
A Note on Steady Flows of an Incompressible Fluid with Pressure- and Shear
Rate-dependent Viscosity

Lanzendörfer, Martin
2008
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186 75 Prague, Czech Republic

Mathematical Institute
Charles University

Sokolovská 83
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Abstract

A class of incompressible fluids whose
viscosities depend on the pressure and the
shear rate is considered. The existence of
weak solutions for flows of such fluids under
different settings was studied lately. In this
short note, two recent existence results are
adverted and their direct generalization into
different setting is indicated; in this setting
the corresponding energy estimates are derived
showing the existence of a solution to an
approximate system. A minor correction to one
of the referred papers is also stated.

1. Introduction

The Newtonian homogeneous incompressible fluid is
described by Navier-Stokes equations, where a linear
relation between the stress tensor and the symmetric
part of the velocity gradient is assumed, with a given
constant called viscosity. However, in many important
applications a non-Newtonian model is required. In this
short note, the existence of a weak solution for steady
flows of fluids with the viscosity increasing with the
pressure and decreasing with the shear rate is addressed.

1.1. Fluid model

The theoretical analysis of the following problem is
considered: Find the pressure and the velocity (p,vvv) =
(p, v1, . . . , vd) : Ω → R

d+1 (Ω ⊂ R
d being an open

bounded domain, d ≥ 2) solving the equations:

divvvv = 0 in Ω , (1)

div(vvv ⊗ vvv)− div[ν(p, |D(vvv)|2)D(vvv)]

= −∇p + bbb in Ω , (2)

(∇ denotes the Eulerian spatial gradient, D(vvv) =
1
2 (∇vvv + (∇vvv)T ) the symmetric part of the velocity
gradient) completed by:∫

Ω

pdxxx = 0 (3)

and by the Dirichlet boundary condition

vvv = ϕϕϕ on ∂Ω , (4)

where ϕϕϕ : ∂Ω → R
d and bbb : Ω → R

d are given. We
shall denote the system (1)-(4) by Problem (P). Standard
notation1 concerning function spaces is used.

For the viscosity ν(p, |D|2) the following assumptions
are considered:

A1 For a given r ∈ (1, 2), there are positive constants
C1 and C2 such that for all symmetric linear
transformations B, D and all p ∈ R

C1(1 + |D|2)
r−2
2 |B|2 ≤

∂[ν(p, |D|2)D]

∂D
· (B⊗B)

≤ C2(1 + |D|2)
r−2
2 |B|2 ,

where (B⊗B)ijkl = BijBkl.
1For 1 ≤ r ≤ ∞, the symbols (Lr(Ω), || · ||r) and (W1,r

(0)
(Ω), || · ||1,r) denote the standard Lebesgue and Sobolev spaces (with zero trace on

∂Ω). If X(Ω) is a Banach space of functions defined on Ω then (X(Ω))∗ denotes its dual space. Also, X(Ω) := X(Ω)d = {uuu : Ω → R
d; ui ∈

X(Ω), i = 1, . . . , d}. Further, (W−1,r′

(Ω), || · ||−1,r′ ) := (W1,r
0 )∗, where r′ = r

r−1
. We use the Einstein summation convention in the text.
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A2 For all symmetric linear transformations D and for
all p ∈ R∣∣∣∣∂[ν(p, |D|2)D]

∂p

∣∣∣∣ ≤ γ0(1 + |D|2)
r−2
4 ≤ γ0 ,

with

γ0 <
1

Cdiv,2

C1

C1 + C2
≤

1

2Cdiv,2
.

