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Abstract

The notion of preference poses a new
prospect of personalization of database queries.
In addition, it can be exploited to optimize
query execution. Indeed, a novel optimization
technique involving preference is developed,
and its algorithm presented.

1. Introduction

Preference provides a modular and declarative means
for relaxing and optimizing database queries. It is a
concept that needs a special framework for embedding
in the relational data model: on the one hand, the
framework should be rich enough to capture various
kinds of preference to provide database users with
an expressive language to formulate their wishes,
and, on the other hand, robust enough to allow for
possibly conflicting preferences as the assumption of
consistency of complex preferences is hard to fulfill in
practical applications.

To reach the above goal we consider sixteen kinds
of preferences, some of them allowing for expressing
uncertainty. Also, basic preference combiners (Pareto or
lexicographic composition) are taken into account.

To embed the notion of preference into relational query
languages, a preference operator, parameterized by
user preference, is defined: it filters out not all the bad
results, but only worse results than the best matching
alternatives and returns the perfect match if present

in the database, otherwise, it delivers best-matching
alternatives, but nothing worse!

Optimization strategy of pushing the preference
specification down the query execution tree is governed
by both algebraic properties of the preference operator
and logical properties of user preference that always
is expressed over a set of possible states of the
world. This strategy is based on the assumption that
early application of the preference operator reduces
intermediate results and thus minimizes the data flow
during the query execution.

2. Embedding Preference in Relational Query
Languages

2.1. Preference Operator

A new, preference operator is added to the relational
algebra. Its expressive power depends on the
expressivity of the language for expressing user
preference – its single parameter.

Definition 1 (Preference operator) Let U denote a
universe and WP ⊆ W a set of the most preferred
worlds with regard to a preference specification P over
a set W of possible worlds. The preference operator ωP

is a mapping ωP : V → 2V from a set V of discourse
into the powerset 2V of V :

ωP(v) = {v′ ⊆ v|∃u ∈ U∃w ∈WP : u |= w ∧ v′} .
(1)
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It is important to point out that the preference
specification parameter P allows for complex
preference compound from elementary preferences
of various kinds. We take into account locally
optimistic, locally pessimistic, opportunistic, and careful
preferences, whose terminology and motivation has
been introduced in [1]. Moreover, we consider another
two binary choices: a preference can be strict or non-
strict and can be evaluated without or with a ceteris
paribus proviso, a concept introduced by von Wright [2].
Altogether, we get sixteen various kinds of preference.

On the one hand, this complex preference specification
parameter yields a large expressivity, however, on the
other hand, it makes the preference operator absent
from algebraic properties fundamental for realizing the
algebraic optimization strategy that is based on early
application of the most selective operators of relational
algebra. Thus a more general technique has to be
developed.

2.2. Optimization

Algebraic optimization strategy involving the preference
operator must provide a transformation (of a given
database query) under which the preference operator,
which is the last operator to be applied, is invariant.

Example 1 Let R be a database schema and I its
instance consisting of two relation instances I1, I2.
Suppose a user expresses their requirements through a
database query

q(I) = πX(I1 ∪ I2) (2)

over I and their preferences (wishes) through a
preference specification P over the set

W = 2q(I) (3)

of possible worlds. Then, the preference operator
ωP

(
q(I)

)
evaluated over (2) returns the best matching

alternatives with regard to the user preferences.

Suppose the preference operator is invariant under the
following transformation of q(I) to q′(I):

q′(I) = πX

(
ω
P(I1) ∪ ω

P(I2)
)

, (4)

where ω
P(Ii) is a preference operator derivative

filtering out “bad” tuples. Then, the preference operator
ωP

(
q′(I)

)
evaluated over (4) returns the best matching

alternatives with regard to the user preferences:

ωP

(
q′(I)

)
= ωP

(
q(I)

)
.

The query execution trees are depicted in Fig. 1, where
data flow between the computer’s main memory and
secondary storage is represented by the drawing width.

ωP

πX

∪

I1 I2

ωP

πX

∪

ω
P ω

P

I1 I2

(a) Before pushing (b) After pushing

Figure 1: Improving the query plan by pushing the preference
operator down the query execution tree

Supposing that relation instances I1 and I2 are too big
to fit into the main memory and using the number of the
secondary storage I/O’s as our measure of cost for an
operation, it can be seen that the strategy of pushing
the preference operator can improve the performance
significantly.

Note that to push the preference specification P down
the expression tree, a special derivative ω

P of the
preference operator ωP realizing its filtering potential
has been introduced. Unlike the preference operator (cf.
1), it is a mapping ω

P : V → V from a set V of
discourse – a set of all possible tuples over a given
relation scheme – into itself. Most importantly, it fulfills
the following property:

ωP

(
ω
P(I)

)
= ωP(I) ,

i.e., it filters out bad tuples of a given relational instance
I without affecting the value of the preference operator.

