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Abstract

This paper deals with the problem of
selecting the conditioning model in the
estimation of conditional mutual information
in the context of detecting directional influence
from raw time series. An approach similar to
model selection in model fitting to time series
is presented. A numerical study illuminating
the problem and showing the effectivity of the
proposed procedure is summarized at the end of
the paper.

1. Introduction

The discipline of nonlinear dynamics has proven
fruitful as many problems from meteorology [1, 2],
geology [2], life sciences [3] and physics have been
more satisfactorily understood in this framework. Time
series analysis is a frequent tool used to process the
activity records of dynamical oscillatory processes.
Methods have been developed to detect various forms
of synchronization and directional coupling from
time series. The detection of directional influence
is an important method of examining drive-response
relationships in complex dynamical systems. Paluš [4,
5] has advocated the use of the conditional mutual
information functional I(X;YT |Y ) between the two
time series as a measure of “net information flow”
between the process X and the process Y at some point
of time in the future. Conditional mutual information
has been applied in the context of phase dynamics to
phase time series which simplify the analysis of signals
[5, 6]. In this work the problem of discovering the
directionality of coupling in amplitude time series is
investigated and a method to solve one of the problems
is presented.

The conditional mutual information can be decomposed

into several terms which are interpretable in the context
of time series analysis of nonlinear dynamical systems

I(X;YT |Y ) = I(X;YT ;Y )− I(X;Y )− I(Y ;YT ),
(1)

where X and Y are the time series of the processes
X and Y respectively and YT is the time series of the
processYT , which is the processY shifted by T samples
into the future.

The term I(X;YT ;Y ) of (1) represents the total
common information in all the processes X , Y and YT .

The term I(X,Y ) represents the effect of common
dynamics and common history. Common history can
be brought about by the same noise or external
influences on the two processes. If the two processes
have narrowband spectra with close peaks, then their
time series may have some common parameters (e.g.
the period of oscillation), this increases the amount
of mutual information in the first term and must be
subtracted. If additionally the dynamics themselves,
which are represented by the equations in case of
models, share some common traits or the entire form
then this may cause similar amplitude distributions.
None of the above effects is brought about by
the influence of directional coupling. It is therefore
important to subtract these components from the term
I(X;YT ;Y ) to ensure that they are excluded from the
estimation of “net information flow”. We note here that
the mutual information I(X,Y ) can be used to detect
synchronization of the investigated processes.

The term I(Y ;YT ) represents the action of the process
upon itself and is connected to the predictability of
the process. It is imperative that this term is estimated
well and removed from the total common information.
Underestimation of this term will result in false positive
detections as strong action of the process Y upon itself
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will be misinterpreted as directional influence from the
process X . Effective estimation of this term is crucial
to the correct application of the framework for detecting
directional influence and will be the goal of this work.

The variables X , Y represent the time series of the given
processes and may in general be multidimensional.
Multidimensional time series can be either directly
measured by observing several aspects of the activity
of a dynamical process or can be constructed from a
single time series by means of an embedding technique.
A frequently used embedding technique is that of time-
delay embedding [7, 8], where equidistantly spaced
samples of a given time series are used to construct a
vector

x̄(t) = (x1(t), x2(t), ..., xK(t))
= (x(t), x(t− τ), ..., x(t− (K − 1)τ)),

(2)
where x(t) is the scalar time series of the activity
of process X and τ is the delay between successive
samples and K is the embedding dimension.

An important parameter is the number of samples the
process Y is shifted into the future. In our previous work
[9, 10] conditional mutual information is averaged for
shifts T from 1 up to two periods of the faster process
in the investigated system pair. For model systems or
systems with simple structure improvements to this
scheme are possible as there are clear patterns in the
conditional mutual information with respect to the time
shift. The estimation method used is equiquantal binning
as it has shown the best properties in model tests and has
been successfully applied to some experimental datasets
[10, 6, 2].

1.1. The intersample delay

There are multiple established techniques for selecting
the time delay τ to construct a vector representation of
the state of a dynamical system from a univariate time
series [8, 7, 11]. Kantz and Schreiber [12] have however
argued that there is no optimal way of selecting the time
delay in general. Rather the specific purpose with which
the embedding is constructed allows one to discuss and
gauge the optimality of an embedding method. The use
of an intersample delay is a way to circumvent the
problem of selecting samples that are highly correlated
and thus as a set contain a lower amount of information
about the structure of the system in state space [12].
The classical procedure requires the delay to be fixed
first and then using another method the dimension is
fixed by testing if adding more dimensions to the vector
is reasonable [13]. This is simple because samples are
considered sequentially. However we know of no apriori
reason to restrict the selection procedure in this way.

