−1‖fk−f‖t−1 ((ρ + η)t − ρt) =: δk

3. fk+1 = k
k+1fk + 1

k+1gk,

where Fk is peak functional for fk − f (we terminate the procedure if fk = f). Then we have

‖fk − f‖ ≤ (2γt)1/t(ρ + η)
k1−1/t

(
1 +

(t− 1) log2 k

2tk

)1/t
. (1.2)

Note that the error bound presented here holds in every step and thus also for an n given in advance
by the “enemy”. There are two natural ways to find an appropriate function gk in (1.1).

1. Using repeated optimization. The first approach is to use (1.1) as a way to reduce dimensionality of
an optimization problem (it was apparently meant so by Jones, who originally proposed this method).
That is, instead of choosing all functions to form the approximation at the same time, we only decide
about one function at a time. This amounts to n times solving a (multidimensional) optimization
problem, to find good enough gk: in view of Theorem 1.1 this means to find gk for which Fk(gk−f) ≤
δk. Here Fk is the peak functional for fk − f , that is a linear continuous functional of unit norm for
which Fk(fk − f) = ‖fk − f‖. We denote the time needed for finding such gk by topt(G, δk). We will
discuss topt further in Section 3.2. In (1.3) a lower bound on δk is presented; it yields δk = Ω(1/k1−1/t).
Based on these considerations we have the following algorithm and time analysis.

Algorithm 1.2 (Iterative from scratch)

Given: f , G, n

1. f0 = 0

2. For k = 0 to n− 1:

• Let Fk be a peak functional for fk − f .

• Find gk ∈ G so that Fk(gk − f) < δk, where δk is as in Theorem 1.1.

• Put fk+1 = k
k+1fk + 1

kgk

Output: fn

Time:
∑n−1

k=1(topt(G, δk) + O(1)) = O(n · topt(G, Ω( 1
n1−1/t )))
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2. Using an auxiliary approximation. The second approach (inspired by the proofs in [Jo92, Ba93,
DDGS93]) is to first find an auxiliary approximation of f , possibly using a large number of terms:
For i = 1, . . . , N we find hi ∈ G and ci (ci ≥ 0,

∑N
i=1 ci = 1) and put

fapx =
N∑

i=1

cihi .

We let εapx denote the error of this approximation, that is εapx = ‖f − fapx‖. We will discuss the
possibilities to obtain such approximation later, in Section 3.3. Meanwhile, we just let tapx(G, εapx, N)
denote the time needed to find such fapx. Next, in each iteration of (1.1) we choose for gk one of the
functions hi, i = 1, . . . , N . We will do so to make Fk(gk−f) < δk. Let us pause for a while to analyze
when is this possible. Due to linearity of Fk we have

Fk(gk − f) = Fk(gk − fapx) + Fk(fapx − f) .

The second term is at most ‖Fk‖ · ‖fapx − f‖ = εapx. The first term is “zero in the average”:

N∑

i=1

ciFk(hi − fapx) = Fk(
N∑

i=1

cihi)−
N∑

i=1

ciFk(fapx) = 0 .

Consequently, there is at least one hi for which Fk(hi − fapx) ≤ 0, therefore Fk(hi − f) ≤ εapx. We
will let gk be this hi (or one of them, if there is more than one such hi).

Theorem 1.1 states that we need Fk(gk − f) ≤ δk, thus it is sufficient to ensure εapx ≤ δk. As we do
not know in advance the size of ‖f − fk‖, we need a lower bound on δk, that can be evaluated before
we start the algorithm. Using the estimate (ρ + η)t − ρt ≥ ηtρt−1 for t > 1 and the inductive bound
on ‖f − fk‖, we get that

δk ≥ 2γtη


 ρ

k
(2γt)1/t(ρ+η)

(
1+

(t−1) log2 k
2tk

)1/t

k1−1/t




t−1

= (2γt)1/t η

k1−1/t

( ρ

ρ + η

)t−1(1 +
(t− 1) log2 k

2tk

)1/t−1 =: dk . (1.3)

Thus, we will choose fapx such as to make εapx ≤ dn−1. Hence the assumptions of Theorem 1.1 will
be satisfied, and so we get approximation fn as guaranteed by this theorem.

Algorithm 1.3 (Iterative from auxiliary approximation)

Given: f , G, n

1. Choose η > 0 (smaller η yields better approximation, as given by Theorem 1.1). Let the modulus
of smoothness of the given space be %(u) ≤ γut.

2. Put εapx = (2γt)1/t η
(n−1)1−1/t

(
ρ

ρ+η

)t−1(1 + (t−1) log2(n−1)
2t(n−1)

)1/t−1

3. For i = 1, . . . , N find functions hi ∈ G, and coefficients ci ≥ 0 with
∑N

i=1 ci = 1 so that

∣∣f −
N∑

i=1

cihi

∣∣ < εapx .
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4. Put f0 = 0.

5. For k from 0 to n− 1:

• Find i ∈ {1, . . . , N}, so that Fk(hi − f) ≤ δk, where δk is as in Theorem 1.1.

• Put gk = hi.

• Put fk+1 = k
k+1fk + 1

k+1gk.

Output: fn satisfying the estimate (1.2)
Time: tapx(G, εapx, N) + nNtint

Two remarks are in place.

How to compute peak functionals In a general Banach space, the existence of a peak functional for
every nonzero element is only guaranteed nonconstructively, by means of Hahn-Banach theorem. In
many concrete spaces, however, peak functionals are given by a simple integral formula (which is why
we denote time to evaluate peak functionals by tint, the time needed to enumerate an integral). For
instance, in a Hilbert space, peak functional corresponding to f is given by scalar product with f/‖f‖.
More generally, if f is an element of the Lp space, then we may put ψ(t) = sgn(f(t)) |f(t)|p−1

‖f‖p−1 . It is
easy to verify that F given by F (g) =

∫
g(t)ψ(t) dt is a peak functional corresponding to f .

An improvement for Hilbert spaces In Hilbert spaces we may utilize the simple form of the peak
functionals to improve time complexity of the above algorithm. A simple way to calculate the required
peak functionals (that is, scalar products) is to compute N scalar products at each iteration. This
requires time nNtint; we can do better, though.

Before we start our iteration process, we can compute the N scalar products 〈hi, f〉 and also 〈f, f〉.
We also store all the scalar products (〈hi, fk〉 for i = 1, . . . , N and for the “current value” of k. After
each step, when fk+1 is found using (1.1), we recalculate these scalar products. We assume that all
scalar products 〈hi, hj〉 are easy to compute, or precomputed, so the computation of 〈gi, fk〉 only
takes O(N) operations with numbers, but no scalar products. In this way, all the scalar products are
computed in time (N + 1)tint + O(nN).

2 Randomized Algorithms

In this section we are going to follow closely the proof of Theorem 2.1 as it appears in Darken et
al. [DDGS93]. At the end of it, rather than using the basic observation “there is always something at
least as good as the average”, we use the Markov inequality. This extra step has useful algorithmic
consequences, which we state as Corollary 2.3.

Recall that Lp spaces for p ≥ 1 are of Rademacher type min{p, 2}.

Theorem 2.1 (Probabilistic estimate of error in Banach spaces (based on [DDGS93])) Let
X be Banach space of Rademacher type t, 1 ≤ t ≤ 2. Suppose G ⊂ X, f ∈ cl conv G and let ρ > 0 be
such that for every g ∈ G we have ‖g − f‖ ≤ ρ.
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Assume we have an approximation of f of the form

fapx =
N∑

i=1

cihi,

N∑

i=1

ci = 1, ci ≥ 0, hi ∈ G

so that ‖f − fapx‖ < ε. We pick g1, . . . , gn from h1, . . . , hN independently at random, so that
Pr[gj = hi] = ci for each i, j.

Then the average

gapx = 1
n

n∑

i=1

gi

is (with high probability) a reasonable approximation, namely

Pr[‖gapx − f‖ > Q1/t · (C(ρ + ε)
n1−1/t

+ ε
)
] <

1
Q

.

Here C is a constant depending on X but independent of n, and Q > 1 is a parameter specifying the
trade-off between quality of approximation and time needed to find it.

Proof: We follow the proof of [DDGS93] altering it slightly at the end of the proof. Put ∆ = f−fapx,
so that ‖∆‖ < ε.

Take gj to be a sequence of independent random variables on X every one of them taking value hi

with probability ci. Then for any β ∈ (0, 1)

E

∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

=
1
nt

E

∥∥∥∥∥∥

n∑

j=1

(f − gj −∆) + n∆

∥∥∥∥∥∥

t

≤ 1
nt

E

(
(1− β)

‖∑n
j=1(f − gj −∆)‖

1− β
+ βn

‖∆‖
β

)t

≤ 1
nt


(1− β)E

(
‖∑n

j=1(f − gj −∆)‖
1− β

)t

+ β

(
n‖∆‖

β

)t



=
1

nt(1− β)t−1
E

∥∥∥∥∥∥

n∑

j=1

(f − gj −∆)

∥∥∥∥∥∥

t

+
1

βt−1
‖∆‖t (2.1)

This is true since x 7→ xt is a convex function on R+ for 1 ≤ t ≤ 2. Since the range of gj has finitely
many values, gj is a Radon random variable. As the Rademacher type of X is t, by Proposition 9.11
in [LeTa91] we have that there is a constant C = C(X) so that

E

∥∥∥∥∥∥

n∑

j=1

(f − gj −∆)

∥∥∥∥∥∥

t

≤ Ct
n∑

j=1

E‖f − gj −∆‖t. (2.2)
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It is also true that for every j

E‖f − gj −∆‖t =
N∑

i=1

ci‖f − hi −∆‖t

≤
N∑

i=1

ci(‖f − hi‖+ ‖∆‖)t

<

N∑

i=1

ci(ρ + ε)t

= (ρ + ε)t. (2.3)

Combining (2.1), (2.2) and (2.3) we get

E

∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

<
Ct(ρ + ε)t

nt−1(1− β)t−1
+

εt

βt−1
.

