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182 07 Prague, Czech Republic

Institute of Computer Science of the ASCR, v. v. i.
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Abstract

Classifier aggregation is a method for
improving quality of classification – instead
of using just one classifier, a team of
classifiers is created, and the outputs of the
individual classifiers are aggregated into the
final prediction. Common methods for classifier
aggregation, such as mean value aggregation
or weighted mean aggregation are static, i.e.,
they do not adapt to the currently classified
pattern. In this paper, we introduce a formalism
of dynamic classifier systems, which use the
concept of dynamic classification confidence
in the aggregation process, and therefore they
dynamically adapt to the currently classified
pattern. The results of the experiments with
quadratic discriminant classifiers on four
artificial and four real-world benchmark datasets
show that dynamic classifier systems can
significantly outperform both confidence-free
and static classifier systems.

1. Introduction

Classification is a process of dividing objects (called
patterns) into disjoint sets called classes [1]. Many
machine learning algorithms for classification have
been developed – for example naive Bayes classifiers,
linear and quadratic discriminant classifiers, k-
nearest neighbor classifiers, support vector machines,
neural networks, or decision trees. If the quality of
classification (i.e., the classifier’s predictive power) is
low, there are several methods we can use to improve it.

One comonly used technique for improving
classification quality is called classifier combining [2]
– instead of using just one classifier, we create and
train a team of classifiers, let each of them predict
independently, and then combine (aggregate) their

results. It can be shown that a team of classifiers can
perform better in the classification task than any of the
individual classifiers.

There are two main approaches to classifier combining:
classifier selection [3, 4, 5] and classifier aggregation
[6, 7]. If a pattern is submitted for classification, the
former technique uses some rule to select one particular
classifier, and only this classifier is used to obtain
the final prediction. The latter technique uses some
aggregation rule to aggregate the results of all the
classifiers in a team to get the final prediction.

A common drawback of classifier aggregation methods
is that they are static, i.e., they are not adapted to the
particular patterns that are currently classified. In other
words, the aggregation is specified during a training
phase, prior to classifying a test pattern. However, if
we use the concept of dynamic classification confidence
(i.e., the extent to which we can “trust” the output of the
particular classifier for the currently classified pattern),
the aggregation algorithms can take into account the
fact that “this classifier is not good for this particular
pattern”.

Surprisingly, such dynamic classifier systems are not
used very often in classifier combining. However, there
has already been some work done in the field of dynamic
classifier systems – Robnik-Šikonja and Tsymbal et al.
[8, 9] study dynamic aggregation of random forests [10],
i.e., dynamic classifier systems of decision trees. The
authors report significant improvements in classification
quality when using dynamic voting compared to simple
voting. However, they study dynamic classifier systems
only in the context of random forests, and they use only
confidence measures based on the so-called margin.

In this paper, we provide a general formalism
of dynamic classification confidence measures and
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dynamic classifier systems, and we experimentally
study the performance of confidence-free classifier
systems (i.e., systems that do not utilize classification
confidence at all), static classifier systems (i.e., systems
that use only “global” confidence of a classifier), and
dynamic classifier systems (i.e., systems that adapt to
the particular pattern submitted for classification).

The paper is structured as follows. In Section 2,
we introduce the formalism of classifier combining,
namely in Section 2.1, we define basic concepts of
classification, in Section 2.2 we introduce the concept
of classification confidence, and we introduce three
dynamic confidence measures, in Section 2.3 we deal
with classifier teams and ensembles, and in Section 2.4,
we finally define classifier systems and show several
examples of dynamic classifier systems. In Section
3, we experimentally investigate the suitability of
the proposed dynamic confidence measures, and the
performance of the proposed dynamic classifier systems.
Section 4 then concludes the paper.

2. Formalism of Classifier Combining with
Classification Confidence

2.1. Classification

Throughout the rest of the paper, we use the following
notation. LetX ⊆ Rn be a n-dimensional feature space,
an element �x ∈ X of this space is called a pattern, and
let C1, . . . , CN ⊆ X , N ≥ 2, be disjoint sets called
classes. The index of the class a pattern �x belongs to
will be denoted as c(�x) (i.e., c(�x) = i iff �x ∈ Ci). The
goal of classification is to determine to which class a
given pattern belongs, i.e., to predict c(�x) for unknown
patterns.

