
User Preference and Optimization of Relational Queries

Nedbal, Radim
2008

Dostupný z http://www.nusl.cz/ntk/nusl-39089

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 06.06.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-39089
http://www.nusl.cz
http://www.nusl.cz

Radim Nedbal User Preference and Optimization ...

User Preference and Optimization of Relational Queries

Post-Graduate Student:

RADIM NEDBAL

Supervisor:

ING. JÚLIUS ŠTULLER, CSC.
Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2
182 07 Prague, Czech Republic ,

Department of Mathematics
Faculty of Nuclear Science and Physical Engineering
Czech Technical University
Trojanova 13

120 00 Prague, Czech Republic

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague, Czech Republic

radned@seznam.cz stuller@cs.cas.cz

Field of Study:
Mathematical Engineering

This work was supported by the project 1ET100300419 of the Program Information Society (of the Thematic Program
II of the National Research Program of the Czech Republic) “Intelligent Models, Algorithms, Methods and Tools for the

Semantic Web Realization”, and by the Institutional Research Plan AV0Z10300504 “Computer Science for the
Information Society: Models, Algorithms, Applications”.

Abstract

The notion of preference poses a new
prospect of personalization of database queries.
In addition, it can be exploited to optimize
query execution. Indeed, a novel optimization
technique involving preference is developed,
and its algorithm presented.

1. Introduction

Preference provides a modular and declarative means
for relaxing and optimizing database queries. It is a
concept that needs a special framework for embedding
in the relational data model: on the one hand, the
framework should be rich enough to capture various
kinds of preference to provide database users with
an expressive language to formulate their wishes,
and, on the other hand, robust enough to allow for
possibly conflicting preferences as the assumption of
consistency of complex preferences is hard to fulfill in
practical applications.

To reach the above goal we consider sixteen kinds
of preferences, some of them allowing for expressing
uncertainty. Also, basic preference combiners (Pareto or
lexicographic composition) are taken into account.

To embed the notion of preference into relational query
languages, a preference operator, parameterized by
user preference, is defined: it filters out not all the bad
results, but only worse results than the best matching
alternatives and returns the perfect match if present

in the database, otherwise, it delivers best-matching
alternatives, but nothing worse!

Optimization strategy of pushing the preference
specification down the query execution tree is governed
by both algebraic properties of the preference operator
and logical properties of user preference that always
is expressed over a set of possible states of the
world. This strategy is based on the assumption that
early application of the preference operator reduces
intermediate results and thus minimizes the data flow
during the query execution.

2. Embedding Preference in Relational Query
Languages

2.1. Preference Operator

A new, preference operator is added to the relational
algebra. Its expressive power depends on the
expressivity of the language for expressing user
preference – its single parameter.

Definition 1 (Preference operator) Let U denote a
universe and WP ⊆ W a set of the most preferred
worlds with regard to a preference specification P over
a set W of possible worlds. The preference operator ωP

is a mapping ωP : V → 2V from a set V of discourse
into the powerset 2V of V :

ωP(v) = {v′ ⊆ v|∃u ∈ U∃w ∈WP : u |= w ∧ v′} .
(1)

PhD Conference ’08 82 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163294

Radim Nedbal User Preference and Optimization ...

It is important to point out that the preference
specification parameter P allows for complex
preference compound from elementary preferences
of various kinds. We take into account locally
optimistic, locally pessimistic, opportunistic, and careful
preferences, whose terminology and motivation has
been introduced in [1]. Moreover, we consider another
two binary choices: a preference can be strict or non-
strict and can be evaluated without or with a ceteris
paribus proviso, a concept introduced by von Wright [2].
Altogether, we get sixteen various kinds of preference.

On the one hand, this complex preference specification
parameter yields a large expressivity, however, on the
other hand, it makes the preference operator absent
from algebraic properties fundamental for realizing the
algebraic optimization strategy that is based on early
application of the most selective operators of relational
algebra. Thus a more general technique has to be
developed.

2.2. Optimization

Algebraic optimization strategy involving the preference
operator must provide a transformation (of a given
database query) under which the preference operator,
which is the last operator to be applied, is invariant.