At this point we divert from the proof in [DDGS93]. The above equation is valid for every β ∈ (0, 1).
A simple calculus shows that the right hand side is minimized when β = (1 + C(ρ+ε)

εn1−1/t )−1. This value
of β yields

E

∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

<

(
C(ρ + ε)
n1−1/t

+ ε

)t

.

Thus, by Markov inequality we have

Pr




∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

≥ Q ·
(

C(ρ + ε)
n1−1/t

+ ε

)t



= Pr




∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥
≥ Q1/t ·

(
C(ρ + ε)
n1−1/t

+ ε

)


≤ 1
Q

.

2

Theorem 2.1 leads to the following algorithm.

Algorithm 2.2 (Probabilistic from auxiliary approximation)

Given: f , G, n

1. Pick η > 0 and put εapx = η
n1−1/t . The value of η affects the quality of approximation; as we

will see below, for Lp spaces (1 ≤ p ≤ 2) it is reasonable to make η comparable with ρ, or
sup{‖g − f‖ : g ∈ G}.

2. Find for i = 1, . . . , N functions hi ∈ G, and coefficients ci ≥ 0 with
∑N

i=1 ci = 1 so that

∣∣f −
N∑

i=1

cihi

∣∣ < εapx
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3. For j from 1 to n choose randomly tj ∈ {1, . . . , N} with Pr[tj = i] = ci.

4. Put gapx = 1
n

∑n
i=1 htj

5. If ‖f − gapx‖ ≥ Q1/t
(C(ρ+εapx)

n1−1/t + εapx

)
go back to step 2.

Output: gapx

Expected time: tapx(G, εapx, N) + (O(n log N) + ntint) Q
Q−1 .

Corollary 2.3 (Error of probabilistic algorithm) Algorithm 2.2 gives an approximation of f with
an error at most

Q1/t Cρ + η(1− C/n1−1/t)
n1−1/t

after an expected number of Q
Q−1 repetitions.

Proof: By Theorem 2.1 the probability of failure in Step 5 is at most 1/Q, so we can bound
the number of repetitions by a geometric random variable with probability of success 1 − 1/Q. The
expectation of this random variable is Q

Q−1 . 2

Remark We have kept C in the estimates to preserve generality. However, in the most interesting
case (from the practical point of view), which is Lp with p ∈ [1, 2], we have C = 1 (see [DDGS93], the
discussion above Corollary 2.6).

Now we set out to estimate the running time of Algorithm 2.2. As in the previous section, we will
postpone the discussion of some “sub-procedures” to Section 3.

The second step has time complexity tapx(G, εapx, N). Then we need to pick a random number n

times with the correct distribution. The standard way to do this is to define bi =
∑

j≤i cj , so that
0 = b0 < b1 < · · · < bN = 1. Then we pick a uniformly random number u ∈ [0, 1] and find i such
that u ∈ (bi−1, bi); we let the next tj be equal to i. To be able to tell which interval u belongs to, we
need to sample it with sufficient precision. When we do this “adaptively”, that is we only generate as
many bits as needed to tell which interval will u end up in, we need on average

N∑

i=1

ci(1 + log2

1
ci

) ≤ 1 + log2

N∑

i=1

ci
1
ci

= 1 + log2 N

random bits (we have used concavity of log and the Jensen inequality for numbers 1/ci). Altogether
Step 3 takes time O(n log N).

For Step 4 and 5 we need time O(n · tint), as we need to compute the sum in Step 4 for every point,
where we will be evaluating fapx when checking the norm ‖f − fapx‖ in Step 5.

Altogether, we obtain the expected time complexity

tapx(G, εapx, N) + (O(n log N) + ntint)
Q

Q− 1
.

In Section 4 we will discuss how this compares to the estimates obtained for the iterative algorithm.

Next we proceed with a variant of the above results for functions for which an integral representation
is known. The following theorem is based on ideas from [DDGS93].
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Theorem 2.4 (Probabilistic error in Banach spaces, int. repr.) Let H ⊆ Rd be open and let
X = Lp(H). Put t = min{p, 2}. Let A be a subset of Rk. Suppose ϕa = ϕ(·, a) is in X for each
a ∈ A. Put G = {±ϕa : a ∈ A} ⊂ X and assume that we have an integral representation of f of form

f(x) =
∫

A

w(a)ϕ(x, a) da

∫

A

|w(a)| = 1 .

Let ρ > 0 be such that for every g ∈ G we have ‖g − f‖ ≤ ρ.

We pick g1, . . . , gn from G independently at random, so that |w(a)| is the density of the probability
of choosing ±ϕ(·, a). We take +ϕ(·, a) for w(a) > 0 and −ϕ(·, a) for w(a) < 0.

Then the average gapx = 1
n

∑n
i=1 gi is (with high probability) a reasonable approximation, namely

Pr
[
‖gapx − f‖ > Q1/t · Cρ

n1−1/t

]
<

1
Q

.

Here C > 0 is a constant depending on X but independent of n, and Q > 1 is a parameter specifying
the trade-off between quality of approximation and time needed to find it.

Proof: Take gj to be a sequence of independent random variables on X every one of them taking
value hi with probability ci.

E

∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

=
1
nt

E

∥∥∥∥∥∥

n∑

j=1

(f − gj)

∥∥∥∥∥∥

t

(2.4)

The range of gj is a subset of Lp(H), which is a separable Banach space. (C0(H) is dense in Lp(H)
(for 1 ≤ p < ∞) – Corollary 19.20 in [Js03]. Then we use the Weierstrass theorem to approximate
continuous functions by polynomials and we observe that it is enough to consider polynomials with
rational coefficients.) Consequently, gj is a Radon random variable [LeTa91, p.38]. As the Rademacher
type of X is t, by Proposition 9.11 in [LeTa91] we have that there is a constant C = C(X) so that

E

∥∥∥∥∥∥

n∑

j=1

(f − gj)

∥∥∥∥∥∥

t

≤ Ct
n∑

j=1

E‖f − gj‖t. (2.5)

It is also true that for every j

E‖f − gj‖t =
∫

A

|w(a)|‖f ± ϕ(x, a)‖t

≤
∫

A

|w(a)|ρt

= ρt. (2.6)

Combining (2.4), (2.5) and (2.6) we get

E

∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

<
Ctρt

nt−1
.
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Thus, by Markov inequality we have

Pr




∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥

t

≥ Q · ( Cρ

n1−1/t

)t




= Pr




∥∥∥∥∥∥
f − 1

n

n∑

j=1

gj

∥∥∥∥∥∥
≥ Q1/t · ( Cρ

n1−1/t

)



≤ 1
Q

.

2

Theorem 2.4 leads to the following algorithm.

Algorithm 2.5 (Probabilistic from integral representation)

Given: f , ϕ, n

1. Find an integral representation for f of form

f(x) =
∫

A

w(a)ϕ(x, a) ,

so that
∫

A
|w(a)| = 1.

2. For j from 1 to n choose randomly aj ∈ A with the density of probability |w(a)|.
3. Put gj = ϕaj if w(aj) > 0, and gj = −ϕaj if w(aj) ≤ 0.

4. Put gapx = 1
n

∑n
i=1 gj

5. If ‖f − gapx‖ ≥ Q1/t
(

Cρ
n1−1/t

)
go back to step 2.

Output: gapx

Expected time: O(nsgen(w)d · tint
Q

Q−1 )

For discussion of sgen see below.

Corollary 2.6 (Error of integral probabilistic algorithm) Algorithm 2.5 gives an approxima-
tion of f with an error at most

Q1/t Cρ

n1−1/t

after an expected number of Q
Q−1 repetitions.

The proof is the same as for Corollary 2.3.

In Algorithm 2.5 we need to generate a according to a non-uniform distribution, the density of the
probability being |w(a)|. A general approach to do this is the acceptance-rejection method (developed
by von Neumann). The basic idea is as follows. We find C so that |w(a)| ≤ C for each a. For
simplicity assume first that vol(A) = 1 and

∫
A
|w(a)| = 1. We generate a ∈ A and u ∈ [0, 1] uniformly

at random, and accept a if u ≤ |w(a)|
C (that is, we accept a with probability proportional to |w(a)|).