Definition 1 We call a classifier every mapping φ :
X → [0, 1]N , where [0, 1] is the unit interval,
and φ(�x) = (μ1(�x), . . . , μN (�x)) are degrees of
classification (d.o.c.) to each class.

The d.o.c. to class Cj expresses the extent to which the
pattern belongs to class Cj (if μi(�x) > μj(�x), it means
that the pattern (�x) belongs to class Ci rather than to
Cj). Depending on the classifier type, it can be modelled
by probability, fuzzy membership, etc.

Remark 1 This definition is of course not the only way
how a classifier can be defined, but in the theory of
classifier combining, this one is used most often [2].

Definition 2 Classifier φ is called crisp, iff ∀�x ∈ X ∃i,
such that:

μi(�x) = 1, and ∀j �= i μj(�x) = 0.

Classifier φ is called normalized, iff

∀�x ∈ X :

N∑
i=1

μi(�x) = 1,

where φ(�x) = (μ1(�x), . . . , μN (�x)).

Remark 2 Normalized classifiers are sometimes called
probabilistic [6]. However, they do not need to be
based on probability theory, so we will call them just
normalized.

Definition 3 Let φ be a classifier, �x ∈ X , φ(�x) =
(μ1(�x), . . . , μN (�x)). Crisp output of φ on �x is defined
as φcr(�x) = arg maxi=1,...,N μi(�x).

2.2. Classification Confidence

Classification confidence expresses the degree of trust
we can give to a classifier φ when classifying a pattern
�x. It is modelled by a mapping κφ.

Definition 4 Let φ be a classifier. We call a confidence
measure of classifier φ every mapping κφ : X → [0, 1].

The higher the confidence, the higher the probability
of correct classification. κφ(�x) = 0 means that the
classification may not be correct, while κφ(�x) = 1
means the classification is probably correct. However,
κφ does not need to be modelled by a probability
measure.

A confidence measure can be either static, i.e., it is a
constant of the classifier, or dynamic, i.e., it adjusts itself
to the currently classified pattern.

Definition 5 Let φ be a classifier and κφ its confidence
measure. We call κφ static, iff it is constant in �x, we call
κφ dynamic otherwise.

Remark 3 Since static confidence measures are
constant, independent on the currently classified
pattern, we will omit the pattern (�x) in the notation,
i.e., we will denote them just κφ.

Remark 4 In the rest of the paper, we will use the
indicator operator I , defined as I(true) = 1, I(false) =
0.
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David Štefka Dynamic Classifier Systems for Classifier Aggregation

2.2.1 Static confidence measures: After the
classifier has been trained, we can use a testing set
(i.e., a set of patterns on which the classifier has not
been trained) to assess its predictive power as a whole
(from global view). These methods include accuracy,
precision, sensitivity, resemblance, etc. [1, 11], and we
can use these measures as static confidence measures. In
this paper, we will use the Global Accuracy measure.

Global Accuracy (GA) of a classifier φ is defined as
the proportion of correctly classified patterns from
the testing set:

κ
(GA)
φ =

∑
�y∈M I(φ(�y)

?
= c(�y))

|M|
, (1)

whereM is the testing set of φ.

2.2.2 Dynamic confidence measures: An easy
way how a dynamic confidence measure can be defined
is to compute some property on patterns neighboring
with �x. Let N(�x) denote a set of neighboring training
or validating patterns (we can use both training and
validating set for computing N(�x), but it is usually
better to use validating set, because if we use training
patterns, the results will be biased). In this paper, we
define N(�x) as the set of k patterns nearest to �x under
Euclidean metric. Now we will define three dynamic
confidence measures which use N(�x):

Euclidean Local Accuracy (ELA) measures the local
accuracy of φ in N(�x):

κ
(ELA)
φ (�x) =

∑
�y∈N(�x) I(φcr(�y)

?
= c(�y))

|N(�x)|
, (2)

where φcr(�y) is the crisp output of φ on �y.

Euclidean Local Match (ELM) is based on the ideas
from [12], and measures the proportion of patterns
in N(�x) from the same class as φ is predicting for
�x:

κ
(ELM)
φ (�x) =

∑
�y∈N(�x) I(φcr(�x)

?
= c(�y))

|N(�x)|
, (3)

where φcr(�x) is the crisp output of φ on �x.

