
Transforming hierarchical images to program expressions using deep networks

Křen, Tomáš
2018

Dostupný z http://www.nusl.cz/ntk/nusl-391553

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 20.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-391553
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
The Czech Academy of Sciences

Transforming Hierarchical Images
to Program Expressions Using Deep
Networks

Tomáš Křen

Technical report No. V-1263

December 2018

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 201, fax: +420286 585 789,
e-mail: kren@cs.cas.cz



Institute of Computer Science
The Czech Academy of Sciences

Transforming Hierarchical Images
to Program Expressions Using Deep
Networks

Tomáš Křen
12

Technical report No. V-1263

December 2018

Abstract:

We present a technique describing how to effectively train a neural network given an image to produce a
formal description of the given image. The basic motivation of the proposed technique is an intention to
design a new tool for automatic program synthesis capable of transforming sensory data (in our case static
image, but generally a phenotype) to a formal code expression (i.e. syntactic tree of a program), such that
the code (from evolutionary perspective a genotype) evaluates to a value that is similar to the input data,
ideally identical. Our approach is partially based on our technique for generating program expressions in
the context of typed functional genetic programming. We present promising results evaluating a simple
image description language achieved with a deep network combining convolution encoder of images and
recurrent decoder for generating program expressions in the sequential prefix notation and propose possible
future applications.

Keywords:
deep networks, automatic program synthesis, image processing

1Research was supported by the grant of the Czech Science Foundation GA 18-23827S.
2Institute of Computer Science, The Czech Academy of Sciences, Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech

Republic, E-mail: kren@cs.cas.cz.



1 Introduction

We present a technique describing how to effectively train a neural network
given an image to produce a formal description of the given image.

Since the output of the network is a program code, the task falls into the
broader category of algorithms performing automatic program synthesis. The
basic motivation of the proposed technique is an intention to design a new tool
for automatic program synthesis capable of transforming sensory data (in our
case static image, but generally a “phenotype”) to a formal code expression (i.e.
syntactic tree of a program), such that the code (from evolutionary perspective
a “genotype”) evaluates to a value that is similar to the input data, ideally
identical.

Unlike other methods which can be used for automatic program synthesis
(genetic programming, inductive programming, Monte Carlo tree search tech-
niques, constraint satisfaction problem solvers) which perform a search on the
individual space, the neural network approach is unique in that it produces the
code directly. We may interpret this as a kind of “artificial intuition”.

Our approach is partially based on our technique for generating program
expressions in the context of typed functional genetic programming. We present
promising results evaluating a simple image description language achieved with
a deep network combining convolution encoder of images and recurrent decoder
for generating program expressions in the sequential prefix notation.

Input domain I : Inputs are Images. We use convolution encoder to parse
them. So, if i ∈ I, then i is an image.

Ouput domain C : Our neural networ will output a code c. A code c ∈ C
is a syntactic tree of a program expression describing a specific image i. We can
evaluate a code c by our hand crafted render function R, such that:

c ∈ C ⇒ R(c) = i ∈ I

Render function R : A render function R may be given by a Γ set, we
denote this fact by writing RΓ. Γ is a library represented as a collection of
symbols, where each symbol s has:

� an implemetation Rs,

� a type τs.

What we really want to do is to compute an approximation of R−1: We
want to construct an inverse of the render function.

Dataset D : D is a collection of (i, c) pairs such that i = R(c), where i is
input image and c is the desired output code for the input image i. Colecttion
D serves as training and testing dataset for the network. We obtain these data

1



samples by automatically generating c codes. The generated learning dataset
D should obey one of the following ”Occam Razor” constraints.

Sharp Razor:

� (a) A specific image i is at most once in D,

� (b2) For each (i, c) ∈ D holds that c is the shortest possible code such
that R(c) = i.

Rough Razor:
A practical approximation of the Sharp Razor :

� (a) same as (a) in the Sharp Razor,

� (b1) If two codes c1, c2 such that R(c1) = i = R(c2) are generated for D,
keep the *shorter* one (i.e. keep the one described with *less symbols*).