9



If we reject the generated a, we repeat the procedure. It is easy to see, that the expected number
of steps needed to generate one a according to |w(a)| is C: thus this basic approach is inefficient if
|w(a)| varies widely. In such case we try to find a simple upper bound CW (a) on |w(a)| (so that∫

A
W (a) = 1) and generate a with density W (a), rather than uniformly. For the details we refer

the reader to Section 5.1.2 of [We00]. If we are given w such that I =
∫

A
|w(a)| 6= 1, we just find

(estimate) I (for example by Monte Carlo integration, see Section 3.1) and then we will be generating
a according to |w(a)|/I and then put gi = ±Iϕ(·, a).

The conclusion is that our ability to efficiently generate with density |w(a)| depends on our knowledge
of the function w. We will use sgen(w) to denote the number of steps needed to generate one a with
probability density |w(a)|.
The estimate of the running time of Algorithm 2.5 is derived similarly as that of Algorithm 2.2. There
are two differences: instead of finding an approximating function fapx, we need to get the integral
representation – more precisely, we will be repeatedly evaluating w(a).

When the approach of [KKK97] is used to obtain the integral representation, we may use the discussion
in Section 3.3, where we estimate the time to evaluate w(a) by d · tint. Also we need to estimate∫

A
|w(a)|, which takes about d · (tint)2.

Altogether, we obtain the expected time complexity

d · t2int + (nsgen(w)d · tint + n · tint)
Q

Q− 1
= O(nsgen(w)d · tint

Q

Q− 1
) .

In the above equation we needed to compare tint and nsgen: from Section 3.1 we have tint ∼ ε−2, while
n ∼ ε−

1
1−1/t . We see that for t = 2 we have tint ∼ n, if t gets closer to 1 (arguably the most interesting

case) n gets larger. Moreover sgen is at least 1. This allows us to simplify the time complexity as
above.

In Section 4 we will discuss how this compares to the other algorithms.

3 Numerical Issues

In this section we will discuss numerical issues that arose when estimating running times of the
algorithms proposed in the previous two sections. We do not claim any originality in this section, and
also, given the limited space, we hardly scratch the surface of the extensive field of research, which
numerical analysis presents. Our purpose here is to shortly overview relevant known results in order
to be able to somewhat understand the running times of the studied algorithms. We will deal with
tint in Section 3.1, topt in Section 3.2, and tapx in Section 3.3.

Our model of computation is a simple one: we assume, that variables in our algorithms hold one real
number, and that we can perform basic operations with real numbers at unit cost. Thus, we avoid
discussing in detail numerical stability of the presented algorithms and also the effect of required
precision is treated only partially.

3.1 Numerical Integration

In the discussed algorithms we need to compute numerically various integrals. In this section we start
by an overview of known methods for estimating integrals. Then we show how to extend the idea of
Monte-Carlo integration for the situation when the integral depends on parameter. We will include
an estimate of time complexity of these methods. This will in the end lead to an estimate on tint.
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A. Classic methods Finding numerical estimates of definite integrals is a central topic in numerical
analysis. The classical approach to estimate I =

∫
S

h(x) dx is as follows: We divide the region S

into small parts (by a “dense regular grid”). On each of them we approximate h by polynomials and
integrate those. The next claim summarizes such results.

Claim 3.1 (Classic numerical integration [Numerical Basics]) Suppose h ∈ Cr(S),
where S ⊆ Rd. We can estimate

∫
S

h(x) using values h(xi) in some (carefully chosen) points x1, . . . ,
xN . with error at most

O(N− r
d )

(the constant in O(·) depends on maxx∈S |f (r)(x)| and on the volume of S).

We see another case of the “curse of dimensionality”: to achieve error bounded by ε, we need to take
N = Ω(ε−d/r). One way out of this would be to consider functions defined in Rd that are d-times
continuously differentiable, but this may be a too strict requirement. Another common method is to
use “sparse grids” – i.e., we use more points to sample the function h in that parts of S, where h varies
more. This method yields error O( (log N)(d−1)(r+1)

Nr ), where, again, N is the number of sample points
and r the regularity of f . When d is large (as is usually the case in applications of neural networks),
the standard approach is to use random sampling, which we discuss in the next section.

B. Monte-Carlo methods of integration We start by an overview of the basic Monte-Carlo method.
For more details, see e.g. [We00]. In the same setting as above, let x1, . . . , xN be chosen uniformly
at random from S. Put

E = vol(S) 1
N

N∑

i=1

h(xi).

As expectation of h(xi) is I/vol(S), we get that E is an unbiased estimator for I. To find how reliable
results E yields, one uses tail estimates for sums of independent random variables. For example, by
using the Chebyshev and Chernoff-Hoeffding bound we can easily get the following.

Claim 3.2 (Monte-Carlo integration, see, e.g., [CuSm01]) Let h, S, and E be as above. Then
the expected value of E is

∫
S

h(x). Moreover:

(a) If h is in L2(S) and σ2 = 1
vol(S)

∫
S
(h vol(S)− ∫

S
h(x))2, then for any η > 0 we have

Pr[|E −
∫

S

h| > η√
N

] ≤ σ2

η2
.

(b) If h is in L∞(S) and M is such that |h(x)vol(S)− ∫
S

h(s) ds| ≤ M for almost every x ∈ S, then
for any η > 0 we have

Pr[|E −
∫

S

h| > η√
N

] ≤ 2e−
η2

2M2 .

As a side-remark, we note that in the literature about the application side of Monte-Carlo integration,
the method is frequently justified by mentioning the Central Limit Theorem. Indeed, Central Limit
Theorem gives that the distribution of (E − ∫

S
h)
√

N converges to normal distribution. This yields
bound similar to that in part (b) for any function h, that satisfies assumptions of the Central Limit
Theorem, in particular the Lyapunov condition is satisfied for h ∈ L2+ε(S) for any ε > 0. However,
this only yields information about the limit distribution. If we want a bound for some particular N ,
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we need to utilize the Berry–Esseen theorem: it estimates the speed of convergence to the normal
distribution, but the guaranteed bound is only O(1/

√
N).

Claim 3.2 allows us to quickly estimate the various integrals we need for time complexity estimates
for our algorithms. If we want to get the “probable” error ε, it suffices to use N ≥ C(1/ε)2, with the
constant C depending on the function to be integrated (and also on the probability with which we
want to get the desired precision). As we do not care about constants in our analysis, we summarize
this as tint(ε) = O(1/ε2).

3.2 Optimization

In this section we briefly touch the problem of optimization, as we are using it in one of our iterative
algorithms. We can give only a glimpse of this interesting subject, for a more thorough treatment we
suggest for instance [BoVa04].

In Algorithm 1.2 we needed to find a function for which a certain functional is small. It would be hard
to be searching for an arbitrary function, fortunately we are looking for functions in specific forms. In
the perceptron model we are searching for an optimal ridge function σ(a · x + b), where σ is the given
activation function, a, x ∈ Rd, b ∈ R. This means that we are actually minimizing a function of d + 1
real variables (a, b).

Generally, suppose we are seeking for a minimum of a function h, defined on A ⊆ Rd′ ; we assume
that d′ is large. There is a plethora of branches of the optimization theory, where this question is
studied under various assumptions (h is linear, quadratic, convex, . . . ). Unfortunately, none of these
assumptions is applicable. The only general approach that guarantees finding the global optimum, is
to sample h at all points of a dense enough grid, where what is dense enough depends on some bounds
on derivatives of h (or its modulus of continuity). Obviously, this is not practical even for moderately
large d′, as the number of sample points scales as md′ . (Here m is the number of division points in
one dimension, which depends on the size of the region we are optimizing over, and on the modulus
of continuity of the optimized function.) Thus, we need to leave the realm of guaranteed methods.
Most methods used in practice are actually searching for local minimum. Then, a variety of methods
(multiple runs of the algorithm with random starting points, simulated annealing, etc.) is used to
get a chance of finding the global minimum. Obviously, without some knowledge of the function h,
nothing can be said, and we can only attempt for a reasonably good heuristic.

A better understood question is how to search for the local minimum. The basic way is the gradient
method:1 we start at a random point a = a0, compute the gradient ∇h(a) (assuming it exists), and
move against the gradient, by a (carefully guessed) distance. In Algorithm 1.2 we need to optimize the
peak functional Fk(g). As we discussed after the algorithm Fk(g) =

∫
g(x)ψ(x) dx for some function ψ.

In the notation of this section, the point a = (a1, . . . , a
′
d) ∈ A corresponds to parameters we use to

describe the function g, h(a) is the integral
∫

gψ. Under mild assumptions the gradient ∇h(a) is the
integral

∫
(∇g)ψ. (Here ∇g = ( ∂

∂ai
g)i is a collection of functions that describe how g changes if we

change the parameters a.) It follows that single step of gradient method will take time d′ · tint.