Euclidean Average Margin (EAM) is defined as
mean value of the margin [10, 8, 9] in N(�x):

κ
(EAM)
φ (�x) =

∑
�y∈N(�x) mg(φ(�y))

|N(�x)|
, (4)

where the margin is defined as mg(φ(�y)) =⎧⎪⎨
⎪⎩

μc(�y)(�y)− max
i=1,...,N
i�=c(�y)

μi(�y) if φcr(�y) = c(�y),

0 otherwise.
,

(5)
where φ(�y) = (μ1(�y), . . . , μN (�y)), and φcr(�y) is
the crisp output of φ on �y.

The dynamic confidence measures defined in this
section have one drawback – they need to compute
N(�x), which can be time-consuming, and sensitive
to the similarity measure used. There are also
dynamic confidence measures, which compute the
classification confidence directly from φ(�x), e.g., the
ratio of the highest degree of classification to the
sum of all degrees of classification. However, our
preliminary experiments with such measures with
quadratic discriminant classifiers and random forests
show that such confidence measures give very poor
results.

Remark 5 All the previous confidence measures are
model-indifferent, i.e., they could be used for any
classifier. However, measures which take into account
specific aspects of the classification method could be
designed – for example, Robnik-Šikonja and Tsymbal
et al. [8, 9] use dynamic confidence of a decision tree
in a random forest [10] as average margin computed
on instances similar to the currently classified pattern,
where the similarity is based on specific aspects of
random forests. Such model-specific measures could use
the information from the classification process better
than model-indifferent measures. However, due to space
constraints we do not deal with model-specific measures
in this paper.

2.3. Classifier Teams

In classifier combining, instead of using just one
classifier, a team of classifiers is created, and the
team is then aggregated into one final classifier. If
we want to utilize classification confidence in the
aggregation process, each classifier must have its
confidence measure defined.

Definition 6 Classifier team is a tuple (T ,K), where
T = (φ1, . . . , φr) is a set of classifiers, and K =
(κφ1

, . . . , κφr
) is a set of corresponding confidence

measures.

If a classifier team consists only of classifiers of
the same type, which differ only in their parameters,
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dimensionality, or training sets, the team is usually
called an ensemble of classifiers. For this reason
the methods which create a team of classifiers are
sometimes called ensemble methods. The restriction to
classifiers of the same type is not essential, but it ensures
that the outputs of the classifiers are consistent.

Well-known methods for ensemble creation are bagging
[13], boosting [14], error correction codes [2], or
multiple feature subset methods [15]. These methods
try to create an ensemble of classifiers which are both
accurate and diverse [16].

Since the main focus of this paper lies in studying
classification confidence, we will not study these
methods here, and we will just assume in the rest of the
paper that we have constructed a classifier team (T ,K)
of r classifiers using some of these methods.

If a pattern is submitted for classification, the team of
classifiers gives us two different informations – outputs
of the individual classifiers (a decision profile), and
values of classification confidences of the classifiers (a
confidence vector).

Definition 7 Let (T ,K) be a classifier team, T =
(φ1, . . . , φr), K = (κφ1

, . . . , κφr
), and let �x ∈ X . Then

we define decision profile T (�x) ∈ [0, 1]r,N as

T (�x) =

⎛
⎜⎜⎜⎝

φ1(�x)
φ2(�x)

...
φr(�x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

μ1,1 μ1,2 . . . μ1,N

μ2,1 μ2,2 . . . μ2,N

. . .
μr,1 μr,2 . . . μr,N

⎞
⎟⎟⎟⎠ ,

(6)
and confidence vector K(�x) ∈ [0, 1]r as

K(�x) =

⎛
⎜⎜⎜⎝

κφ1
(�x)

κφ2
(�x)
...

κφr
(�x)

⎞
⎟⎟⎟⎠ (7)

Remark 6 Here we use the notation T for both the set
of classifiers, and for the decision profile, and similarly
for K. To avoid any confusion, the decision profile and
confidence vector will be always followed by (�x).