Example 1 Let R be a database schema and I its
instance consisting of two relation instances I1, I2.
Suppose a user expresses their requirements through a
database query

q(I) = πX(I1 ∪ I2) (2)

over I and their preferences (wishes) through a
preference specification P over the set

W = 2q(I) (3)

of possible worlds. Then, the preference operator
ωP

(
q(I)

)
evaluated over (2) returns the best matching

alternatives with regard to the user preferences.

Suppose the preference operator is invariant under the
following transformation of q(I) to q′(I):

q′(I) = πX

(
ω

P(I1) ∪ ω

P(I2)
)

, (4)

where ω

P(Ii) is a preference operator derivative

filtering out “bad” tuples. Then, the preference operator
ωP

(
q′(I)

)
evaluated over (4) returns the best matching

alternatives with regard to the user preferences:

ωP

(
q′(I)

)
= ωP

(
q(I)

)
.

The query execution trees are depicted in Fig. 1, where
data flow between the computer’s main memory and
secondary storage is represented by the drawing width.

ωP

πX

∪

I1 I2

ωP

πX

∪

ω

P ω

P

I1 I2

(a) Before pushing (b) After pushing

Figure 1: Improving the query plan by pushing the preference
operator down the query execution tree

Supposing that relation instances I1 and I2 are too big
to fit into the main memory and using the number of the
secondary storage I/O’s as our measure of cost for an
operation, it can be seen that the strategy of pushing
the preference operator can improve the performance
significantly.

Note that to push the preference specification P down
the expression tree, a special derivative ω

P of the
preference operator ωP realizing its filtering potential
has been introduced. Unlike the preference operator (cf.
1), it is a mapping ω

P : V → V from a set V of
discourse – a set of all possible tuples over a given
relation scheme – into itself. Most importantly, it fulfills
the following property:

ωP

(
ω

P(I)

)
= ωP(I) ,

i.e., it filters out bad tuples of a given relational instance
I without affecting the value of the preference operator.

Furthermore, observe that ωP and ω

P have an identical

value of the preference parameter. This value – a user
preference P over W – however, is usually expressed
over the result of a query (3). Does it mean that
we need to have computed (3), and thus also (2),
before we are able to evaluate (4)? The answer has
to be searched for in the definition of the semantics
of preference specification [3] and is provided by the
following proposition 1.

In brief, a preference specification has the constructive
semantics defined by means of a disjunctive logic
program (DLP). In the following, W stands for the

PhD Conference ’08 83 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163294

Radim Nedbal User Preference and Optimization ...

Herbrand universe for the DLP assigned to a preference
specification P , and gP for a mapping that can be
computed from models of the DLP. Note that models
of the DLP can be computed using single exponential
time on the cardinality of W, which , in turn, depends
exponentially on the number of elementary preferences
composing the preference specification P . This number,
however, is supposed to be small, usually between five
and ten. Finally, fP stands for a mapping that can be
expressed as a first order query.

Lemma 1 Let q denote a database query – a mapping
q : inst(R) → inst(S) from a set of database instances
over a database schema R to a set of relation
instances over a relation schema S. Given a preference
specification P over a set W of possible worlds, there
exist a finite set W and a mapping gP : 2W → 2W such
that the following properties hold for all subsets W

′ of
W if W = 2q(I):

gP(W′) ⊆W
′ , (5)

gP(W′) ⊆ f−1
P (supp) ⊆W

′ ⇒WP = 〈W′P〉W ,
(6)

where fP : W → {unsupp, supp} is a function
returning supp for every w ∈W that, loosely speaking,
is “supported” by P over W , and

〈W′P〉W = {w ∈W | ∃w ∈W
′P : w ⇒ w} . (7)

Proposition 1 Suppose I, W, fP , and gP are as in
Lemma 1. Then, the mapping hP : 2W → 2W:

hP(W′) =
(
W

′ − gP(W′)
)
∪
(
gP(W′) ∩ f−1

P (supp)
)

(8)
has a fixpoint Wfix such that Wfix ⊇ f−1

P (supp).