Our current implementation follows the Rough Razor.

2 Related Work

Similar task to our task is image captioning to the domain of natural language
[1], we use similar network achitecture inspired by theirs deep network with
convolution encoder for feature extraction and recurrent decoder (LSTM as
recurrent cell) with use of attention mechanism [2]. Our network takes same
input (image) but instead of outputing to natural language, our output is to
formal language of programming code.

Task of generating programming code by neural network is performed for
example by [3] which is addressed from a using different perspective and different
output domain of SQL-like programs to query a table.

Very similar image description language is used in [4], but in the context of
context-free grammars.

3 Image description language

One of the key features of formal languages is their hierarchical nature. They
are perfectly suited for describing objects with hierarchical structure. Hier-
archical structure provides natural ways to describe visual self-similarty as we
know it from mathematics (fractals) and nature (trees, leaves, snowflakes, feath-
ers, rivers, lightning, lungs, coastlines, mountains, clouds, Nautilus shells, Ro-
manesco broccoli).

An exemplary piece of a hierarchicaly structured object is a tree (the living
structure in a forest), with a benefit of being a visually stunning example. Visu-
ally speaking, simplified trees are composed of simple parts: branches and leaves.
These parts are composed into a hierarchy. Hierarchy is naturally describable

2



as a tree (the syntactic graph structure). A living tree can by desscribed by a
syntactic tree. Their structures overlap each other.

In our experiments we use simple image description language with symbol
set capable of describing visually hierarchical structures. It is an intentionally
simple, yet general language.

Figure 1: First 100 simplest images in our simple image description language.

If an image canvas size used for rendering is power of two, then this language
can describe any B/W image. Fig. 1 shows first 100 simplest images. Fig. 2
illustrates the image to code correspondence of our simple image description
language.

Figure 2: Illustration of image to code correspondence of our simple image
description language.

3



Our symbols are:

� q : split to 4 quadrants,

� h : horizontal split,

� v : vertical split,

� B : fill black,

� W : fill white.

4 Dataset generation method

We generate program codes for each syntax tree size (i.e. number of program
symbols) from 1 to some maxTreeSize (e.g. 25, 13). For each tree size we
compute the total number of trees:

� Below some total number of trees limit we generate all trees exhaustively,

� above the limit we use uniform sampling utilizing our tree generating
method [5] capable of uniform tree sampling for a given tree size.

Our generating method is ready for typed languages with parametric poly-
morphism (types with type variables). While generating, we utilize a kind of
”Occam’s razor”; we keep only the smallest representation of a given image in
the dataset. To achive this we use visual image hashing method pHash [6].

5 Results

From preliminary experiments we evaluated as a best choice for model a deep
network with convolution encoder and recurrent decoder with Gated Recurrent
Unit (GRU) used as a recurrent cell. In the decoder we used attention mech-
anism [1]. The output of the network is a sequence of symbols interpreted as
program code in prefix notation.

We trained the nework by a simple method of treating the output code
as ordinary text, using BLEU-4 as our training metric metric. But for final
evaluation of the result we render the output codes back to images and compare
them to the original images using portion of pixels with correct color as the final
evaluation metric.

The source code of the project is available at (the core script is located in
the i2c.py file): https://github.com/tomkren/TFGPy

In the project implemetation we utilized Tensorflow [7] as a back-end and
NeuralMonkey toolkit [8] as experiment front-end.

Here we briefly present results of two experiments with this architecture,
first with images of size 32Ö32, second with images of size 64Ö64.

4



Figure 3: Results summary for test data in experiment with images of size
32Ö32.