2.4. Classifier Systems

After the pattern �x has been classified by all the
classifiers in the team, and the confidences were
computed, these outputs have to be aggregated using
a team aggregator, which takes the decision profile
as its first argument, the confidence vector as its
second argument, and returns the aggregated degrees of
classification to all the classes.

Definition 8 Let r,N ∈ N, r,N ≥ 2. A team
aggregator of dimension (r,N) is any mapping A :
[0, 1]r,N × [0, 1]r → [0, 1]N .

A classifier team with an aggregator will be called a
classifier system. Such system can be also viewed as a
single classifier.

Definition 9 Let (T ,K) be a classifier team, and let A
be a team aggregator of dimension (r,N), where r is the
number of classifiers in the team, and N is the number
of classes. We define an induced classifier of (T ,K,A)
as a classifier Φ, defined as

Φ(�x) = A(T (�x),K(�x)).

The 4-tuple S = (T ,K,A,Φ) is called a classifier
system.

Depending on the way how a classifier system utilizes
the classification confidence, we can distinguish several
kinds of classifier systems.

Definition 10 Let (T ,K) be a classifier team. (T ,K) is
called static, iff

∀κ ∈ K : κ is a static confidence measure.

(T ,K) is called dynamic, iff

∀κ ∈ K : κ is a dynamic confidence measure.

Definition 11 LetA be a team aggregator of dimension
(r,N). We call A confidence-free, iff ∀T ∈ [0, 1]r,N :

(∀�k1,�k2 ∈ [0, 1]r : A(T, k1) = A(T, k2)).

Definition 12 Let S = (T ,K,A,Φ) be a classifier
system. We call S confidence-free, iff A is confidence-
free. We call S static, iff (T ,K) is static, and A is
not confidence-free. We call S dynamic, iff (T ,K) is
dynamic, and A is not confidence-free.

Confidence-free systems do not utilize the classification
confidence at all (for example a team of classifiers
aggregated by simple voting). Static systems utilize
classification confidence, but only as a global property
(for example a team of classifiers aggregated by
weighted voting with constant classifier weights).
Dynamic systems utilize classification confidence in
a dynamic way, i.e. the aggregation is adapted to
the particular pattern submitted for classification (for
example a team of classifiers aggregated by weighted
voting with classifier weights computed for every
pattern). The different approaches are schematically
shown in Fig. 1.
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�x

φ1

φ2

...
φr

T (�x) A Φ(�x)

(a) Confidence-free

�x

φ1

φ2

...
φr

T (�x)

Kconst

A Φ(�x)

(b) Static

�x

φ1

φ2

...
φr

κφ1

κφ2

...
κφr

T (�x)

K(�x)

A Φ(�x)

(c) Dynamic

Figure 1: Schematic comparison of confidence-free, static, and dynamic classifier systems.

Remark 7 Since confidence-free classifier systems do
not utilize the classification confidence, we will denote
them S = (T ,A,Φ), and their team aggregators will be
defined as a mapping A : [0, 1]r,N → [0, 1]N .

Many methods for aggregating the team of classifiers
into one final classifier have been proposed in
the literature. A good overview of commonly used
aggregation methods can be found in [6]. These methods
comprise simple arithmetic rules (voting, sum, product,
maximum, minimum, average, weighted average, etc.),
fuzzy integral, Dempster-Shafer fusion, second-level
classifiers, decision templates, and many others.

In the following text, we define several team
aggregators. We will use the notation from Def. 7
and Def. 9. Let Φ(�x) = A(T (�x),K(�x)) =
(μ1(�x), . . . , μN (�x)).

Mean value aggregation (MV) is the most common
(confidence-free) aggregation technique. Its
aggregator is defined as

μj(�x) =

∑
i=1,...,r μi,j(�x)

r
. (8)

If the classifiers in the team are crisp, MV
coincides with voting.