The speed of convergence depends on both the chosen variant of this method, and on properties of h.
One of the estimates for the number of repetitions (under the assumption of strong convexity of h) is
as follows, see Chapter 9 in [BoVa04]. We let κ denote an upper bound on the condition number of
the matrix of the second partial derivatives ∇2h(a). We let a∗ ∈ A be the point where the minimum

1This is the usual way to carry on the backpropagation algorithm, the common way to train a feedforward neural

network.
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of h is attained (for strongly convex h such point exists and is unique). Finally, ε > 0 is the required
precision, that is we want to find a so that h(a)−h(a∗) ≤ ε. The number of iterations of the gradient
method to achieve this is at most

log h(a0)−h(a∗)
ε

log(1− 1
κ )

. (3.1)

Unfortunately, the condition number can be rather large and, what is worse, we need to minimize a
function that is not convex. In this view, the time topt needed to find a minimum of a function, is
hard to evaluate. A reasonable estimate is

topt ∼ d′ · tint · sopt ,

where sopt = sopt(ε) (the required number of steps) is estimated by the formula (3.1).

3.3 Approximation

In this section we discuss several ways to obtain a “starting approximation” of a function f(x) we
are trying to estimate. Our point of view will be somewhat different from the one in Sections 1
and 2 in that we are not striving to get small number of approximating functions. Thus, we allow a
somewhat larger number of functions (resulting in a larger time-complexity of obtaining the solution,
but, perhaps, also making it easier to find a solution). Then we shall use algorithms in Sections 1
and 2 to get efficient approximations.

So suppose we are given a function f(x), for x ∈ H. Let us assume that this function is given to us
by means of values at sample points (the position of these sample points may or may not be under
our control).

High-dimensional optimization One way to find the desired approximation is to choose N and opti-
mize expression

∑N
i=1 cigi(x). We optimize by modifying the ci’s and the parameters describing the

functions gi. We choose N high enough, so that we can get good enough approximation, but small
enough, so that the task is still computationally feasible. By choosing N larger, than will be the
number n of the functions in the final approximation, we may hope to partially overcome one of the
complications of the high-dimensional optimization – the fact, that optima can be hard to find. By
choosing N large, we make sure that very good approximations exist, so our desired precision may
not be so hard to achieve. If we use some variant of the gradient method to do the optimization, the
amount of computation for one step is N times larger than when we optimize just one function. It is
not clear how the number of steps is affected by having a large N . However, we may roughly estimate

tapx ∼ N · topt .

Using integral representation It may be easier to first find an integral representation. (Then we will
“sample from the integral”, instead from the sum.) Two different approaches to obtain a relevant
integral representation were pursued by Kůrková, Kainen and Kreinovich, and by Barron. We will
concentrate on the approach of Kůrková, Kainen and Kreinovich, using their result, we express f(x)
as an integral of form

f(x) =
∫

A

w(a)ϕ(x, a) dx .

Here, ϕ(·, a) is the Heaviside function in a direction and shift given by a.
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We will discuss next, how computationally accessible this representation is. In Algorithm 2.5 we needed
to evaluate w(a) and

∫
A
|w(a)|. To get w(a) we need to compute the d-th directional derivative of f

and integrate it over a hyperplane. Numerical estimate of the d-th derivative takes time proportional
to d, so we can evaluate w(a) in time O(dtint). To estimate

∫
A
|w(a)|, we will use Monte-Carlo

integration, which takes time O(d(tint)2). In this formula, the two instances of tint correspond to
different integrals (one over x and the other over a), but in most applications these variables have
similar dimension, so we neglect this small distinction.

Kernels Yet another way to obtain the starting approximation to the given function is using the
Tikhonov regularization method and Reproducing Kernel Hilbert Spaces. In Section 7 we will see
how the algorithms presented in this section may be used in such setting.

4 Comparison of proposed algorithms

In this section we will compare the algorithms under discussion: the iterative algorithms (either with
repeated optimization, or using an auxiliary approximation) and the randomized algorithms (using an
auxiliary approximation or an integral representation). In Table 4.1 we summarized what we found
in the previous sections. However, the time complexities depend highly on the particular problem at
hand. Indeed, the choice of functions used in the approximation, as well as the data we are trying to
approximate affect, among else, the number of steps needed in the gradient method, which is usually
the workhorse of the optimization “subprocedure”. We make no attempt to analyze these subtleties;
for this reason (and for the sake of brevity) we also suppress G from the expressions in Table 4.1. We
will not try to provide universal conclusion, which of the algorithms is the best. Instead, we will try
to address this question in different “scenarios”. The scenarios will describe how we search for the
“auxiliary” approximation fapx.

Iterative 1 (rep. optimiz.)
∑n−1

k=1 topt( c1
k1−1/t ) ∼ n · topt( c1

n1−1/t )

Itrative 2 (using aux. approx.) tapx( c2η
n1−1/t , N) + nN · tint

Randomized 1 (approx.) tapx( c3η
n1−1/t , N) +

(
O(n log N) + n · tint

)
Q

Q−1

Randomized 2 (int.repr.) O(nd · sgen(w) · tint · Q
Q−1 )

Table 4.1: Time complexities of the discussed algorithms.

Disclaimer about N One piece of information that will be missing from our analysis is the size of N

relative to n. The value of N depends on our choice, and in turns affects the complexity of the
approximation. Roughly speaking, if N increases, it is more work to find the approximation, but
the approximation will become an easier task (we know that the achievable error decreases with the
number of terms in the approximation). As such, optimal choice of N depends on the task being
solved and the used methods. From practical considerations, however, it is reasonable to expect that
n ≤ N ≤ nk for some small constant k.

Iterative 2 vs. Randomized 1 In this paragraph we will (somewhat in contrary to the first paragraph)
compare the algorithms Iterative 2 and Randomized 1 “universally”. Recall that Q in the randomized
algorithm describes the expected quality of the solution (we are ready to be satisfied with a solution
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Q times worse than what is guaranteed to exist). As this is a constant greater than 1, we can see,
that when using auxiliary approximation the Randomized algorithm is always superior to Iterative 2.
In the following, we will only discuss Iterative 1 and Randomized.

1. scenario: auxiliary approximation is found by high-dimensional optimization As discussed in Section
3.3, tapx(G, ε, N) ∼ N · topt(G, ε). Consequently,

tIter1 ≤ n · topt < N · topt ∼ tapx ≤ tRand1 .

This suggests, that in this case we should be using the iterative algorithm, especially if N is very large.
This is probably the expected result: after all, the idea behind the Iterative algorithm as suggested
by Jones [Jo92] is to reduce the dimension of the problem.

2. scenario: an auxiliary approximation is given In this second scenario, we assume that we are given
some approximation of a function f(x), possibly using many functions. Our task is to find an ap-
proximation using less functions and achieving a reasonable error. In this setting, the first iterative
algorithm is wasteful, as it cannot anyhow use the given approximation. Indeed, we certainly have
topt ∼ dtintsopt À tint. Also, for the typical range of N we have topt À log N . Consequently, in this
scenario the randomized 1 algorithm provides an efficient method to improve a given approximation
by “pruning it at random”.

tRand1 < tIter1

This will be utilized in section 7:we will consider situations where a natural approach yields sums with
large number of terms N (Theorem 6.1).

3. scenario: auxiliary approximation is obtained from an integral representation In many situations we
may have access to some sort of integral representation of the function under study. We will use the
second version of the rendomized algorithms in such case.

We will consider here an approach of this type, which was studied by Kůrková, Kainen and Kreinovich
[KKK97]. As discussed in Section 3.3 and 2, the time complexity of our algorithm is O(nsgen(w)d ·
tint

Q
Q−1 ) To compare this to the iterative algorithm, recall from Section 3.2 that topt ∼ d · tintsopt.

Thus we are comparing

nd · tintsgen(w)
Q

Q− 1
with nd · tintsopt ,

or sgen(w) Q
Q−1 with sopt. Now sgen can be as small as 1 (and even in the simplistic approach it is at

most (max w(a))/
∫

A
|w(a)|). In particular, (in our simple analysis, at least) it does not depend on

the required precision. On the other hand, sopt is much larger than 1, and it depends on the required
error (although only by a factor log 1/ε). Most importantly, we may run into troubles with finding
a local minimum that is not global. Thus, we may conclude that when the integral representation is
available, the randomized algorithm that utilizes it (Algorithm 2.5) is better than the iterative one.

tRand2 < tIter1

So far we proposed a new algorithm to find neural networks with small number of units and reasonable
approximation error. (Equivalently, we are seeking an approximation of a given function by a sum
with each term being one of a given set of approximating functions, where we want this sum to have a
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small number of terms.) Roughly speaking, the algorithm utilizes an auxiliary approximation (using
a large number of units) and “prunes” this approximation by taking only some of these units. This
selection process is done randomly, and, as shown in Corollary 2.3 it provides an approximation with
close-to-optimal error in a small expected number of steps.

We analyzed two scenarios, where this algorithm is useful. One is when we are given an approximation
and the goal is to use a smaller number of units without increasing the error too much. (This combines
well with the techniques that we will discuss in section 7.)Another scenario, where the proposed
algorithm is better than the usual one (which uses repeated optimization), is when our function
admits an integral representation. We utilize a result of Kůrková, Kainen and Kreinovich [KKK97]:
given f ∈ Cd(Rd), there is an integral representation using Heaviside units with explicitly given
weights.

Finally, let us remark, that the suggested randomized algorithm works without modification for other
models of neural networks (such as RBF networks).