In the first experiment we generated 80642 images of size 32Ö32 (with max
tree size 25), using 78000 images as training data set and 2642 images as test
data set for evaluation of the results. From 2642 images, 2010 images (76%)
were fully correct matches. Average error on the final evaluation metric was
0.005, worst error was 0.141. Nice property of this model is that it grasps the
output format; in the first experiment all outputs for the test set instances had
correct format (i.e. represented correct prefix program). Fig. 3 summarizes
results for test data set of the first experiment. Fig. 7 shows random examples
of original test data and their result codes and images for this experiment. Fig. 9
shows same information for test data images with maximum error. Another nice
property of the model is that it performs compression of the output codes when
compared with the original input codes (see fig. 3), even though the generating
method used the ”Rough Razor” to enhance original codes shortness.

In the second experiment we generated 52525 images of size 64Ö64 (with
max tree size 13), using 42020 images as training data set and 10505 images
as test data set for evaluation of the results. From 10505 images, 8478 images
(80.7%) were fully correct matches. Average error on the final evaluation metric
was 0.015, worst error was 0.625. Number of output codes in incorrect format
is 29 (thus not zero but very low). Fig. 4 summarizes results for test data set
of the second experiment. Fig. 8 shows random examples of original test data
and their result codes and images for this experiment. Fig. 10 shows same
information for test data images with maximum error. In this experiment the
compression property was absent, we think this is because of the smaller max
tree size, so that majorit of the generated images was already very compressed.

5



Figure 4: Results summary for test data in experiment with images of size
64Ö64.

6 Conclusion and Future work

The presented experiments on the simple image description language have promis-
ing results. However, the language is very primitive, so experiments on more
complex and interesting languages must be perform to make the results more
conclusive. We plan to significantly expand the set of symbols in the language
with:

� Symmetry operations,

� operations to support easy creation of fractal structures by functional fold-
ing,

� Shader approach to canvas filling.

And we also plan to add more interesting image description languages which
we have been working on, namely:

� Terrain Generating (fig. 5 shows some examples),

� Celullar automata ornaments (fig. 6 shows an example).

Currently we are working on implementation of Recursive Zoomer, which
will enable to use a trained model for a specific image size on much bigger
images, exploiting the hierarchical nature of the description language.

The source code of the project is available online at:

https://github.com/tomkren/TFGPy

6



The core script is located in the i2c.py file.

Figure 5: Examples of ”Islands” image description language we are working on.

References

[1] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville,
Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption generation with visual attention. CoRR,
abs/1502.03044, 2015.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. CoRR, abs/1409.0473,
2014.

[3] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer:
Inducing latent programs with gradient descent. CoRR, abs/1511.04834,
2015.

[4] Michail I Schlesinger and Václav Hlaváč. Context-free languages, their two-
dimensional generalisation, related tasks. In Ten Lectures on Statistical and
Structural Pattern Recognition, pages 479–505. Springer, 2002.

[5] Tomáš Křen, Martin Pilát, and Roman Neruda. Automatic creation of ma-
chine learning workflows with strongly typed genetic programming. Inter-
national Journal on Artificial Intelligence Tools, 26(05):1760020, 2017.

7



Figure 6: Example of an image generated by the Celullar automata ornaments
image description language we are working on.

[6] EVAN Klinger and DAVID Starkweather. phash–the open source percep-
tual hash library. Technical report, accessed 2016-05-19.[Online]. Available:
http://www. phash. org/apps, 2010.

[7] M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado,
A Davis, J Dean, M Devin, et al. Tensorflow: large-scale machine learning
on heterogeneous distributed systems. arxiv preprint (2016). arXiv preprint
arXiv:1603.04467.

[8] Jindřich Helcl and Jindřich Libovický. Neural Monkey: An Open-source Tool
for Sequence Learning. The Prague Bulletin of Mathematical Linguistics,
(107):5–17, 2017.

8



Figure 7: Random examples of original and result test data images for experi-
ment with images of size 32Ö32.

9



Figure 8: Random examples of original and result test data images for experi-
ment with images of size 64Ö64.

10



Figure 9: Result test data images with maximum error for experiment with
images of size 32Ö32.

11



Figure 10: Result test data images with maximum error for experiment with
images of size 64Ö64.

12