Furthermore, observe that ωP and ω
P have an identical

value of the preference parameter. This value – a user
preference P over W – however, is usually expressed
over the result of a query (3). Does it mean that
we need to have computed (3), and thus also (2),
before we are able to evaluate (4)? The answer has
to be searched for in the definition of the semantics
of preference specification [3] and is provided by the
following proposition 1.

In brief, a preference specification has the constructive
semantics defined by means of a disjunctive logic
program (DLP). In the following, W stands for the
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Herbrand universe for the DLP assigned to a preference
specification P , and gP for a mapping that can be
computed from models of the DLP. Note that models
of the DLP can be computed using single exponential
time on the cardinality of W, which , in turn, depends
exponentially on the number of elementary preferences
composing the preference specification P . This number,
however, is supposed to be small, usually between five
and ten. Finally, fP stands for a mapping that can be
expressed as a first order query.

Lemma 1 Let q denote a database query – a mapping
q : inst(R) → inst(S) from a set of database instances
over a database schema R to a set of relation
instances over a relation schema S. Given a preference
specification P over a set W of possible worlds, there
exist a finite set W and a mapping gP : 2W → 2W such
that the following properties hold for all subsets W

′ of
W if W = 2q(I):

gP(W′) ⊆W
′ , (5)

gP(W′) ⊆ f−1
P (supp) ⊆W

′ ⇒WP = 〈W′P〉W ,
(6)

where fP : W → {unsupp, supp} is a function
returning supp for every w ∈W that, loosely speaking,
is “supported” by P over W , and

〈W′P〉W = {w ∈W | ∃w ∈W
′P : w ⇒ w} . (7)

Proposition 1 Suppose I, W, fP , and gP are as in
Lemma 1. Then, the mapping hP : 2W → 2W:

hP(W′) =
(
W

′ − gP(W′)
)
∪
(
gP(W′) ∩ f−1

P (supp)
)

(8)
has a fixpoint Wfix such that Wfix ⊇ f−1

P (supp).

Proof: It follows readily from (5) that ∀W′ ⊆
W : hP(W′) ⊆ W

′. As W is finite, it is clear that
∀W′ ⊆ W ∃n ∈ N [i ≥ n ⇒ hi

P(W′) = hn
P(W′)],

i.e., hn
P(W′) is a fixpoint of hP . Now the observation:

∀W′ ⊆ W [W′ ⊇ f−1
P (supp) ⇒ hP(W′) ⊇

f−1
P (supp)] completes the proof.

The following corollary follows readily from (6) and
from the observation

hP(W′) = W
′ ⇐⇒ gP(W′) ⊆ f−1

P (supp) .

Corollary 1 Suppose q and P over W are as
in Lemma 1. Then, Wfix being the fixpoint from
Proposition 1 and W = 2q(I), the following equality
holds:

WP = 〈WP
fix〉W .

So the answer is: partially. To evaluate the preference
operator derivative ω

P , it suffices to find a relevant part
of the query result. Intuitively speaking, this relevant
part is subsumed by the fixpoint of (8) (Corollary 1)
and computed by stepwise pruning the special set W

(Proposition 1).

3. An Algorithm

The above corollary is the key to effective computation
of (4) in the above example:

Algorithm 5 Preference operator filtering tuples
Input: q : inst(R)→ inst(S),P, I
Output: ω

P(I1)
1: Wfix := W

2: while change do
3: compute gP(Wfix)
4: if ∃w ∈ gP(Wfix) : fP(w) = unsupp then
5: remove such w from Wfix

6: end if
7: end while
8: compute W

P
fix

9: ω
P(I1) := I1

10: for all t ∈ I1 do
11: if ∀w ∈W

P
fix : w⇒ ¬t then

12: remove t from ω
P(I1)

13: end if
14: end for

On line 1, W depends solely on preference specification
P . It is independent of the set W over which P
is expressed, and thus it also is independent of the
input database instance I. The while block computes
a fixpoint of (8): the function gP can be computed in
exponential time on input W, and the function fP can be
expressed as a first order query over I. On line 8, W

P
fix

can be computed in exponential time on input W. In the
for block, the input relation instance I1 is filtered: on
line 11, the logical condition follows from Corollary 1
and analysis of (1) and (7).

4. Related Work

The study of preference in the context of database
queries has been originated by Lacroix and Lavency
[4]. They, however, don’t deal with algebraic
optimization. Following their work, preference datalog
was introduced in [5], where it was shown that concept
of preference provides a modular and declarative means
for formulating optimization and relaxation queries in
deductive databases.
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Nevertheless, only at the turn of the millennium this
area attracted broader interest again. Kießling et al.
[6, 7, 8, 9, 10, 11] and Chomicki et al. [12, 13,
14, 15] pursued independently a similar, qualitative
approach within which preference between tuples is
specified directly, using binary preference relations.
They have laid the foundation for preference query
optimization that extends established query optimization
techniques: preference queries can be evaluated by
extended – preference relational algebra. While some
transformation laws for queries with preferences were
presented in [11, 6], the results presented in [12] are
mostly more general.