Proof: It follows readily from (5) that ∀W′ ⊆
W : hP(W′) ⊆ W

′. As W is finite, it is clear that
∀W′ ⊆ W ∃n ∈ N [i ≥ n ⇒ hi

P(W′) = hn
P(W′)],

i.e., hn
P(W′) is a fixpoint of hP . Now the observation:

∀W′ ⊆ W [W′ ⊇ f−1
P (supp) ⇒ hP(W′) ⊇

f−1
P (supp)] completes the proof.

The following corollary follows readily from (6) and
from the observation

hP(W′) = W
′ ⇐⇒ gP(W′) ⊆ f−1

P (supp) .

Corollary 1 Suppose q and P over W are as
in Lemma 1. Then, Wfix being the fixpoint from
Proposition 1 and W = 2q(I), the following equality
holds:

WP = 〈WP
fix〉W .

So the answer is: partially. To evaluate the preference
operator derivative ω

P , it suffices to find a relevant part
of the query result. Intuitively speaking, this relevant
part is subsumed by the fixpoint of (8) (Corollary 1)
and computed by stepwise pruning the special set W

(Proposition 1).

3. An Algorithm

The above corollary is the key to effective computation
of (4) in the above example:

Algorithm 5 Preference operator filtering tuples
Input: q : inst(R)→ inst(S),P, I
Output: ω

P(I1)
1: Wfix := W

2: while change do
3: compute gP(Wfix)
4: if ∃w ∈ gP(Wfix) : fP(w) = unsupp then
5: remove such w from Wfix

6: end if
7: end while
8: compute W

P
fix

9: ω

P(I1) := I1

10: for all t ∈ I1 do
11: if ∀w ∈W

P
fix : w⇒ ¬t then

12: remove t from ω

P(I1)

13: end if
14: end for

On line 1, W depends solely on preference specification
P . It is independent of the set W over which P
is expressed, and thus it also is independent of the
input database instance I. The while block computes
a fixpoint of (8): the function gP can be computed in
exponential time on input W, and the function fP can be
expressed as a first order query over I. On line 8, W

P
fix

can be computed in exponential time on input W. In the
for block, the input relation instance I1 is filtered: on
line 11, the logical condition follows from Corollary 1
and analysis of (1) and (7).

4. Related Work

The study of preference in the context of database
queries has been originated by Lacroix and Lavency
[4]. They, however, don’t deal with algebraic
optimization. Following their work, preference datalog
was introduced in [5], where it was shown that concept
of preference provides a modular and declarative means
for formulating optimization and relaxation queries in
deductive databases.

PhD Conference ’08 84 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163294

Radim Nedbal User Preference and Optimization ...

Nevertheless, only at the turn of the millennium this
area attracted broader interest again. Kießling et al.
[6, 7, 8, 9, 10, 11] and Chomicki et al. [12, 13,
14, 15] pursued independently a similar, qualitative
approach within which preference between tuples is
specified directly, using binary preference relations.
They have laid the foundation for preference query
optimization that extends established query optimization
techniques: preference queries can be evaluated by
extended – preference relational algebra. While some
transformation laws for queries with preferences were
presented in [11, 6], the results presented in [12] are
mostly more general.

In brief, Chomicki et al. and Kießling et al. have
embedded the concept of preference into relational
query languages identically: they have defined an
operator parameterized by user preference and returning
only the best preference matches. This embedding is
similar to ours. However, their operator differs from
our preference operator by the parameter: Chomicki
et al. and Kießling et al. consider such preference
that the operator is partially antimonotonic with
respect to its relational argument. By contrast, the
preference parameter we consider is more complex
and consequently, this property is not fulfilled by
the preference operator. As a result, most algebraic
properties presented by the above authors don’t apply to
the preference operator. Specifically, the commutativity
and distributivity properties do not hold, and thus the
optimization strategy presented in this paper has to rely
on different techniques.

Moreover, Chomicki et al. and Kießling et al. are
concerned only with one type of preference and don’t
consider preferences between sets of elements. In terms
of logic of preference, they only take into account
preferences between singleton worlds1. In this sense,
their approach is subsumed by the approach presented in
this paper, and, in particular, the introduced optimization
technique can be applied to the their preference
relational algebra.