It is important to produce a model which fits the
dynamics of the time series as well as possible in a
sense that will be described later. Selecting the delay
greater than 1 in effect pre-filters the samples that can
be included in the model. If the intersample delay is say
τ = 2 then only the time series samples x(t − d), d ∈
{2, 4, 6, 8, ...} may be considered for inclusion in the
conditioning model. Since the model search procedure
is time intensive, it is advantageous to apriori restrict
the set of possible delays for performance purposes.
Additionally, a model utilizing samples close to each
other will end up modeling the temporal structure of
the time series instead of the geometrical structure of
the attractor in the state space. However these are not
rigorous arguments and counterexamples may be found
where the optimal selected model contains samples
close together.

The most frequently used method of selecting the
intersample delay is to select the first minimum of
the lagged mutual information I(Y ;YT ) where T is
the lag in samples between the original and shifted
time series of the process [14]. This is the procedure
that will be henceforth used to select an intersample
delay. There have been many other suggestions in the
literature (an overview can be found in [12]) but all of
the suggested methods are based on heuristic arguments.
Time lagged mutual information has been applied and
found to work well in many practical settings although
caution is advised as the first minimum may be spurious.

2. The model selection procedure

The purpose of this work is to select a proper vector
representation of the process Y which enables a good
estimation of the term I(Y ;YT ) in (1) as explained
in the Introduction. A good model is a model that
maximizes the expected lagged mutual information
I(Y ;Yτ ), where τ is the intersample delay selected
according to the method in the last paragraph. There are
two reasons for this choice: a single lag is necessary
because of the computational costs of computing the
full, say 50, estimates and averaging them. Secondly,
selecting too small a lag will result in temporal
correlations guiding the selection and a lag too large
will attenuate the deterministic structure between the
lagged process and the original process. Because real
dynamical processes are affected by external influences
and usually are encumbered by noise, this means that the
effects of the auto-structure of the process are attenuated
for larger distances.
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2.1. Model specification and criterion

Formally, each model M is completely specified by the
indices of the samples used in constructing the state
space vector ȳ(t) as

M = {i1, i2, ..., iK} implies that
ȳ(t) = (y(t− i1τ), y(t− i2τ), ..., y(t− iKτ)),

(3)
where K is the number of samples in the vector
and depends on M . We will denote by YM the state
space representation of the process Y using the vector
specified by M . Then the best model M∗ has the
property

M∗ = argmaxME [I(YM ;Yτ )] (4)

It is important to maximize the expectation of the mutual
information over entire reconstructed space because
the in-sample estimate would always increase if more
samples were added to an existing state-space vector.
This phenomenon is known as overfitting in the pattern
recognition community. The problem can be converted
to a problem of minimizing the conditional entropy

M∗ = argminME [H(Yτ |YM )], (5)

as H(Yτ |YM ) = I(YM ;Yτ ) + H(Yτ ) and H(Yτ ) is a
constant with respect to the optimization problem. In
fact, due to the use of the equiquantal estimator the
marginal entropy H(Yτ ) = H(Y ) = log B. As usual,
we assume the underlying processes to be ergodic for
the duration of the analysis time window and this allows
us to substitute expected values over time for expected
values over the state space.

Any admissible model can be expressed as

M = (i1, i2, ..., iK), (6)

for 0 = i1 < ij < ij+1 ≤ L, j ∈ {2, ..,K}
where L is some pre-selected maximum distance to
the farthest considered sample and K < Kmax is
the number of elements in the model. It is important
that i1 = 0 is always included in the model because
otherwise the random variables X and Y in term
I(X;Y ) in (1) would not be taken at the same instant of
time and would thus not represent the common history
of the two processes. This would give the computed
conditional mutual information different semantics and
it would not reflect the “net information flow”. This
is not a significant restriction for dynamical systems
because the action of noise, external influences and other
factors causes the process to produce new information
continuously and “forget” its initial conditions thus
rendering samples further back in time less useful for
constructing models. The threshold also limited by

computational constraints and the number of models.
The maximum size of the model Kmax is also limited
by computational constraints as the size of the model
set grows combinatorially. A more important limit is
the length of the time series itself which affects the
maximum size K of the model M which can be reliably
estimated. This however happens automatically during
the estimation process as models with too many free
parameters with respect to the length of the time series
will be poorly estimated and the expected value of the
conditional entropy will be high.