In this part of the paper we show a natural way to use randomized algorithm for pruning a too rich
network. We consider the approximation task formulated as regularized minimization problem with
kernel-based stabilizer. These approximation tasks exhibit easy derivation of solution to the problem in
the shape of linear combination of kernel functions (see for example [SchSl02]) that can be interpreted
as one-hidden-layer feedforward network schemas. For basic quadratic error functional parameters of
these networks can be computed from a linear system; however, these networks tend to have too many
hidden units (in fact as many as was the number of data). There are many ways around this problem
(see for example [SchWe06]). We propose a solution that uses randomized algorithm (2.2). This is
probably the most interesting result of this section.

We also mention concrete applications of a special type of kernels proposed by the author – sum
kernels and product kernels. As part of our joint work [KS05b], [KS06] Petra Kudov-Vidnerov tested
these new schemas on real-life data and compared them to classical solutions. Experiments on pruning
by randomized algorithm are running.

5 Reproducing Kernel Hilbert Spaces

Reproducing kernels proved themselves very useful in approximation theory. We introduce the basic
concept and properties in Section 5.1. In Sections 5.2 and 5.3 we show two special types of composite
kernels which we will use later in Section 8 to derive concrete approximation schemas.

5.1 Basic Properties

Reproducing Kernel Hilbert Spaces were formally defined by Aronszajn [Ar50], although related con-
cepts were used even before. They find ample use in applications ranging from PDE’s to machine
learning, see e.g. a survey [SchWe06]. In this section we present the reader with definitions and a
brief overview of the properties needed for our purposes. We follow [Ar50], where we also kindly refer
the reader for more details and all of the proofs.

Given a Hilbert space H of functions (real or complex) defined on Ω ⊂ Rd we let Fx denote the
evaluation functional, that is Fx(f) = f(x). If for each x ∈ Ω the evaluation functional Fx is
continuous, we say that H is a Reproducing Kernel Hilbert Space, shortly an RKHS. The term is
suggested by the following important property: In an RKHS as above there exists a positive definite
symmetric function k : Ω× Ω → R (reproducing kernel corresponding to H) such that

16



(i) for any f ∈ H and y ∈ Ω the following reproducing property holds

f(y) = 〈f(x), k(x, y)〉 ,
where 〈·, ·〉 is scalar product in H and

(ii) for every y ∈ Ω, the function ky(x) = k(x, y) is an element of H.

We bring here some basic properties of RKHS.

Lemma 5.1 (Uniqueness of reproducing kernel [Ar50]) Let H be a Hilbert space with a repro-
ducing kernel k. Then k is unique.

Proof: We include here this short proof (due to [Ar50]) to illustrate the reproducing property of
reproducing kernels. Suppose we have two reproducing kernels k, k′ and k 6= k′. Then for some y we
have 0 < ‖ky − k′y‖2 = 〈ky − k′y, ky − k′y〉 = 〈ky − k′y, ky〉 − 〈ky − k′y, k′y〉. By the property (i) in the
definition of kernel, this equals (k(y, y)− k′(y, y))− (k(y, y)− k′(y, y)) = 0, which is a contradiction.
2

Lemma 5.2 (Existence of reproducing kernel [Ar50]) Let H be a Hilbert space of functions
on Ω ⊂ Rd. Suppose that all evaluation functionals Fx are continuous. Then there exists a re-
producing kernel satisfying properties (i) and (ii) and from the reproducing property it follows that the
kernel is positive definite. On the other hand from (i) and (ii) we conclude that evaluation functionals
are continuous.

Lemma 5.3 (Uniqueness of RHKS [Ar50]) To every k(x, y) satisfying the properties (i) and (ii)
there corresponds one and only one Hilbert space H admitting k as a reproducing kernel.

5.2 Sum of Reproducing Kernels

In this section we will present the notion of a sum of RKHS’s, as described in [Ar50]. This will be
utilized later, in Section 8.2. The sum of two RKHS’s is defined simply as the space containing all
sums of two functions, one from each of the RKHS’s. Some care has to be taken when defining the
norm (and scalar product) as there may be many sums that yield the same function.

For i = 1, 2 let Fi be an RKHS of functions on Ω, let ki be the corresponding kernel and ‖.‖i the
corresponding norm. Consider the space H = {{f1, f2} | f1 ∈ F1, f2 ∈ F2}. with norm given by
‖{f1, f2}‖2 = ‖f1‖21 + ‖f2‖22.
We have to deal with duplicities. Consider the class F0 of all functions f belonging to F1 ∩ F2. We
define H0 := {{f,−f}; f ∈ F0}. H0 is a closed subspace of H and thus we can write H = H0 ⊕H ′,
where H ′ is the subspace complementary to H0. Now to every element {f1, f2} of H there corresponds
a function f(x) = f1(x) + f2(x). This is a linear correspondence transforming H into a linear class of
functions F . Elements of H0 are transformed into zero functions and thus the correspondence between
H ′ and F is one-to-one and has an inverse (for f ∈ F we let {g1(f), g2(f)} be the corresponding element
in H ′ ⊆ H). We define norm on F by

‖f‖2 = ‖{g1(f), g2(f)}‖2 = ‖g1(f)‖21 + ‖g2(f)‖22 . (5.1)

Here we present a result from [Ar50] showing that to the class F with the above defined norm there
corresponds a reproducing kernel k = k1 + k2.
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Theorem 5.4 (Sum-kernel RKHS [Ar50]) Let Fi be RKHS and ki and ‖.‖i the corresponding
kernels and norms. Let F be as above with norm given by (5.1). Then

k(x, y) = k1(x, y) + k2(x, y)

is the kernel corresponding to F .

The same holds when F is defined as the class of all functions f = f1 + f2 with fi in Fi and norm
‖f‖2 = min ‖f1‖21 + ‖f2‖22, the minimum taken over all decompositions f = f1 + f2 with fi in Fi.

It is easy to extend this theorem to sum of more than two spaces: k(x, y) =
∑n

i=1 ki(x, y). We call F

a Sum-Kernel Reproducing Hilbert Space.

5.3 Product of Reproducing Kernels

Here we will consider product of Reproducing Kernel Hilbert Spaces, again following [Ar50]. For
i = 1, 2 let Fi be an RKHS of functions on Ωi, let ki be the corresponding kernel. Consider the set of
functions on Ω = Ω1 × Ω2 defined by

F ′ = {
n∑

i=1

f1,i(x1)f2,i(x2) | n ∈ N, f1,i ∈ F1, f2,i ∈ F2} .

Clearly, F ′ is a vector space. We define a scalar product on F ′: Let f , g be elements of F ′ expressed
as f(x1, x2) =

∑n
i=1 f1,i(x1)f2,i(x2), and g(x1, x2) =

∑m
j=1 g1,j(x1)g2,j(x2). We define

〈f, g〉 =
n∑

i=1

m∑

j=1

〈f1,i, g1,j〉1〈f2,i, g2,j〉2

(with 〈·, ·〉i denoting the scalar product in Fi). It is a routine to check that this definition does not
depend on the particular form in which f and g are expressed and that the properties of scalar product
are satisfied. We define norm on F ′ by ‖f‖ =

√
〈f, f〉. Finally, let F be the completion of F ′. It can

be shown [Ar50] that the completion exists not only as an abstract Hilbert space but that F is in fact
a space of functions on Ω. We call F the product of F1 and F2 and write F = F1 ⊗ F2.

Theorem 5.5 (Product-kernel RKHS [Ar50]) For i = 1, 2 let Fi be an RKHS on Ωi with kernel
ki. Then the product F = F1 ⊗ F2 on Ω1 × Ω2 is an RKHS with kernel given by

k((x1, x2), (y1, y2)) = k1(x1, y1)k2(x2, y2) , (5.2)

where x1, y1 ∈ Ω1, x2, y2 ∈ Ω2.

6 Learning from Data in RKHS Spaces

As advertised at the beginning of this section we are interested in learning from data, i.e., we are given
a set of data z = {(xi, yi)}N

i=1 ⊆ Rd ×R and we want to “learn” from it how to obtain y from a given
x. This means we want to find a function f so that f(xi)

.= yi. We do not require exact equality as
we may assume the given data are not precise.

However, even if we require f(xi) = yi exactly, the problem to find f is still ill-posed – there are many
solutions to it (see Figure 6.1). This issue is addressed in a variety of ways (Lagrange interpolation,
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Figure 6.1: Illustration of the basic problem in learning. Data, an over-fitted function, a well-fitted
function and a too much generalised function

least square interpolation, . . . ). The approach to the approximate problem we describe here was
suggested by Tikhonov [TiAr77] and studied by a plethora of researchers (see for example [PoSm03,
SchSl02, CuSm01, Gi98, PaSa93, Wa90]). We follow the most basic exposition of [GJP95].

We combine the goal of fitting the data with the goal to find a function with good “global properties”
or complying with some a-priori knowledge. This can be partially achieved by appropriate choice of
the space over which we are minimizing but we can do more. The common approach constructs a
functional that quantifies the precision to which a given function fits the data and also the global
properties; then we seek to minimize this functional over appropriately chosen set of functions.