Static weighted mean aggregation (SWM) computes
aggregated d.o.c. as weighted mean of d.o.c. given

by the individual classifiers, where the weights are
static classification confidences:

μj(�x) =

∑
i=1,...,r κφi

μi,j(�x)∑
i=1,...,r κφi

. (9)

Dynamic weighted mean aggregation (DWM) has
the same aggregator as SWM, but the weights
are dynamic classification confidences:

μj(�x) =

∑
i=1,...,r κφi

(�x)μi,j(�x)∑
i=1,...,r κφi

(�x)
. (10)

Filtered mean aggregation (FM) has the same
aggregator as MV, but prior to computing the
aggregated values, the classifiers which have
(dynamic) classification confidence lower than
T ∈ [0, 1] are discarded:

μj(�x) =

∑
i=1,...,r

κφi
(�x)>T

μi,j(�x)

|{φ ∈ T |κφi
(�x) > T}|

. (11)

3. Experiments

3.1. Experiment 1 – Choosing the Right Confidence
Measure

To gain a general idea to which extent the proposed
dynamic confidence measures (ELA, ELM, and EAM)
really express the probability that the classification of
the currently classified pattern is right, we examined
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David Štefka Dynamic Classifier Systems for Classifier Aggregation

the distributions of the confidence values for correctly
classified and for misclassified patterns.

The confidence measures were tested on quadratic
discriminant classifiers [1]. The classifiers were
implemented in Java programming language and 10-
fold crossvalidation was performed to obtain the results.
We measured histograms of the local classification
confidence values for correctly classified and for
misclassified patterns from four artificial (Clouds,
Concentric, Gauss 3D, Waveform) and four real-world
(Breast, Phoneme, Pima, Satimage) datasets from the
Elena database [17] and from the UCI repository [18].
As N(�x), we used the set of 20 nearest neighbors of �x
under Euclidean metric.

The histograms of the dynamic confidence values for the
particular datasets are shown in Fig. 2. Before discussing
the results, we should say a few words about how the
results should ideally look like. We will denote the
distribution of local classification confidence values for
correctly classified patterns as “OK distribution”, and
for misclassified patterns as “NOK distribution”. The
OK distribution should be concentrated near one, while
the NOK distribution should be concentrated near zero,
and ideally, the distributions should be clearly separated.
If the distributions overlap, or if the NOK distribution
has high values near one, it means that the measure does
not really express the probability that the classification
of the currently classified pattern is right.

The results show that for some datasets, all the dynamic
confidence measures provide good separation of the OK
and NOK patterns, which suggests the measures are
suitable for using in dynamic classifier systems. The
most representative example of such behavior is the
Phoneme dataset, where the OK and NOK distributions
for all three dynamic confidence measures are clearly
separated.

For some datasets, there are notable differences in the
dynamic confidence measures – e.g., in the case of
the Satimage dataset, the EAM confidence measure
provides much better separation of the OK and NOK
patterns than the other two measures. In the case of
the Concentric dataset, the ELM confidence measure
is an obvious winner. This means that the performance
of a confidence measure is dependent on the particular
dataset, and that the choice of a confidence measure
should be always done with respect to the particular
data.

For several datasets, all three dynamic confidence
measures provided very poor separation of the OK and
NOK patterns, which raises doubts about the suitability

of the measures in dynamic classifier systems. This is
the case of the Gauss 3D or the Pima dataset.

However, we cannot make direct conclusions about
suitability of the measures just from the separation
properties of the OK and NOK patterns. To give one
example: even if the separation is good enough, the
high values of dynamic classification confidence may
be obtained on the “easy” patterns, and the low values
on the “hard” patterns. Moreover, if the classifiers
in the classifier system are “similar”, all of them
will have similar confidence on a particular pattern.
Therefore, dynamic aggregation of the system will bring
no improvement in the classification quality, since all the
classifiers appear the same for the system’s aggregator.
This may be the explanation of the result of Exp. 2
for the Phoneme dataset, where the FM aggregation
has gives very different performance for ELM and
EAM confidence measures, even if the OK and NOK
separation of the measures is nearly the same (see
Fig. 2).

3.2. Experiment 2 – Confidence-free vs. Static vs.
Dynamic Classifier Systems

In the second experiment, we compared the performance
of the classifier aggregation algorithms described in
Section 2.4. The main emphasis was given to comparing
confidence-free vs. static vs. dynamic classifier systems.
We used the same datasets as in Exp. 1.

For all the classifier systems we used, the classifier team
T was an ensemble of quadratic discriminant classifiers,
created either by the bagging algorithm [13] (which
creates classifiers trained on random samples drawn
from the original training set with replacement), or by
the multiple feature subset method [15] (which creates
classifiers using different combinations of features),
depending on which method was more suitable for the
particular dataset.