2.2. Conditional entropy and classification

It remains to show how the expectation of the criterion
[H(Yτ |YM )] can be computed for a given model M .
First, given the number of bins B, the samples of
the investigated time series are discretized using the
equiquantal scheme into the B levels. The model
specification M is then used to construct pairs

(ȳM (t), y(t + τ)), (7)

where the indices building the vector ȳi
M (t) will be

selected according to the model specification M . As the
time when the training pair occurs in the time series
will not be important, we will abbreviate the notation
of the state vector ȳi

M and the (predicted) future value to
yi

τ . When denoting the variable rather than a particular
value, the index i will be omitted. The training pairs
will be used to construct a classifier which will attempt
to model the probability distribution function (PDF) of
the state space of the underlying process. The classifier
will be a simple multidimensional histogram which will
aggregate all the training samples in its estimate of the
PDF. The goal of the classifier is to predict the future
state yi

τ from the given vector ȳi
M . This process might

seem crude but the key point is that in the estimation of
the conditional mutual information functional (1), all the
terms are estimated in exactly the same way. It follows
that any problems that the classification process will
have in estimating the PDF correctly are also expected
in the estimation of CMI. It would thus not be useful
to use a different classification scheme here because
the model fitting procedure would yield a model which
would not respect the advantages and disadvantages of
this particular estimator and could potentially have a
completely different number of free parameters.

It will now be shown that choosing a suitable loss
function results in the error rate to be an estimate of the
required criterion (conditional entropy)

L(yi
τ , ȳi

M ) = − log p(yi
τ |ȳ

i
M ), (8)

where the conditional entropy p(yτ |ȳM ) is unknown.
We must substitute an estimate of the conditional
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probability computed as

p̂(yi
τ |ȳ

i
M ) =

N(yi
τ , ȳi

M )∑
y′

τ
N(y′

τ , ȳi
M )

, (9)

where N(·, ·) is the number of occurrences of the pair in
the training set. As the pair (ȳi

M , yi
τ ) is expected to be

seen in a long sequence with probability p(ȳi
M , yi

τ ), the
expected mean error over the state space will be

−
∑

(yτ ,ȳM )

p(yτ , ȳM ) log p̂(yτ |ȳM )

−
∑

(yτ ,ȳM )

p(ȳM )p(yτ |ȳM ) log p̂(yτ |ȳM )

= Ĥ(Yτ |YM )

(10)

To further understand this result, let us relate it to
the expected error assuming we would know the true
distribution p(yτ , ȳM ):

Ĥ(Yτ |YM )−H(Yτ |YM ) =

= −
∑

(yτ ,ȳM )

p(ȳM )p(yτ |ȳM ) log p̂(yτ |ȳM )+

+
∑

(yτ ,ȳM )

p(ȳM )p(yτ |ȳM ) log p(yτ |ȳM ) =

= EYM
D(p̂(yτ |ȳM )||p(yτ |ȳM )).

(11)
The result shows that the expected error is equal to
the value of the optimal expected error (conditional
entropy) if the probability density function was known
and the mean Kullback-Leibler divergence between the
estimated and actual conditional probability density over
all the states. It is clear that the conditional entropy
is always overestimated. It is also clear that if the
model contains a higher amount of free parameters (total
histogram bins), the K-L divergence will increase as the
estimate of the conditional probability density will be
poorer and the bias will increase. This is behavior is
favorable as it penalizes overfitting of the model.

Practically this procedure still has some unresolved
problems. If a previously unseen pair (yτ |ȳM ) is
encountered during the estimation of the criterion, the
estimated conditional probability would be p̂(yτ |ȳM ) =
0 or undefined. The same would occur when a leave-
one-out procedure is applied and the training pair exists
only once in the training set. A regularization procedure
is needed to deal with these pairs. Since the conditional
probability estimate is computed from the accumulated
histogram using (9). To resolve this a fixed term Δ is
substituted for the unknown conditional probabilty in
the loss function

L∗(yi
τ , ȳi

M ) =

{
− log p̂(yi

τ , ȳi
M ) if N(yi

τ , ȳi
M ) > 0

− log Δ otherwise
(12)

Obviously if no previously unseen states are
encountered, the modified loss function gives identical
results to the original loss function. When optimizing
the model, we have elected to set Δ = 1

B
, where B is

the number of bins. This has the simple rationale that
when the particular vector ȳi

M (t) has not been seen in at
all, then equal probability is assigned to all the possible
future states yτ .