Let us be more precise now. We are looking for a function f : Ω → R as a member of some function
space X. (Thus the given data z are subset of Ω × R and we also assume Ω ⊆ Rd.) We let the
functional F be defined by

F(f) = Ez(f) + γΦ(f) (6.1)

where Ez is the error functional depending on the data z = {(xi, yi)}N
i=1 and penalizing distance

from the data, Φ is the regularization part – the stabilizer – penalizing “remoteness from the global
property” and γ is the regularization parameter giving the trade-off between the two terms of the
functional to be minimized.

The error functional is usually of the form Ez(f) =
∑N

i=1 V (f(xi), yi). We can easily infer suffi-
cient conditions on V (for solvability) from proof of Theorem 6.1, but we shall not elaborate on
it here. A typical example of the empirical error functional is the classical mean square error:
Ez(f) = 1

N

∑N
i=1(f(xi) − yi)2 and we will restrict ourselves to it as it exhibits easy derivation of

solution. In order for this problem to be well-defined, we would have to have the function f defined
pointwise – which is not always the case (consider for example X = L2(Ω) where we may change the
values of f on any set of measure 0). In the sequel we will assume, that the evaluation functionals
f 7→ f(x) are not only well-defined but also continuous. In the important case when we want X to be
a Hilbert space as well, we will be working with the reproducing kernel Hilbert spaces, as introduced
in Section 5.
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If X is an RKHS with norm ‖ · ‖k, a useful choice for the regularization functional is Φ(f) = ‖f‖2k
(square of the norm), yielding

F(f) = Ez(f) + γ‖f‖2k . (6.2)

For such F it is possible to show the existence and uniqueness of the minimum and derive a simple
form for this minimum. Many authors have addressed this topic for general or specific settings (see
for example [Wa90, SchSl02, Gi98, PaSa93, PoSm03] and others).

Let H be an RKHS over Ω ⊆ Rd with kernel k and norm ‖.‖k. We construct the minimization
functional composing of error part Ez(f) based on data z = {(xi, yi); i = 1, . . . , N} ⊆ Rd × R and let
the regularization part be Φ(f) = ‖f‖2k forming

F(f) = Ez(f) + γ‖f‖2k, (6.3)

where γ ∈ R+.

To prove existence and uniqueness of solution to such a problem we will use some results from math-
ematical analysis. Error part of our functional does not have sufficiently nice properties, so the
regularization part has to do the job. We employ RKHS in such a way that we easily obtain existence,
uniqueness and even form of the solution.

Derivation of the shape of the solution to the regularized minimization problem is referred to as
Representer theorem.

6.1 Representer Theorem

In this section we will discuss the solution to the problem of minimizing the functional in (6.2). This
is a well-known question addressed for instance in [Wa90]. Our treatment follows the one sketched in
[GJP95], which seems to be applicable to a wider class of functionals (6.1). Some details are omitted
there, though, in particular it is not verified that the minimum exists. (Incidentally, the existence
of minimum is not verified in [Wa90], either, although the proof presented there is easy to fix.) We
present the proof (without any claim on being original) for the reader’s convenience, as this result is
the basis of the results in the later parts of this section. Also, the usage of RKHS’s enables the proof
to be short and iluminating.

Theorem 6.1 (Representer Theorem – basic version [KiWa71, SchSl02]) Let
z = {(xi, yi)}N

i=1 ⊆ Rd × R be given, let X be an RKHS with kernel k and norm ‖ · ‖k. Let the
functional F(f) be given by

F(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ‖f‖2k

for a function f ∈ X (γ > 0 is a constant).

Then there exists a unique function f0 ∈ X that minimizes F . Moreover, f0 is of form

f0(x) =
N∑

i=1

cik(x, xi) , (6.4)

for real ci’s, where these can be found as

ci = (K[x] + γNI)−1yi,

where K[x]i,j = k(xi, xj) is Gramm matrix of kernel k with respect to vector x, I is N ×N identity
matrix.
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Proof: We will use several basic results in approximation theory, see e.g. [Dn71, p. 7–15]:

Lemma 6.2 (Existence of minimizing function [Dn71]) Let F be a weakly sequentially lower
semicontinuous functional defined on a weakly sequentially compact set E. Then F attains its mini-
mum: there is f0 ∈ E such that F(f0) = inff∈E F(f).

Lemma 6.3 (Uniqueness of minimizing function [Dn71]) A strictly quasiconvex functional F
can attain minimum over a convex set C at no more than one point.

Lemma 6.4 (Necessary condition for minimum [Functional analysis]) Let the functional F
defined on a set E in a Banach space X be minimized at a point f0 ∈ E, with f0 an interior point
in the norm topology. For any h ∈ X, if F has a derivative DhF(f0) at f0 in direction h, then
DhF(f0) = 0.

Now we can prove easily existence, uniqueness and form of solution to the kernel-based minimization
problem (6.2). Once more we would like to stress that this is not our result nor is it in any sense
new (see for example [SchWe06, PoSm03, SchSl02, CuSm01, Gi98, Wa90] and others). The reason
for stating it including the proof is that the ideas are simple and we consider them illuminating for
understanding the role of kernel in learning and we will also need the theorem in our considerations
(Theorem 7.1).

We start by proving that F attains minimum and to achieve this we will use Lemma 6.2. Pick
any g ∈ X. Certainly, any f for which F(f) ≤ F(g) needs to have ‖f‖k ≤

√
F(g)/γ, so we

only need to minimize F over the ball in X with radius
√
F(g)/γ. As X is a Hilbert space, this

ball is weakly compact (see, e.g., Theorem 7 in [Lax02]), thus also weakly sequentially compact.
Thus all we need to do to assure existence of minimum is to prove that F is weakly sequentially
lower semicontinuous. (Perhaps confusingly, weak continuity is stronger property than continuity, so
although F is continuous, that is not enough.)

So let us consider a sequence of functions fn weakly converging to some f . From the basic properties
of RKHS’s (Theorem 5.2) we know that the evaluation functionals Λi : f 7→ f(xi) are continuous
(and, obviously, linear). Thus, by definition of weak convergence, limn→∞ Λi(fn) = Λi(f). It follows,
that the data part of the functional F is weakly sequentially lower semicontinuous.

The second part of F is a square of a norm. A norm in any Banach space is weakly sequentially lower
semicontinuous (see, e.g., Theorem 5 in [Lax02]). It easily follows that so is the square of the norm
and thus F itself. Consequently, F attains its minimum.

To show uniqueness of the minimum, we will use Lemma 6.3. The functional F is actually strictly
convex, but verifying strict quasiconvexity is somewhat easier.

The first part of F is a sum of N elements, each of which is a convex functional, as the (real) function
z 7→ 1

N (z − yi)2 is convex.

For the second part, let f , g be two distinct elements of X, s ∈ (0, 1) and t = 1 − s. Put M =
max{‖f‖2k, ‖g‖2k}. We have

〈sf + tg, sf + tg〉 = s2〈f, f〉+ st(〈f, g〉+ 〈g, f〉) + t2〈g, g〉
≤ M2(s2 + 2st + t2)

= M2
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(we have used Cauchy inequality to estimate 〈f, g〉 and 〈g, f〉). This proves quasiconvexity of the
mapping f 7→ ‖f‖2k, to obtain strict quasiconvexity, we analyze when equality is achieved in the above
formula. We need to have ‖f‖k = ‖g‖k, moreover (to have equality in the Cauchy inequality) f

and g are collinear. This implies f = ±g; f = −g does not produce equality and f = g is false by
assumption.

Altogether, F is a sum of a convex functional and a strictly quasiconvex functional, so it is strictly
quasiconvex itself. Thus we may apply Lemma 6.3 (with C = X).

So we have shown that there exists a unique f0 at which the minimum of F is attained. As a final
step we derive the form of f0. Lemma 6.4 implies that for each h we have DhF(f0) = 0. A routine
computation yields

DhF(f) =
1
N

N∑

i=1

2(f(xi)− yi)h(xi) + γ(〈f, h〉+ 〈h, f〉) .

We put h(y) = k(y, x). The reproducing property yields 〈f0, h〉 = f0(x), and so 〈h, f0〉 = f0(x) = f0(x)
(as f0 was assumed to be real). Putting ci = −(f0(xi)− yi)/(γN) we obtaine the desired form (recall
that k is symmetric)

f0(x) =
N∑

i=1

cik(x, xi) .

And we easily obtain the form of ci: c = (K[x]+γNI)−1y, where K[x]i,j = k(xi, xj) is Gramm matrix
of kernel k with respect to vector x, I is N ×N identity matrix, c, y are vectors. 2

Notice that here we consider only the simplest case where existence and uniqueness of minima can be
proven easily. For more detail see for example [SchSl02] or [DRCDO05, Ku04], where (as opposed to
proof presented), theory of inverse problems is used.

We remark that the same proof comes through also when the error part of the functional is 1
N

∑N
i=1 V (f(xi)−

yi) for any continuous convex function V , however derivation of form of the solution will use derivative
of V .

The form of solution was derived for example in [GJP95], we will use it in Section 8. Solutions have
been derived also for schemas where uniqueness cannot be proven (regularization part Φ is not strictly
quasiconvex). In that case we have to add functions from null space of Φ to the solution (see e.g.
[GJP95]).

The solution derived above is very nice, since it resembles a neural network with k(x, xi) as the
activation functions parameterized by the data points xi.