For the comparison, we designed the following classifier
systems (refer to Section 2.2 and Section 2.4 for the
description of the algorithms):

MV confidence-free system aggregated by mean value
aggregation

SWM cl. system aggregated by static weighted mean
aggregation; as a confidence measure, we used
GA

DWM cl. system aggregated by dynamic weighted
mean; as a confidence measure, we used ELA,
ELM, and EAM
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Figure 2: Histograms of dynamic confidence values of a quadratic discriminant classifier (ELA - Euclidean Local Accuracy,
ELM - Euclidean Local Match, EAM - Euclidean Average Margin) for correctly classified (OK) and misclassified
(NOK) patterns.
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Table 1: Comparison of the aggregation methods – non-combined classifier (NC), mean value (MV), static weighted mean (SWM)
using GA confidence measure, dynamic weighted mean (DWM) using three confidence measures (ELA, ELM, EAM),
and filtered mean (FM) using three confidence measures (ELA, ELM, EAM). Mean error rate (in %) ± standard deviation
of error rate from a 10-fold crossvalidation was measured. The best result is displayed in boldface, statistically significant
improvements to NC, MV, and SWM are marked by footnote signs. The (B/M) after dataset name means whether the
ensemble was created by Bagging or Multiple feature subset algorithm.

Non-Combined Conf.-free Static Dynamic
Dataset NC MV κ SWM κ DWM FM

Clouds (M) 25.0 ± 1.7 25.0 ± 2.1 GA 24.7 ± 1.6 ELA 23.4 ± 1.5 22.3 ± 1.5
∗†‡

ELM 23.2 ± 1.2 22.0 ± 2.1
∗†‡

EAM 23.5 ± 1.5 23.3 ± 1.4

Concentric (B) 3.5 ± 1.0 3.8 ± 0.6 GA 4.0 ± 0.8 ELA 3.2 ± 1.1 2.1 ± 1.3
†‡

ELM 2.9 ± 1.6 1.8 ± 0.8
∗†‡

EAM 3.8 ± 1.3 4.3 ± 1.5

Gauss 3D (B) 21.4 ± 1.7 21.6 ± 1.1 GA 21.5 ± 2.1 ELA 21.5 ± 1.4 21.7 ± 1.3

ELM 21.3 ± 2.0 22.0 ± 1.3

EAM 21.5 ± 2.0 21.7 ± 1.3

Waveform (B) 14.9 ± 2.5 15.0 ± 1.4 GA 14.8 ± 0.9 ELA 14.7 ± 1.9 15.0 ± 1.2

ELM 14.8 ± 2.5 14.5 ± 1.2

EAM 14.6 ± 2.0 15.5 ± 1.0

Breast (M) 4.8 ± 2.9 4.7 ± 2.5 GA 4.2 ± 2.4 ELA 3.0 ± 2.1 2.9 ± 1.8

ELM 3.0 ± 1.9 3.1 ± 2.1

EAM 3.2 ± 2.0 2.9 ± 1.7

Phoneme (M) 24.7 ± 1.1 23.5 ± 1.6 GA 24.0 ± 1.4 ELA 21.5 ± 1.9
∗‡

17.2 ± 1.4
∗†‡

ELM 21.2 ± 1.8
∗‡

16.9 ± 2.0
∗†‡

EAM 21.9 ± 0.9
∗

20.7 ± 1.7
∗†‡

Pima (M) 27.1 ± 4.4 25.4 ± 3.6 GA 25.0 ± 5.6 ELA 25.8 ± 6.5 24.0 ± 2.7

ELM 24.0 ± 4.1 25.0 ± 7.4

EAM 24.8 ± 6.3 23.5 ± 5.4

Satimage (B) 15.6 ± 1.7 15.5 ± 1.2 GA 15.5 ± 1.7 ELA 15.3 ± 1.6 15.2 ± 2.4

ELM 15.3 ± 1.3 14.4 ± 1.0

EAM 15.5 ± 1.2 15.0 ± 1.5

∗Significant improvement to NC
†Significant improvement to MV
‡Significant improvement to SWM

FM cl. system aggregated by filtered mean; as a
confidence measure, we used ELA, ELM, and
EAM

We also compared the systems’ performance with the
so-called non-combined classifier (NC), i.e., a common
quadratic discriminant classifier (the NC classifier
represents an approach which we had to use if we could
use only one classifier).