Due to the form of the loss function, the same penalty
is also assigned if the vector ȳi

M (t) has been previously
seen but not together with the given future state yi

τ . In
this case it is unclear whether 1

B
is the best choice but no

plausible argument has been found that would advocate
selecting a different value for this situation.

A complete method for selecting a model for
conditioning the CMI (1) from a given time series
has now been constructed. The method connects a
classification problem to the required criterion by using
a suitably constructed loss function which is regularized
for practical purposes.

We note here that there are many established methods
for model selection in time series analysis (and
elsewhere) such as the MDL principle [15], the Bayesian
information criterion [16] or the Akaike information
criterion [17]. These selection mechanisms however
do not optimize the required criterion. These methods
additionally assume a particular distribution family of
the probability density function of the samples or the
estimation of a likelihood function.

2.3. Including surrogates

It has been previously explained that the goal of the
selection of the conditioning model was to be able
to correctly determine directionality of coupling in as
many cases as possible. To understand the influence
of the surrogate time series on the usefulness of a
particular conditioning model, it is necessary to recount
the method of statistical testing of the estimates of
conditional mutual information.

At the core of the directionality detection method is
the estimation of conditional mutual information (1) for
different lags T . These values are averaged over the
selected lags to construct an index of directionality. This
index reacts to an increase in coupling by increasing its
value. However any directionality index also reacts to a
change in other factors involving the underlying systems
and the time series: noise levels, main frequencies,
external influences on the systems and others. The
inverse problem of determining directional influence is
much more difficult: given a value of the index, can we
infer that directional coupling exists ?
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Surrogate testing is a method of verifying if there is
sufficient evidence available to infer that directional
coupling is present in a particular direction. The method
is a simple one-sided hypothesis test with the null
hypothesis of no directional coupling. The distribution
of the index under the null hypothesis can be estimated
by evaluating the index on as many surrogate time series
as is deemed necessary and is computationally feasible.
Usually 100 or 200 surrogates are used if the analysis
is being performed offline. Surrogate time series are
time series which preserve all of the properties of the
original time series except the property being tested.
Here, directional coupling is the tested property and
surrogate time series are such time series that preserve
the dynamical structure of the individual underlying
processes but do not preserve the effect that coupling has
on the time series. This is done by somewhat altering
the temporal structure of the time series so that cause
and effect of the coupling are separated and mixed
in the time series. Common procedures which more
or less accomplish this goal include Fourier transform
surrogates [18], permutation surrogates [19], amplitude
adjusted Fourier transform surrogates [20] or twin
surrogates [21]. Each procedure is applicable in different
situations and has it’s advantages and disadvantages
[10]. If a model of the underlying system is available,
surrogate time series can be simply generated using
the model by creating two pairs of time series of the
coupled models and than taking the first time series
from the first pair and the second time series from the
second pair, these surrogates are called equation-based
surrogates. These surrogates have the ideal properties
and can be used as a standard against which other
surrogate generation schemes are compared.

It is important to note that the hypothesis test is
performed as if the surrogates had the ideal properties
listed above. This is however only an approximation
as the surrogate generation algorithm always destroys
some of the dynamical structure it its random phase.
This is a critical point for the model selection procedure.

Let this state of affairs now be related to the model
selection procedure. Ideally when selecting a model,
there would be enough data points in the source time
series so that the set of data can be split into a training
and testing set. The training set would be used to
construct the models and the testing set would be used
to obtain an unbiased estimate of the expectation of the
criterion (4) for a given model. Assuming that models of
the dynamical systems are available as much testing data
as needed could be generated (this testing data would
in fact be equivalent to the equation-based surrogates.
This would seem to be fortuitous but in practice it is
rarely the case that models of the underlying systems

are available as the most interesting applications of
the nonlinear dynamical framework are in areas where
the physics of the analyzed systems is still poorly
understood. If equation-based surrogates were available
there would be no bias in the distribution under the
null hypothesis stemming from the difference in the
dynamics in the original and surrogate time series. In
this case the conditioning model that would be optimal
with respect to criterion (4) would also be optimal for
use in the surrogate time series as they are for all
practical purposes identical to the original time series.
A leave-one-out procedure on the training set from the
original time series would the suffice to select the best
useable model.