The constant Cdiv,q originates in the following problem,
which is instrumental in the proof of the existence: For
g ∈ Lq(Ω) given,

∫
Ω

g dxxx = 0, find zzz solving

divzzz = g in Ω, zzz = 000 on ∂Ω . (5)

For q ∈ (1,∞), the bounded linear Bogovskii operator
B : Lq(Ω) → W

1,q
0 (Ω), assigning zzz := B(g) the

solution of (5), fulfills

||zzz||1,q = ||B(g)||1,q ≤ Cdiv,q||g||q . (6)

Moreover, if g = divfff , with fff ∈W1,q(Ω) and fff ·nnn = 0
on ∂Ω, then

||zzz||q = ||B(divfff)||q ≤ Ddiv,q||fff ||q . (7)

Note that the assumptions (A1) and (A2) determine
the fluid model to be shear-thinning and allow it to
be pressure-thickening. Examples and more details can
be found e.g. in [1]. Note also that the following
inequalities result from (A1) and (A2), see [1, 2] for
their proofs. First,

ν(p, |D|2)D : D ≥
C1

2r
(|D|r − 1) , (8)

|ν(p, |D|2)D| ≤
C2

r − 1
(1 + |D|)r−1 (9)

holds for all symmetric D and all p ∈ R. Then, defining

I1,2 := (10)∫ 1

0

(
1 + |D1 + s(D2−D1)|2

) r−2
2 |D1 −D2|2 ds ,

there hold
C1

2
I1,2 ≤

(
ν(p1, |D1|2)D1 − ν(p2, |D2|2)D2

)
: (D1 −D2) +

γ2
0

2C1
|p1 − p2|2 , (11)∣∣ν(p1, |D1|2)D1 − ν(p2, |D2|2)D2

∣∣
≤ C2

(
I1,2
) 1

2 + γ0 |p
1 − p2| . (12)

1.2. Results

The model described above has been systematically
studied in last decade or more; the reader is kindly asked
to find references given in [1] and [2].

In [1], the existence of a weak solution to Problem
(P) including the non-homogeneous Dirichlet boundary

condition (4) was proved, either for small data or
assuming the inner flows:

ϕϕϕ ·nnn = 0 on ∂Ω . (13)

The proof is given for d = 2 or 3 and for

3d

d + 2
≤ r < 2 .

The lower bound relates to the fact, that with r ≥ 3d
d+2

the solution is a possible test function in the weak
formulation and a standard monotone operator theory is
applicable, supplied by proper estimates on the pressure.
Within the proof, the following ε-approximate system is
utilized, replacing equation (1) by

− εΔp + divvvv = 0 in Ω,
∂p

∂nnn
= 0 on ∂Ω (14)

for ε > 0. The solution to Problem (P) is obtained by
the limit ε→ 0.

Recently in [2], the theory was extended to the case

2d

d + 2
< r ≤

3d

d + 2
,

considering the homogeneous Dirichlet boundary
condition

ϕϕϕ = 000 on ∂Ω .

The starting point is the following η, ε-approximate
system, replacing (1) by (14) and replacing (2) by

η|vvv|2r′−2vvv + div (vvv ⊗ Pvvv)
− div [ν(p, |D(vvv)|2)D(vvv)] = −∇p + bbb

}
(15)

for η > 0, where P is a projection to divergence-free
functions.

The goal of the presented paper is to follow these two
results and to study the existence of a weak solution to
Problem (P) with

r <
3d

d + 2
and subject to non-homogeneous Dirichlet boundary
condition. Section 2 derives the energy estimates for
the corresponding η, ε-approximate system, thereby
showing the existence of its weak solution. In Section 3,
the main existence theorem is merely stated, the
remaining parts of the proof–the limit procedures ε→ 0
and η → 0–being left to the reader, referring to [2]. The
theorem assumes non-homogeneous Dirichlet b.c. with
small data, its corollary then treats inner flows with large
data. In the last section, some minor correction to [1] is
mentioned.