The problem of the number of hidden units being too large to be implemented can be solved by
variable-basis approximation using the obtained shape of the activation functions (see [KuSa05b]).
Another approach is proposed and discussed in Section 7.

7 Randomized Pruning

In this section we will show how to combine results of algorithmic sections and kernel methods. We
saw how to apply regularization to find a function f that strikes a good balance between fitting the
given data z = {(xi, yi)}N

i=1 and possessing good global properties – we find f0 so that F(f0) is as
small as possible (F is given by (6.2)). Theorem 6.1 claims that the (unique) optimal function with
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respect to these criteria is of a simple form (6.4), the only drawback being that the number of terms
in the sum is equal to the number of data – which may be too many. We will show, how to “prune”
this expression to get an expression using lower number of terms.

The basic idea is simple. We approximate the minimizing function f0 using Algorithm 2.2. We only
need to show that this does not change the value of F too much (here we will use again, that we are
searching for an approximating function as a member of a certain Hilbert space). The regularization
paradigm then suggests, that we will get a reasonable solution to the original problem.

Theorem 7.1 (Randomized pruning of kernel-based neural networks) Let X be an
RKHS with kernel k and norm ‖ · ‖k and according to Theorem 6.1 let f0 =

∑N
i=1 cik(x, xi) be the

unique solution of minimization problem

F(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ‖f‖2k

based on data z = {(xi, yi)}N
i=1 ⊆ Rd × R and some a-priori knowledge. Then for any δ > 0 there is

n = O( 1
δ2 ) for which we can find

gn
apx = 1

n

n∑

j=1

k(x, x′j),

so that √
F(gn

apx) ≤
√
F(f0) + δ .

Each x′j (j = 1, . . . , n) is one of xi (i = 1, . . . , N) from the data z.

Proof: We use Algorithm 2.2 to obtain gn
apx. We will utilize our analysis of the algorithm to derive

the claim. To do so we introduce an auxiliary norm on X:

‖g‖aux =

√√√√ 1
N

N∑

i=1

(g(xi))2 + γ‖g‖2k .

This is indeed a norm, and it corresponds to the scalar product

〈g, h〉aux =
1
N

N∑

i=1

g(xi)h(xi) + γ〈g, h〉k .

For every g ∈ X we have ‖g‖aux ≥ √
γ‖g‖k. Consequently, a Cauchy sequence in ‖ · ‖aux is also

Cauchy in ‖ · ‖k, thus the completeness of (X, ‖ · ‖k) implies completeness of (X, ‖ · ‖aux) – so we again
have a Hilbert space. Consequently, by Corollary 2.3 we may efficiently obtain a simpler function
gn

apx so that ‖f0 − gn
apx‖aux < δ and gn

apx uses n = O(1/δ2) terms in the sum. Now by the triangle
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inequality for ‖ · ‖k and for the L2 norm we get that

√
F(gn

apx) =
√∑

i

(gn
apx(xi)− yi)2 + γ‖gn

apx‖2k

=
√∑

i

(
(gn

apx(xi)− f0(xi)) + (f0(xi)− yi)
)2 + γ‖(gn

apx − f0) + f0‖2k

≤
√∑

i

(gn
apx(xi)− f0(xi))2 + γ‖gn

apx − f0‖2k

+
√∑

i

(f0(xi)− yi)2 + γ‖f0‖2k

=‖f0 − gn
apx‖aux +

√
F(f0)

≤
√
F(f0) + δ .

2

We see that F(gn
apx) is close to the optimal value F(f0), so gn

apx is a reasonable function to be learnt
from the original data assuming that F is the right measure.

In the following remark we will try to clarify the quality of gn
apx as an approximation to the original

underlying function.

Remark 7.2 (Kernel-based networks with feasible number of units) Let
z = {(xi, yi)}N

i=1 ⊆ Rd × R be given data sampled from an unknown underlying function forig, (that
is, forig(xi) = yi for i = 1, . . . , N), let X be an RKHS with kernel k and norm ‖ · ‖k derived from
a-priori knowledge on forig, in particular we assume that forig ∈ X.

Let again the functional F(f) be given by

F(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ‖f‖2k

for a function f ∈ X (γ > 0 is a constant). Let f0 ∈ X be the unique function that minimizes F ;
according to Theorem 6.1 it is of the form

f0(x) =
N∑

i=1

cik(x, xi) , (7.1)

for some real ci’s.

Let ε0 > 0 be such that
‖forig − f0‖k < ε0 .

If our choice of X and γ capture well the properties of forig the we can assume that ε0 is small.

Then we can claim the following estimate

‖gn
apx − forig‖k < Q1/2 ·

(ρ + ε0√
n

+ ε0

)
.

Here gn
apx = 1

n

∑n
j=1 k(x, x′j), each x′j (j = 1, . . . , n) is one of xi (i = 1, . . . , N) from the data z;

Q > 0, ρ is a positive constant depending on X and forig but not on n.
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Now it is appropriate to comment on the constant ρ that appears in the above bound. By [DDGS93](upon
which Corollary 2.3 is based) ρ is defined so that it holds: for every g ∈ G (here G = {k(·, x1), . . . , k(·, xN )}
we have ‖g − f0‖k ≤ ρ which can be further expressed in terms of G-variation (‖f0‖G ≤

∑N
i=1 |ci|)

and sG = max k(xi, xi). Heuristically ρ expresses how good our chosen kernel-based approximation
schema is for approximating given forig and how good was our a-priori knowledge of forig that helped
us create kernel k and further also the functional F .

The proposed method seems to be of practical interest, in cooperation with Petra Vidnerov we work
on experiments showing applicability in practical settings.

8 Specific Types of Kernels

In this section we try to come closer to practical results by presenting a few specific examples of kernels
used in regularized minimization and mainly by proposing their natural combinations that may aid
to tailor regularized minimization schemas better to specific situations.

8.1 Simple Kernels

Lef f be an L1 function on Rd. In [GJP95] a special stabilizer based on the Fourier Transform was
proposed:

ΦK(f) =
∫

Rd

|f̂(s)|2
K̂(s)

dmd(s),

where K̂ : Rd → R+ is a symmetric function (K̂(s) = K̂(−s)) tending to zero as ‖s‖ → ∞, f̂ is Fourier
transform of f and md is the normalized d-dimensional Lebesgue measure (md on Rd is definded as
dmd(x) = (2π)−d/2 dλ(x)). In this setting 1/K̂ is a low-pass filter.

Thus the functional F to be minimized is of the form:

F(f) = Ez(f) + ΦK(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ

∫

Rd

|f̂(s)|2
K̂(s)

dmd(s),

where γ ∈ R+. Now we show how to build an RKHS corresponding to the regularization part of our
functional:

Let us define
k(x, y) = K(x− y) =

∫

Rd

K̂(t)eit·xe−it·y dmd(t).

For k ∈ S(R2d) symmetric positive definite we obtain an RKHS X (using the classic construction, see

[SchSl02], [Gi98], [Wa90]). We put 〈f, g〉X =
∫
Rd

f̂(s)ĝ(s)

K̂(s)
dmd(s) and obtain the norm

‖f‖2X =
∫

Rd

|f̂(s)|2
K̂(s)

dmd(s).

This enables us to put X to be the completion of the set span{k(x, .), x ∈ Rd} in the above norm. It
is easy to check the reproducing property of k, resp. K on X, that is 〈f(x),K(x− y)〉X = f(y).

Special types of reproducing kernels and following RKHS are for example the well known

• Gaussian kernel k1(x, y) = e−‖x−y‖2 with Fourier transform K̂1(s) = e−
‖s‖2

2

or in one dimension
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• kernel k2(x, y) = e−|x−y| with Fourier transform K̂2(s) = (1 + s2)−1.

The norm for this RKHS is of the form ‖f‖2k2
=

∫ |f̂ |2
(1+s2)−1 = ‖f‖22 + ‖f ′‖22. So we see we obtain a

Sobolev space W1,2. These and many more specific instances of kernels are presented for example in
[SchWe06]. Here also feature maps for deriving specifically tailored kernels are discussed.

8.2 Composite Kernels

This section discusses two types of composite kernels proposed by the author and proposes their
possible use in practical situations. Experiments have been done by Petra Vidnerov, se for example
[KS06].

Sum of Kernels Here we will consider a more sophisticated type of kernels – sum of kernels introduced
in Section 5.2. We will study two cases. First suppose that a-priori knowledge or analysis of data
suggests to look for a solution in the form of a sum of two functions (for example data is generated
from function influenced by two sources differing in frequency). We will use a kernel summed of two
parts (employing Theorem 5.4) corresponding to high and low frequencies, in the easiest case two
Gaussians of different widths:

k(x, y) = k1(x, y) + k2(x, y) = e−
‖x−y‖2

d1 + e−
‖x−y‖2

d2

In this case we will consider regularized minimization schema of the form:

F(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ

∫

Rd

|f̂(s)|2
̂(K1 + K2)(s)

dmn(s). (8.1)

Since we operate in an RKHS we can employ Representer theorem (for this case the simplified version
of it 6.1) and obtain solution in the form of

f0(x) =
N∑

i=1

ci

(
e−

‖x−xi‖2
d1 + e−

‖x−xi‖2
d2

)
. (8.2)

This schema has been tested by Petra Vidnerov in [KS06] on data from [Proben], (see table 8.1, that
shows also experiments done on product kernel networks discussed in the next paragraph). Figure 8.1
shows sum kernel as derived for specific task of cancer1 from [Proben].