A special case of the same embedding represents skyline
operator introduced by Börzsönyi et al. [16]. Some
examples of possible rewritings for skyline queries are
given but no general rewriting rules are formulated.

[3] is preliminary contribution building on recent
advances in logic of preference. Employing non-
monotonic reasoning mechanisms, it takes into account
various kinds of preferences. The embedding of
preference in relational query languages is based on

a single preference operator parameterized by a user
preference. By contrast to the presented approach, it
is assumed that user preference always is expressed
over a fixed “universal” domain – a powerset of
a universal relation2. Consequently, the preference
operator has “nice” algebraic properties including
conditional commutativity and distributivity. As a result,
an optimization strategy of pushing the preference
operator down the query expression tree could been
developed [17].

A slightly different goal is pursued in [18], where the
relational data model is extended to incorporate partial
orderings into data domains. The partially ordered
relational algebra (PORA) is defined by allowing the
ordering predicate to be used in formulae of the selection
operator. PORA provides users with the capability of
capturing the semantics of ordered data. A similar
approach to preference modelling in the context of
web repositories is presented in [19]: a special algebra
is developed for expressing complex web queries.
The queries employ application-specific ranking and
ordering relationships over pages and links to filter
out and retrieve only the “best” query results. In
addition, cost-based optimization is addressed. Also in
[20], actual values of an arbitrary attribute are allowed
to be partially ordered according to user preference.
Accordingly, relational algebra operations, aggregation
functions and arithmetic are redefined. However, some
of their properties are lost, and the query optimization
issues are not discussed.

A comprehensive work on partial order in databases,
presenting the partially ordered sets as the basic
construct for modelling data and proposing the
embedding of the notion of partial order in relational
data model by means of realizer, is [21]. Aiming at an
effective representation of information representable by
a partial order and proposing a suitable data structure,
[22] builds on this framework. Other contributions aim
at exploiting linear order inherent in many kinds of data,
e.g., time series: in the context of statistical applications
systems SEQUIN [23], SRQL [24], Aquery [25, 26].
Various kinds of ordering on power-domains have also
been considered in context of modelling incomplete
information: a very extensive and general study is
provided in [27].

By contrast to the above qualitative approach, in the
quantitative approach [28, 29, 30, 31, 32, 33, 34],
preference is specified indirectly using scoring functions
that associate a numeric score with every tuple. On the
one hand, this approach enables expressing quantitative

1A singleton world is a world containing a single element.
2Here, the term universal relation denotes that unique relation instance over a relation schema that contains all possible tuples over that schema

PhD Conference ’08 85 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163294

Radim Nedbal User Preference and Optimization ...

aspects of preference, e.g., its strength, however, on
the other hand, expressivity of the qualitative aspect of
preference is restricted to the weak order – a special case
of the partial order.

5. Conclusions

The paper deals with the optimization of relational
queries using the concept of preference. It builds on the
recent leading ideas that have contributed to remarkable
advances in the field:

• Preferences are embedded into relational query
languages by means of a single preference
operator returning only the best tuples in the sense
of user preferences. By considering the preference
operator on its own, we can, on the one hand,
focus on the abstract properties of user preference
and, on the other hand, study special evaluation
and optimization techniques for the preference
operator itself.

• An optimization strategy is based on the
assumption that early application of a selective
operator reduces intermediate results and thus
reduces data flow during the query execution.
Pushing the preference operator, based on its
algebraic properties, is a well known technique
realizing this strategy.

Furthermore, to express a user preference, we employ
the language introduced by Kaci and van der Tore
[35], who have extended propositional language with
sixteen kinds of preference. In their non-monotonic
logic framework, we can capture complex preference,
including preference between sets, yet the preference
operator parameterized by such complex preference
doesn’t fulfil the commutativity and distributivity
properties. For this reason, the optimization strategy
needs to employ different technique: computing
preference models over a stepwise pruned special set
W until the fixpoint is reached and then using a special
preference operator derivative to filter out “bad” tuples.