All the methods were implemented in Java
programming language, and a 10-fold crossvalidation
was performed to obtain the results. For the dynamic
confidence measures, we used the same definition
of N(�x) as in Exp. 1, and the threshold T for FM
aggregators was set to T = 0.8 or T = 0.9, depending
on the particular dataset (based on some preliminary
testing; no fine-tuning or optimization was done).

The results of the testing are shown in Table 1. Mean
error rate and standard deviation of the error rate of
the induced classifiers from a 10-fold crossvalidation
was measured. We also measured statistical significance
of the results – at 5% confidence level by the analysis
of variance using the Tukey-Kramer method (by the
’multcomp’ function from the Matlab statistics toolbox).

The results show that for most datasets, the dynamic
classifier systems outperform both confidence-free and
static classifier systems. For three datasets, these results
were statistically significant. FM usually gives better
results than DWM, and if we compare the three dynamic
confidence measures, we can say that ELM gives
usually the best results, ELA and ELM being slightly
worse. However, as we already discussed in Exp. 1, the
performance of the individual confidence measures is
dependent on the particular dataset. Generally speaking,
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the FM-ELM was the most successfull algorithm in this
experiment.

It should be noted that the experimental results from
this paper are relevant only to quadratic discriminant
classifiers, because for any other classifier types (k-
NN, SVM, decision trees, etc.), the dynamic confidence
measures could give quite different results.

4. Summary

In this paper, we have studied dynamic classifier
aggregation. We have introduced the formalism of
classifier systems which can be used with (dynamic)
classification confidence, and we have defined
confidence-free, static, and dynamic classifier systems.
We have introduced three dynamic classification
confidence measures (ELA, ELM, EAM), and we have
shown a way how these measures can be used in
dynamic classifier systems – we have introduced two
algorithms for dynamic classifier aggregation.

In our first experiment, we have studied the distributions
of values of the proposed dynamic classification
confidence measures for correctly classified and
misclassified patterns, which can give us a hint about
suitability of the measures in dynamic classifier systems.
The results show that the performance of the particular
confidence measure is dependent of the particular
dataset.

In the second experiment, we have compared the
performance of confidence-free, static, and dynamic
classifier systems of quadratic discriminant classifiers.
The results show that dynamic classifier systems can
significantly outperform both confidence-free and static
classifier systems.

The main contribution of this paper is the verification
that the concept of dynamic classification confidence
can significantly improve the classification quality, and
that it is a general concept, which can be incorporated
into the theory of classifier aggregation in a systematic
way.

In our future work, we plan to study dynamic
classification confidence measures for other classifiers
than quadratic discriminant classifier, mainly decision
trees and support vector machines, and to study model-
specific confidence measures for these classifier types.
We will also incorporate local classification confidence
into more sophisticated classifier aggregation methods,
for example fuzzy t-conorm integral [19].

References

[1] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern
Classification (2nd Edition). Wiley-Interscience,
2000.

[2] L. I. Kuncheva, Combining Pattern Classifiers:
Methods and Algorithms. Wiley-Interscience,
2004.

[3] X. Zhu, X. Wu, and Y. Yang, “Dynamic classifier
selection for effective mining from noisy data
streams,” in ICDM ’04: Proceedings of the Fourth
IEEE International Conference on Data Mining
(ICDM’04), (Washington, DC, USA), pp. 305–
312, IEEE Computer Society, 2004.

[4] M. Aksela, “Comparison of classifier selection
methods for improving committee performance.,”
in Multiple Classifier Systems, pp. 84–93, 2003.

[5] K. Woods, J. W. Philip Kegelmeyer, and
K. Bowyer, “Combination of multiple classifiers
using local accuracy estimates,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 19, no. 4,
pp. 405–410, 1997.

[6] L. I. Kuncheva, J. C. Bezdek, and R. P. W.
Duin, “Decision templates for multiple classifier
fusion: an experimental comparison.,” Pattern
Recognition, vol. 34, no. 2, pp. 299–314, 2001.

[7] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas,
“On combining classifiers,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239,
1998.
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