The experiments proved the schema to be promising for special types of tasks. Further experiments
on improved schema (see section 7) are running.

Another conceivable task would be to approximate data with different distribution in the input space.
Here again sum of kernels might be helpful if we use different kernels for different parts of the input
space.

First, we present the following auxiliary lemma from [Ar50].

Lemma 8.1 (Restriction of kernel [Ar50]) Let X be an RKHS of real-valued functions on Ω with
k as kernel. Then function kA defined by

kA(x, y) =

{
k(x, y) if x, y ∈ A,

0 otherwise;

is a kernel for a space XA(Ω) = {fA; f ∈ X and fA(x) = f(x) if x ∈ A and fA(x) = 0 otherwise}.
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RN SKRN1 PKRN SKRN2

Task Etrain Etest Etrain Etest Etrain Etest Etrain Etest

cancer1 2.28 1.75 0.00 1.77 2.68 1.81 2.11 1.93
cancer2 1.86 3.01 0.00 2.96 2.07 3.61 1.68 3.37
cancer3 2.11 2.79 0.00 2.73 2.28 2.81 1.68 2.95
card1 8.75 10.01 8.81 10.03 8.90 10.05 8.55 10.58
card2 7.55 12.53 0.00 12.54 8.11 12.55 7.22 13.03
card3 6.52 12.35 6.55 12.32 7.01 12.45 6.22 12.86
diabetes1 13.97 16.02 14.01 16.00 16.44 16.75 12.92 16.66
diabetes2 14.00 16.77 13.78 16.80 15.87 18.14 13.64 17.33
diabetes3 13.69 16.01 13.69 15.95 16.31 16.62 12.85 16.34
flare1 0.36 0.55 0.35 0.54 0.36 0.54 0.35 0.59
flare2 0.42 0.28 0.44 0.26 0.42 0.28 0.41 0.28
flare3 0.38 0.35 0.42 0.33 0.40 0.35 0.38 0.34
glass1 3.37 6.99 2.35 6.15 2.64 7.31 2.56 6.78
glass2 4.32 7.93 1.09 6.97 2.55 7.46 3.27 7.29
glass3 3.96 7.25 3.04 6.29 3.31 7.26 3.48 6.44
heart1 9.61 13.66 0.00 13.91 9.56 13.67 9.51 13.79
heart2 9.33 13.83 0.00 13.82 9.43 13.86 8.52 14.31
heart3 9.23 15.99 0.00 15.94 9.15 16.06 8.30 16.75
hearta1 3.42 4.38 0.00 4.37 3.47 4.39 3.20 4.45
hearta2 3.54 4.07 3.51 4.06 3.28 4.29 3.17 4.34
hearta3 3.44 4.43 0.00 4.49 3.40 4.44 3.37 4.40
heartac1 4.22 2.76 0.00 3.26 4.22 2.76 3.68 3.37
heartac2 3.50 3.86 0.00 3.85 3.49 3.87 2.99 3.97
heartac3 3.36 5.01 3.36 5.01 3.26 5.18 3.14 5.13
heartc1 9.99 16.07 0.00 15.69 10.00 16.08 6.50 16.07
heartc2 12.70 6.13 0.00 6.33 12.37 6.29 11.06 6.69
heartc3 8.79 12.68 0.00 12.38 8.71 12.65 9.91 11.74
horse1 7.35 11.90 0.20 11.90 14.25 12.45 7.66 12.62
horse2 7.97 15.14 2.84 15.11 12.24 15.97 6.84 15.70
horse3 4.26 13.61 0.18 14.13 9.63 15.88 8.56 15.24
soybean1 0.12 0.66 0.11 0.66 0.13 0.86 0.12 0.64
soybean2 0.24 0.50 0.25 0.53 0.23 0.71 0.19 0.54
soybean3 0.23 0.58 0.22 0.57 0.21 0.78 0.15 0.72

Table 8.1: Comparisons of errors on training and testing set for RN with Gaussian kernels and SKRN
and PKRN.
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Figure 8.1: An example of the sum kernel (an optimal combination of widths for cancer1 data).

We may use this lemma for different sets A ⊆ Ω. Then we can apply Theorem 5.4 for kernels gained
in this way. Consequently, our kernels may look as follows:

Choose constants d1, . . . , dr > 0 and partition Rd to sets A1, . . . , Ar. Then define

kj(x, y) = Kj(x− y) =

{
e−dj‖x−y‖2 x, y ∈ Aj

0 otherwise.

The outcomming sum kernel then is k(x, y) =
∑r

j=1 kj(x, y) and we can chose the basic regularization
schema

F(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ

∫

Rd

|f̂(s)|2
∑̂

Kj(s)
dmd(s).

Now by 6.1 again we obtain a form in which we will expect the solution:

f0(x) =
N∑

i=1

ci

r∑

j=1

kj(x− xi).

Experimets towards this end have been done by Petra Vidnerov citePdiz. The approach doesn’t
provide significantly better errors but the errors are comparable and in some cases lower. However, it
proves to be clearly far better for big data sets providing significantly lower time complexity. This is
enabled in a simple way - this method in fact divides the big task into several small ones.

Let us proceed with another type of composite kernels:

Product of Kernels We consider the product of kernels introduced in Section 5.3. Suppose that a-
priori knowledge of our data suggests to look for the solution as a member of product of two function

28



spaces. In one dimension the data may be clustered faraway thus being suitable for approximation
via narrow Gaussian kernels, in the other dimension the data is smooth, hence we will use broader
Gaussian kernel. Employing Theorem 5.5 we obtain a kernel for the product space of the form:
k((x1, x2), (y1, y2)) = k1(x1, y1) · k2(x2, y2) = e−‖x1−y1‖2 · e−‖x2−y2‖ , where x1, y1 ∈ Ω1, x2, y2 ∈ Ω2.

Regularized minimization schema in this case is of the form:

F(f) =
1
N

N∑

i=1

(f(xi)− yi)2 + γ

∫

Rd

|f̂(s)|2
k̂1k2(s)

dmd(s). (8.3)

Taking advantage of this being an RKHS we have the form of the solution to such a type of minimiza-
tion:

f0(x1, x2) =
N∑

i=1

cie
−‖x1−xi,1‖2 · e−‖x2−xi,2‖ . (8.4)

Product kernel network of this type was used to predict the flow rate on the Czech river Ploučnice
[KS06]. Our goal was to predict the current flow rate from the flow rate and total rainfall from the
previous date, i.e., we were approximating a function f : R× R→ R.

We have chosen the Gaussian function e
−

( ‖c−x‖
di

)2

for both kernel functions (k1 and k2), the kernels
differ in the width di of the Gaussian. All parameters γ, d1 and d2 were estimated by crossvalidation.
Outcomes of the experiments done by Petra Vidnerov are presented in Figure 8.2 and in Table 8.2.
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Figure 8.2: Prediction of flow rate on the river Ploucnice.

The Table 8.2 compares the resulting errors of Product Kernel Regularization Network, Regularization
Network (for detailed discussion see [K06]) and conservative predictor. Conservative predictor is a
predictor saying that the value will be the same as it was yesterday, and in spite of its simplicity it
is very successful on some tasks, including this one. We can see that the PKRN overperforms both
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PKRN RN CP
Etrain 0.057 0.008 0.093
Etest 0.048 0.056 0.054
network γ = 10−4 γ = 1.48 · 10−5

parameters d1 = 0.8 d = 0.5
d2 = 1.9

Table 8.2: Comparison of error of Product Kernel Regularization Network (PKRN), Regularization
Network (RN) and Conservative Predictor (CP) on training set and testing set.

the Regularization Network and Conservative Predictor. We can also see that PKRN shows higher
parameter γ which suggest better generalisation.

Results of Section 7 on pruning were not used in these experiments. They are, however, the topic of
our current cooperation with Petra Vidnerov.

9 Conclusion

Based on theoretical results of [DDGS93]and their modifications done by the authors we proposed
probabilistic algorithms for obtaining trained neural networks. We high-level analysed time complexity
of these algorithms and compared them to known iterative algorithms in specific situations. We showed
that probabilistic algorithm based on known precise approximation is very well suited for pruning a
too big neural network and we derived theoretical bounds on error such introduced.

We have shown how to use randomized algorithm in the specific case of neural networks derived from
kernel-based regularized minimization schemas.

We overviewed briefly basic theory regarding RKHS spaces and regularized minimization that is
applicable to our objective. Based on this theory and on results of algorithmic sections we show how
to overcome the intrinsic problem of regularization-inferred neural networks – i.e. too high number of
hidden units. We have derived bounds on errof of approximation by so derived networks with a fixed
(smaller) number of units.

We showed several special types of kernels used widely in practice and their combinations proposed
in [KS06]. We added a few illustrations of experiments done on these schemas by Petra Vidnerov.
Unfortunately we cannot bring experiments on networks pruned by randomized algorithm as these
are currently running.
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