In conclusion, the main contribution of the paper
consists in presenting the optimization strategy of
pushing the user preference down the expression tree
and introducing the algorithm for its implementation.

References

[1] S. Kaci and L. W. N. van der Torre, “Algorithms
for a nonmonotonic logic of preferences.,” in

ECSQARU (L. Godo, ed.), vol. 3571 of Lecture
Notes in Computer Science, pp. 281–292, Springer,
2005.

[2] G. von Wright, The logic of preference. Edinburgh
University Press, Edinburgh, 1963.

[3] R. Nedbal, “Non-monotonic reasoning with
various kinds of preferences in the relational data
model framework,” in ITAT 2007, Information
Technologies – Applications and Theory (P. Vojtáš,
ed.), pp. 15–21, PONT, September 2007.

[4] M. Lacroix and P. Lavency, “Preferences; Putting
More Knowledge into Queries.,” in VLDB (P. M.
Stocker, W. Kent, and P. Hammersley, eds.),
pp. 217–225, Morgan Kaufmann, 1987.

[5] K. Govindarajan, B. Jayaraman, and S. Mantha,
“Preference datalog,” Tech. Rep. 95-50, 1, 1995.

[6] B. Hafenrichter and W. Kießling, “Optimization
of relational preference queries,” in CRPIT ’39:
Proceedings of the sixteenth Australasian
conference on Database technologies,
(Darlinghurst, Australia), pp. 175–184, Australian
Computer Society, Inc., 2005.

[7] W. Kießling, “Foundations of Preferences in
Database Systems,” in Proceedings of the 28th
VLDB Conference, (Hong Kong, China), pp. 311–
322, 2002.

[8] W. Kießling, “Preference constructors for deeply
personalized database queries,” Tech. Rep. 2004-
07, Institute of Computer Science, University of
Augsburg, March 2004.

[9] W. Kießling, “Optimization of Relational
Preference Queries,” in Conferences in Research
and Practice in Information Technology
(H. Williams and G. Dobbie, eds.), vol. 39,
(University of Newcastle, Newcastle, Australia),
Australian Computer Society, 2005.

[10] W. Kießling, “Preference Queries with SV-
Semantics.,” in COMAD (J. Haritsa and
T. Vijayaraman, eds.), pp. 15–26, Computer
Society of India, 2005.

[11] W. Kießling and B. Hafenrichter, “Algebraic
optimization of relational preference queries,”
Tech. Rep. 2003-01, Institute of Computer
Science, University of Augsburg, February 2003.

[12] J. Chomicki, “Preference Formulas in Relational
Queries,” ACM Trans. Database Syst., vol. 28,
no. 4, pp. 427–466, 2003.

[13] J. Chomicki, “Semantic optimization of preference
queries.,” in CDB (B. Kuijpers and P. Z. Revesz,
eds.), vol. 3074 of Lecture Notes in Computer
Science, pp. 133–148, Springer, 2004.

PhD Conference ’08 86 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163294

Radim Nedbal User Preference and Optimization ...

[14] J. Chomicki and J. Song, “Monotonic and
nonmonotonic preference revision,” 2005.

[15] J. Chomicki, S. Staworko, and J. Marcinkowsk,
“Preference-driven querying of inconsistent
relational databases,” in Proc. International
Workshop on Inconsistency and Incompleteness in
Databases, (Munich, Germany), March 2006.

[16] S. Börzsönyi, D. Kossmann, and K. Stocker, “The
skyline operator,” in Proceedings of the 17th
International Conference on Data Engineering,
(Washington, DC, USA), pp. 421–430, IEEE
Computer Society, 2001.

[17] R. Nedbal, “Algebraic optimization of relational
queries with various kinds of preferences,” in
SOFSEM (V. Geffert, J. Karhumäki, A. Bertoni,
B. Preneel, P. Návrat, and M. Bieliková, eds.),
vol. 4910 of Lecture Notes in Computer Science,
pp. 388–399, Springer, 2008.

[18] W. Ng, “An Extension of the Relational Data
Model to Incorporate Ordered Domains,” ACM
Transactions on Database Systems, vol. 26,
pp. 344–383, September 2001.