In practice one of the above algorithms which does
not need the underlying model is used to generate
surrogates which are not identical in dynamical structure
to the original time series. A possible exception to
this rule are the twin surrogates which are difficult
to apply in practice but do well in the preservation
of the dynamical structure. Training and testing the
model using a leave-one-out scheme would thus yield
a model which is not the best possible for the evaluation
of (1) as this model would not take into account the
deformation of the dynamical structure due to the use
of the surrogate generation algorithm. This is one of
the most important practial caveats in the application
of the above method for selecting conditioning models.
It follows that creating the model on the original time
series and testing the model (computing the criterion
value) on the surrogates is what is required to obtain
the best conditioning model. It has been found that the
models selected using this procedure have less elements
than those selected using a leave-one-out scheme. This
is due to the fact that more complex models are more
sensitive to the partial modification of the dynamical
structure due to the surrogate generation algorithms.
If the surrogates would have a dynamical structure
identical to the original time series, then this procedure
would be exactly the same as would be applied in a
standard pattern recognition problem with a training and
testing set.

2.4. The final procedure

The entire procedure for model selection can thus be
summarized as:

• Input: time series with N points, no. of bins B,
maximum model size Kmax, most distant sample
L

• Compute intersample delay τ

• Generate r surrogate time series for testing
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• For each possible model M :

• Build the histogram estimate p̂(yτ |ȳM ) on the
original time series

• Estimate the expected conditional entropy on
the r surrogate time series and average the result:
this is the criterion value

• Select the model M∗ with the smallest criterion
value

The more surrogates are used, the better will be
the estimated conditional entropy. The generation
of surrogates is usually fast for most surrogate
generation algorithms but the estimation of the expected
conditional entropy is expensive for long time series and
must be repeated for each model of which there are(

L−1
K−1

)
as i1 = 0 is always part of the model.

3. Numerical studies

In this section the effectivity of the presented procedure
for selecting conditioning models will be shown on
model systems the parameters and structure of which are
known.

3.1. Rössler systems

In the first example, we will work with the famous
Rössler system pair:

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2)
ẏ1,2 = ω1,2x1,2 + a1,2y1,2

ż1,2 = b1,2 + z1,2(x1,2 − c1,2),
(13)

where a1,2 = 0.15, b1,2 = 0.2, c1,2 = 10, ω1,2 = 1 ±
0.015 and ε1,2 is the coupling between the systems. The
systems are integrated using a Runge-Kutta 4th order
scheme with dt = 0.05 and the resulting time series
is subsampled by a factor of 6 to yield 20 points per
period of the system. Conditional mutual information
(1) is computed for lags T ∈ {1, .., 50} and averaged.
The number of bins was set to 8 which is a value that
works well for many systems [9, 10].

Fig. 1 shows the resulting curves of conditional mutual
information against coupling strength for different
selected models for the length of time series 32768
samples. The coupling strength ε1 = 0 while ε2
was varied between {0, 0.2}. Such a long time series
allows even CMI estimates with 3 elements in the
conditioning model to be computed and thus negates
any advantage a simpler model might have due to
insufficient data. The intersample delay was set to τ =

5. At the top, the model M0 = {0} was applied.
It is clearly seen here, that a single condition is not
sufficient as the CMI curve for the reverse direction is
not constant but increases considerably towards ε2 =
0.08. In the middle the model M∗ = {0, 1} was
the result of the above optimization procedure. The
bottom row is the model ML = {0, 1, 7} which was
selected by using a leave-one-out estimation method
without using the surrogate time series to test the
model. The larger model ML does not bring any
improvement over model M∗ recommended by the
model selection procedure. The curve in the direction
of coupling reacts to the coupling just as well as the
more complicated model. In the reverse direction, the
conditional mutual information is constant and close
to 0 until the generalized synchronization threshold is
reached. This is the desired behavior of the index.

Figure 1: Conditional mutual information vs. strength of
coupling for Rössler pair (13). Single condition
model (top), optimal model per the selection
procedure (center) and the model selected by the
leave-one-out procedure on original time series
data only (bottom).