In brief, Chomicki et al. and Kießling et al. have
embedded the concept of preference into relational
query languages identically: they have defined an
operator parameterized by user preference and returning
only the best preference matches. This embedding is
similar to ours. However, their operator differs from
our preference operator by the parameter: Chomicki
et al. and Kießling et al. consider such preference
that the operator is partially antimonotonic with
respect to its relational argument. By contrast, the
preference parameter we consider is more complex
and consequently, this property is not fulfilled by
the preference operator. As a result, most algebraic
properties presented by the above authors don’t apply to
the preference operator. Specifically, the commutativity
and distributivity properties do not hold, and thus the
optimization strategy presented in this paper has to rely
on different techniques.

Moreover, Chomicki et al. and Kießling et al. are
concerned only with one type of preference and don’t
consider preferences between sets of elements. In terms
of logic of preference, they only take into account
preferences between singleton worlds1. In this sense,
their approach is subsumed by the approach presented in
this paper, and, in particular, the introduced optimization
technique can be applied to the their preference
relational algebra.

A special case of the same embedding represents skyline
operator introduced by Börzsönyi et al. [16]. Some
examples of possible rewritings for skyline queries are
given but no general rewriting rules are formulated.

[3] is preliminary contribution building on recent
advances in logic of preference. Employing non-
monotonic reasoning mechanisms, it takes into account
various kinds of preferences. The embedding of
preference in relational query languages is based on

a single preference operator parameterized by a user
preference. By contrast to the presented approach, it
is assumed that user preference always is expressed
over a fixed “universal” domain – a powerset of
a universal relation2. Consequently, the preference
operator has “nice” algebraic properties including
conditional commutativity and distributivity. As a result,
an optimization strategy of pushing the preference
operator down the query expression tree could been
developed [17].

A slightly different goal is pursued in [18], where the
relational data model is extended to incorporate partial
orderings into data domains. The partially ordered
relational algebra (PORA) is defined by allowing the
ordering predicate to be used in formulae of the selection
operator. PORA provides users with the capability of
capturing the semantics of ordered data. A similar
approach to preference modelling in the context of
web repositories is presented in [19]: a special algebra
is developed for expressing complex web queries.
The queries employ application-specific ranking and
ordering relationships over pages and links to filter
out and retrieve only the “best” query results. In
addition, cost-based optimization is addressed. Also in
[20], actual values of an arbitrary attribute are allowed
to be partially ordered according to user preference.
Accordingly, relational algebra operations, aggregation
functions and arithmetic are redefined. However, some
of their properties are lost, and the query optimization
issues are not discussed.

A comprehensive work on partial order in databases,
presenting the partially ordered sets as the basic
construct for modelling data and proposing the
embedding of the notion of partial order in relational
data model by means of realizer, is [21]. Aiming at an
effective representation of information representable by
a partial order and proposing a suitable data structure,
[22] builds on this framework. Other contributions aim
at exploiting linear order inherent in many kinds of data,
e.g., time series: in the context of statistical applications
systems SEQUIN [23], SRQL [24], Aquery [25, 26].
Various kinds of ordering on power-domains have also
been considered in context of modelling incomplete
information: a very extensive and general study is
provided in [27].

By contrast to the above qualitative approach, in the
quantitative approach [28, 29, 30, 31, 32, 33, 34],
preference is specified indirectly using scoring functions
that associate a numeric score with every tuple. On the
one hand, this approach enables expressing quantitative

1A singleton world is a world containing a single element.
2Here, the term universal relation denotes that unique relation instance over a relation schema that contains all possible tuples over that schema
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aspects of preference, e.g., its strength, however, on
the other hand, expressivity of the qualitative aspect of
preference is restricted to the weak order – a special case
of the partial order.

5. Conclusions

The paper deals with the optimization of relational
queries using the concept of preference. It builds on the
recent leading ideas that have contributed to remarkable
advances in the field:

• Preferences are embedded into relational query
languages by means of a single preference
operator returning only the best tuples in the sense
of user preferences. By considering the preference
operator on its own, we can, on the one hand,
focus on the abstract properties of user preference
and, on the other hand, study special evaluation
and optimization techniques for the preference
operator itself.

• An optimization strategy is based on the
assumption that early application of a selective
operator reduces intermediate results and thus
reduces data flow during the query execution.
Pushing the preference operator, based on its
algebraic properties, is a well known technique
realizing this strategy.

Furthermore, to express a user preference, we employ
the language introduced by Kaci and van der Tore
[35], who have extended propositional language with
sixteen kinds of preference. In their non-monotonic
logic framework, we can capture complex preference,
including preference between sets, yet the preference
operator parameterized by such complex preference
doesn’t fulfil the commutativity and distributivity
properties. For this reason, the optimization strategy
needs to employ different technique: computing
preference models over a stepwise pruned special set
W until the fixpoint is reached and then using a special
preference operator derivative to filter out “bad” tuples.

In conclusion, the main contribution of the paper
consists in presenting the optimization strategy of
pushing the user preference down the expression tree
and introducing the algorithm for its implementation.
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