[19] S. Raghavan and H. Garcia-Molina, “Complex
queries over web repositories,” tech. rep., Stanford
University, February 2003.

[20] R. Nedbal, “Relational Databases with Ordered
Relations,” Logic Journal of the IGPL, vol. 13,
no. 5, pp. 587–597, 2005.

[21] D. R. Raymond, Partial-order databases. PhD
thesis, University of Waterloo, Waterloo, Ontario,
Canada, 1996. Adviser-W. M. Tompa.

[22] R. Nedbal, “Model of preferences for the
relational data model,” in Intelligent Models,
Algorithms, Methods and Tools for the Semantic
Web Realisation (J. Štuller and Z. Linková, eds.),
(Prague), pp. 70–77, Institute of Computer Science
Academy of Sciences of the Czech Republic,
October 2006.

[23] P. Seshadri, M. Livny, and R. Ramakrishnan,
“The design and implementation of a sequence
database system,” in VLDB ’96: Proceedings of
the 22th International Conference on Very Large
Data Bases, (San Francisco, CA, USA), pp. 99–
110, Morgan Kaufmann Publishers Inc., 1996.

[24] R. Ramakrishnan, D. Donjerkovic,
A. Ranganathan, K. S. Beyer, and
M. Krishnaprasad, “Srql: Sorted relational query
language,” in SSDBM ’98: Proceedings of the
10th International Conference on Scientific and
Statistical Database Management, (Washington,
DC, USA), pp. 84–95, IEEE Computer Society,
1998.

[25] A. Lerner, Querying Ordered Databases with
AQuery. PhD thesis, ENST-Paris, France, 2003.

[26] A. Lerner and D. Shasha, “Aquery: Query
language for ordered data, optimization
techniques, and experiments,” in 29th
International Conference on Very Large Data
Bases (VLDB’03), (Berlin, Germany), pp. 345–
356, Morgan Kaufmann Publishers, September
2003.

[27] L. Libkin, Aspects of partial information in
databases. PhD thesis, University of Pensylvania,
Philadelphia, PA, USA, 1995.

[28] R. Agrawal and E. Wimmers, “A Framework
for Expressing and Combining Preferences.,” in
SIGMOD Conference (W. Chen, J. F. Naughton,
and P. A. Bernstein, eds.), pp. 297–306, ACM,
2000.

[29] A. Eckhardt, “Methods for finding best answer
with different user preferences,” Master’s thesis,
2006. In Czech.

[30] A. Eckhardt and P. Vojtáš, “User preferences
and searching in web resoursec,” in Znalosti
2007, Proceedings of the 6th annual conference,
pp. 179–190, Faculty of Electrical Engineering and
Computer Science, VŠB-TU Ostrava, 2007. In
Czech.

[31] R. Fagin, A. Lotem, and M. Naor, “Optimal
aggregation algorithms for middleware,” in
Symposium on Principles of Database Systems,
2001.

[32] R. Fagin and E. L. Wimmers, “A formula for
incorporating weights into scoring rules,” Theor.
Comput. Sci., vol. 239, no. 2, pp. 309–338, 2000.

[33] P. Gurský, R. Lencses, and P. Vojtáš, “Algorithms
for user dependent integration of ranked
distributed information,” in Proceedings of
TED Conference on e-Government (TCGOV
2005) (M. Böhlen, J. Gamper, W. Polasek, and
M. Wimmer, eds.), pp. 123–130, March 2005.

[34] S. Y. Jung, J.-H. Hong, and T.-S. Kim, “A
statistical model for user preference,” Knowledge
and Data Engineering, IEEE Transactions on,
vol. 17, pp. 834–843, June 2005.

[35] S. Kaci and L. van der Torre, “Non-monotonic
reasoning with various kinds of preferences,”
in IJCAI-05 Multidisciplinary Workshop on
Advances in Preference Handling (R. Brafman
and U. Junker, eds.), (Edinburgh, Scotland),
pp. 112–117, 2005.

PhD Conference ’08 87 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163294