2. Energy estimates

The main result of this paper is the following variation
of Lemma 4.1, which is the starting point of the result
established in [2].
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Lemma 1 Let ε, η > 0 be arbitrary. Let Ω ∈ C0,1, d ≥ 2 and bbb ∈W−1,r′

(Ω) be given. Let

2d

d + 1
< r < min

{
2,

3d

d + 2

}
(16)

and the assumptions A1 and A2 be satisfied. There are certain positive constants H1, H2 which depend on r, Ω, C1,
C2 and bbb and which are small enough such that they meet the inequality (23). Let there exist λ ≥ 1 and ΦΦΦ ∈W1,r(Ω)
such that, with q := rd

r(d+1)−2d
,

divΦΦΦ = 0 in Ω, trΦΦΦ = ϕϕϕ and ||ΦΦΦ||q ≤ H1λ
r−2 and ||∇ΦΦΦ||r ≤ ||ΦΦΦ||1,r ≤ H2λ . (17)

Then there exists a couple (p,vvv) satisfying

vvv = uuu + ΦΦΦ, uuu ∈W
1,r
0 (Ω) ∩ L2r′

(Ω) and p ∈W1,2(Ω) ∩ L2
0(Ω) , (18)

ε

∫
Ω

∇p · ∇ξ dxxx +

∫
Ω

ξ divvvv dxxx = 0 for all ξ ∈W1,2(Ω) , (19)

η

∫
Ω

|uuu|2r′−2uuu ·ψψψ dxxx +

∫
Ω

ν(p, |D(vvv)|2)D(vvv) : D(ψψψ) dxxx−

∫
Ω

(vvv ⊗ vvv) : ∇ψψψ dxxx

−
1

2

∫
Ω

(divuuu)uuu ·ψψψ dxxx =

∫
Ω

pdivψψψ dxxx + 〈bbb,ψψψ〉 for all ψψψ ∈W
1,r
0 (Ω) ∩ L2r′

(Ω) .

⎫⎪⎬
⎪⎭ (20)

Moreover, the following estimates hold:

ε ||p||21,2 + η ||vvv||2r′

2r′ + ||D(vvv)||rr ≤ C < +∞ , (21)

||ν(p, |D(vvv)|2)D(vvv)||r′ ≤ C < +∞ and ||p|| 2dr
r(d−2)+d

≤ C(η) < +∞ . (22)

Proof: Note that all integrals make sense:

vvv ∈W1,r(Ω) ∩ L2r′

(Ω) ⇐ ΦΦΦ ∈W1,r(Ω) ∩ Lq(Ω), where q > 2r′ since r <
3d

d + 2
,

ξ divvvv ∈ L1(Ω) ⇐ ξ ∈W1,2(Ω) ↪→ Lr′

(Ω) since r >
2d

d + 2
,

ν(p, |D(vvv)|2)D(vvv) : D(ψψψ) ∈ L1(Ω) ⇐ vvv,ψψψ ∈W1,r(Ω) and since (9).

The pair (p,vvv) fulfilling (18)-(20) can be found as a limit of Galerkin approximations. The proof uses Brouwer’s fixed
point theorem, the compact embedding argument, the monotonicity conditions (11), (12) and Vitali’s theorem. Here
the first steps are provided in detail and, in time, the remainings are referred to [1].

Take {αk}∞k=1 and {aaak}∞k=1 any bases of W1,2(Ω) and W
1,2
0 (Ω), respectively. Define the Galerkin approximations as

follows:

pN :=
∑N

k=1 cN
k (αk − 1

|Ω|

∫
Ω

αk dxxx)

vvvN := ΦΦΦ +
∑N

k=1 dN
k aaak =: ΦΦΦ + uuuN

}
for N = 1, 2, . . . ,

where cccN = (cN
1 , . . . , cN

N ) and dddN = (dN
1 , . . . , dN

N ) solve the algebraic system

M([cccN , dddN ]) = 000 ,

withM : R
2N → R

2N being a continuous mapping:

Mk([cccN , dddN ]) := ε

∫
Ω

∇pN · ∇αk dxxx +

∫
Ω

αk divvvvN dxxx , k = 1, 2, . . . , N

MN+l([ccc
N , dddN ]) := η

∫
Ω

|uuuN |2r′−2uuuN · aaal dxxx−

∫
Ω

(vvvN ⊗ vvvN ) : ∇aaal dxxx−
1

2

∫
Ω

(divuuuN )uuuN · aaal dxxx

+

∫
Ω

ν(pN , |D(vvvN )|2)D(vvvN ) : D(aaal) dxxx−

∫
Ω

pN divaaal dxxx− 〈bbb,aaal〉 , l = 1, 2, . . . , N .
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The basic estimate is obtained by testing the equation by (pN ,uuuN ) as follows. First, realize that (recall divvvvN =
divuuuN )

M([cccN , dddN ]) · ([cccN , dddN ]) = ε ||∇pN ||22 + η ||uuuN ||2r′

2r′

=:Iconv︷ ︸︸ ︷
−

∫
Ω

(vvvN ⊗ vvvN ) : ∇uuuN dxxx−
1

2

∫
Ω

(divuuuN ) |uuuN |2 dxxx

+

∫
Ω

ν(pN , |D(vvvN )|2)D(vvvN ) : D(uuuN ) dxxx− 〈bbb,uuuN 〉 .

Since 1
2

∫
Ω
(divuuuN ) |uuuN |2 dxxx = −

∫
Ω
(uuuN ⊗ uuuN ) : ∇uuuN dxxx, it follows that

Iconv = −

∫
Ω

(ΦΦΦ⊗ΦΦΦ + ΦΦΦ⊗ uuuN + uuuN ⊗ΦΦΦ) : ∇uuuN dxxx ,

which implies (using Hölder’s, Korn’s and embeddings inequalities and using r > 2d
d+1 )

|Iconv| ≤ ||∇uuuN ||r
(
2 ||uuuN || rd

d−r
||ΦΦΦ||q + ||ΦΦΦ||22r′

)
≤ C ||D(uuuN )||2r ||ΦΦΦ||q + C ||D(uuuN )||r ||ΦΦΦ||

2
q ,

where q = dr
r(d+1)−2d

> 2r′. Throughout this text, the symbols C denote positive, generally different constants.
Further, ∫

Ω

ν(pN , |D(vvvN )|2)D(vvvN ) : D(uuuN ) dxxx =

∫
Ω

ν(pN , |D(vvvN )|2)D(vvvN ) : (D(vvvN )−D(ΦΦΦ)) dxxx

≥
C1

2r

∫
Ω

|D(vvvN )|r dxxx−
C1

2r
|Ω| −

C2

r − 1

∫
Ω

(1 + |D(vvvN )|)r−1|D(ΦΦΦ)|dxxx

≥ C ||D(uuuN ) + D(ΦΦΦ)||rr − C − C ||D(ΦΦΦ)||r ||1 + |D(uuuN ) + D(ΦΦΦ)| ||r−1
r .

Using |a + b|r−1 ≤ |a|r−1 + |b|r−1 due to r − 1 < 1, it follows∫
Ω

ν(pN , |D(vvvN )|2)D(vvvN ) : D(uuuN ) dxxx ≥ C ||D(uuuN ) + D(ΦΦΦ)||r
(
||D(uuuN )||r−1

r − ||D(ΦΦΦ)||r−1
r

)
− C − C ||D(ΦΦΦ)||r

(
1 + ||D(uuuN )||r−1

r + ||D(ΦΦΦ)||r−1
r

)
≥ D ||D(uuuN )||rr − C ||D(ΦΦΦ)||r ||D(uuuN )||r−1

r − C ||D(ΦΦΦ)||r−1
r ||D(uuuN )||r − C ||D(ΦΦΦ)||rr − C .

Finally, since |〈bbb,uuuN 〉| ≤ C ||bbb||−1,r′ ||D(uuuN )||r and noticing that there holds ||∇pN ||2 ≥ C ||pN ||1,2, we arrive at

M([cccN , dddN ]) : ([cccN , dddN ]) ≥ εC ||pN ||21,2 + η ||uuuN ||2r′

2r′ + D ||D(uuuN )||rr

− C ||D(uuuN )||2r ||ΦΦΦ||q − C ||D(uuuN )||r ||ΦΦΦ||
2
q − C ||D(uuuN )||r−1

r ||∇ΦΦΦ||r

− C ||D(uuuN )||r ||∇ΦΦΦ||r−1
r − C ||∇ΦΦΦ||rr − C − C ||D(uuuN )||r .