Tests of detection of directionality in unidirectional
coupling using all three models listed above have
clearly shown that the model selected by the proposed
procedure involving surrogate testing was the most
effective. The proposed model has no false positives in
the tested parameter range of window sizes from 256
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points to 32768 points in powers of two and coupling
strengths ε1 = 0 and ε2 ∈ {0, 0.1}. The model
ML had very low sensitivity and did not detect almost
any directional coupling at all. The examination of the
relevant histograms of the CMI indices has revealed
that there is strong positive bias in the surrogates
in the direction of coupling which renders all the
detections negative. The model M0 on the other hand
has many false positive detections of coupling rendering
the estimates unusable.

3.2. Van der Pol systems

The coupled Van der Pol equations are frequently used
as example systems in nonlinear dynamics as they
exhibit nonlinearity (and a stable limit cycle) but not
deterministic chaos and complement other frequently
used chaotic systems, such as the Rössler system or
the Lorenz system. The nonlinearity of the Van der Pol
system can be controlled by means of a parameter. The
equations of the Van der Pol are given by

ẍ1,2−μ(x2
1,2−1)ẋ1,2+ω2

1,2x1,2+ε1,2(x2,1−x1,2)+η1,2 = 0,
(14)

where μ = 0.2 is the parameter affecting the
nonlinearity of the model, ω1,2 = 1± 0.1 sets the main
frequency of the model, η1,2 are independent white zero-
mean gaussian noise terms with standard deviation 0.1
and ε1,2 are the coupling strengths. The Van der Pol
system pair was integrated with a Heun (reverse Euler)
scheme with dt = 0.01 and subsampled by a factor of
20.

The intersample delay was comupted as τ = 5
samples. With the parameters above the model selection
procedure recommended the model M∗ = {0, 6}, i.e.
a two-dimensional model. The procedure was rerun
without constraining the selected model to multiples
of τ = 5 and instead allowed to select any indices
that are multiples of 2. Note that the prediction horizon
I(Yτ , YM ) was the same in both runs. Using this
less restrictive setting, the model selection procedure
selected the model M ′ = {0, 12} which is quite
different to the previously chosen model. This shows
that pre-selection can have adverse effects on the quality
of the selected model.

Interestingly enough, the leave-one-out procedure
selected a model M = {0, 12, 13} with τ = 1
(prediction horizon I(Y5, YM ). The selected model is 3
dimensional, although the underlying dynamical model
is only 2 dimensional. We note here that the model is
not deterministic but stochastic and contains a noise
input which is filtered by the dynamics of the system.
Additionally, the model element 0 is forced to be a part
of all models although it might not necessarily be useful

in the prediction. Either of these considerations may
explain why a 3 dimensional model was selected by the
procedure.

The curves of conditional mutual information averaged
for the lags T ∈ {17, 22} (in case of the Van der Pols
it is clear that coupling has most effect at these lags) is
shown in Fig. 2.

Figure 2: Conditional mutual information vs. strength of
coupling for the Van der Pol pair (14). Single
condition model (top), optimal model per the
selection procedure (center) and the model selected
by the leave-one-out procedure on original time
series data only (bottom).

4. Conclusion

The selection of a conditioning model for processing
amplitude series is a difficult problem and requires
careful consideration. A method for selecting a
conditioning model has been presented which attempts
to select the optimal model with respect to the problem
of detecting directional coupling.

The error of the prediction of a considered model
was connected to the criterion (time lagged mutual
information or conditional entropy) by selecting a
suitable loss function. It has been shown that the error
is positively biased with respect to the true expected
value of the conditional entropy. The bias and variance
that surrogates introduce into the directionality detection
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method have been replicated in the model selection
method by using generated surrogate time series to
estimate the criterion instead of leave-one-out cross-
validation or splitting the original time series into a
training and testing set.

Some positive results have been shown on well-
known and frequently used model systems. The
recommended models have worked better than other
reasonable choices. This has been verified by testing
the conditioning models on the actual directionality
detection problem for the considered systems. There are
still however unresolved issues such as pre-filtering of
the allowable samples to be included in the model and
the methods is still very much a work in progress.
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[5] M. Paluš and A. Stefanovska, “Direction of
coupling from phases of interacting oscillators : An
information-theoretic approach,” Physical Review
E, vol. 67, 2003.

[6] B. Musizza, A. Stefanovska, P. V. E. McClintock,
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