At this point the assumption (17) is recalled and, denoting ρ := ||D(uuuN )||r/λ, the following is observed:

M([cccN , dddN ]) : ([cccN , dddN ]) ≥ εC ||pN ||21,2 + η ||uuuN ||2r′

2r′ + Dρrλr

− Cρ2λ2H1λ
r−2 − CρλH1λ

2r−4 − Cρr−1λr−1H2λ− CρλHr−1
2 λr−1 − CHr

2λr − Cρλ− C

≥ εC ||pN ||21,2 + η ||uuuN ||2r′

2r′ + Dρrλr

− CH1ρ
2λr − CH1ρλ2r−3 − CH2ρ

r−1λr − CHr−1
2 ρλr − CHr

2λr − Cρλ− C .

Since 1 ≤ λ ≤ λr and λ2r−3 ≤ λr, this can be rewritten as

M([cccN , dddN ]) : ([cccN , dddN ]) ≥ εC ||pN ||21,2 + η ||uuuN ||2r′

2r′

+ λr

[(
D

2
ρr − Cρ− C

)
+

(
D

2
ρr − CH1ρ

2 − CH1ρ− CH2ρ
r−1 − CHr−1

2 ρ− CHr
2

)]
.
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Define E > 0 such that D
2 Er − CE − C ≥ 0. The values of C, D and E define the following constraint, which is

assumed to be fulfilled by the constants H1 and H2:

D

2
Er − (CE2 + CE)H1 − CEr−1H2 − CEHr−1

2 − CHr
2 ≥ 0 . (23)

Note that, since D
2 Er > 0, some H1, H2 small enough to meet (23) can be found. Note that the values of C, D, E

and consequently H1 and H2 depend only on C1, C2, r, Ω and bbb.

It follows that the inequality

M([cccN , dddN ]) : ([cccN , dddN ]) ≥ 000 (24)

holds for any [cccN , dddN ], provided that ||D(uuuN )||r = E. Moreover, there exists some C > 0 independent of ε and η,
such that (24) holds also for any [cccN , dddN ], provided that ε ||pN ||21,2 ≥ C or provided that η ||uuuN ||2r′

2r′ ≥ C. Applying
Brouwer’s fixed point theorem, a solution (pN , vvvN ) of the Galerkin approximate system is obtained, fulfilling the
estimate (21)

ε ||pN ||21,2 + η ||vvvN ||2r′

2r′ + ||D(vvvN )||r ≤ C <∞ , (25)

where C does not depend on ε neither on η. The estimate (22)1

||ν(pN , |D(vvvN )|2)D(vvvN )||r′ ≤ C <∞ (26)

then follows from (9).

With the estimates (25)-(26) in hand, the limit passage N →∞ follows exactly the steps given e.g. in [1]; the compact
embedding, the monotonicity (11) and Vitali’s theorem are used and a couple (p,vvv) is found, which solves (18)-(20)
and fulfills the estimates (21), (22)1.

In order to obtain an estimate for pressure uniform with respect to ε, test the equation (20) with ψψψ := B(|p|s−2p −
1
|Ω|

∫
Ω
|p|s−2pdxxx), denoting s := 2rd

r(d−2)+d
. Note that

||ψψψ||1,s′ ≤ 2Cdiv,s′ ||p||s−1
s

||ψψψ||2r′ = ||ψψψ|| ds′

d−s′
≤ C ||ψψψ||1,s′ , r ≤ s′ and s ≤ r′ .

Since
∫
Ω

pdivψψψ dxxx = ||p||ss, this yields

||p||ss = η

∫
Ω

|uuu|2r′−2uuu·ψψψ dxxx−

∫
Ω

(vvv⊗ vvv) :∇ψψψ dxxx−
1

2

∫
Ω

(divuuu)uuu·ψψψ dxxx +

∫
Ω

ν(p, |D(vvv)|2)D(vvv) :D(ψψψ) dxxx− 〈bbb,ψψψ〉

≤ η ||ψψψ||2r′ ||uuu||2r′−1
2r′ + C ||ψψψ||1,s′ ||vvv ⊗ vvv||s + C ||D(uuu)||r ||ψψψ||2r′ ||uuu||2r′ + C ||ψψψ||1,r(1 + ||D(vvv)||r)

r−1

+||bbb||−1,r′ ||ψψψ||1,r ≤ C(η) ||ψψψ||1,s′ ≤ C(η) ||p||s−1
s ,

which finally implies (22)2

||p|| 2dr
r(d−2)+d

≤ C(η) <∞ . (27)

�

3. Existence theorem

Lemma 1 allows to establish the following results. First,
the generalization of Theorem 1 stated in [1] and of
Theorem 2.1 stated in [2] can be formulated:

Theorem 2 Let Ω ∈ C0,1, d ≥ 2 and bbb ∈ W−1,r′

(Ω)

be given. Let

2d

d + 1
< r < min

{
2,

3d

d + 2

}

and the assumptions A1 and A2 be satisfied. Let there
exist λ ≥ 1 and ΦΦΦ ∈ W1,r(Ω) fulfilling (17), with H1

and H2 meeting the inequality (23).
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Then there exists at least one weak solution (p,vvv) to
Problem (P) such that

vvv = uuu + ΦΦΦ, (p,uuu) ∈ L
dr

2(d−r)

0 (Ω)×W
1,r
div,0(Ω) ,

and such that, for all ψψψ ∈ C∞0 (Ω)d,∫
Ω

ν(p, |D(vvv)|2)D(vvv) : D(ψψψ) dxxx

−

∫
Ω

(vvv ⊗ vvv) : ∇ψψψ dxxx =

∫
Ω

pdivψψψ dxxx + 〈bbb,ψψψ〉 .

For the proof, the reader is asked to follow the
complete procedure given in [2], starting with the above
established Lemma 1 and using the method of Lipschitz
approximations of Sobolev functions, developed in [3,
4].

The assumptions (17) on the non-homogeneous
Dirichlet boundary condition contains, deliberately, the
“free” parameter λ ≥ 1. This allows, due to Lemma 3 in
[1], to proceed to the following analogy of Corollary 4
in [1] concerned with the inner flows:

Corollary 3 Let Ω and bbb be the same as in Theorem 2.
Let the assumptions (A1) and (A2) be satisfied with

d = 3

and with

2−
1

d
=

5

3
< r <

9

5
=

3d

d + 2
. (28)

Let ϕϕϕ = trΦΦΦ for some ΦΦΦ ∈ W1,q(Ω) ∩ L∞(Ω),
q = rd

r(d+1)−2d
, where ϕϕϕ satisfies (13)

ϕϕϕ ·nnn = 0 on ∂Ω .

Then there is at least one weak solution to Problem (P).

A short proof given in [1] is reproduced here. The goal is
to find ΦΦΦη, η ∈ (0, 1〉 and λ ≥ 1 such that the condition
(17) is fulfilled, i. e.

||ΦΦΦη|| rd
r(d+1)−2d

≤ H1λ
r−2 , (29)

||ΦΦΦη||1,r ≤ H2λ . (30)

Then the assertion follows from Theorem 2.

For any η ∈ (0, 1〉, Lemma 3 in [1] gives a suitable
extension ΦΦΦη of the boundary data ϕϕϕ and the estimate

||ΦΦΦη||q < Hη
1
q , (31)

||ΦΦΦη||1,q < Hη
1
q
−1 , (32)

where q ∈ (0,∞) and where H depends only on Ω
and ΦΦΦ. Since r > 2− 1

d
, an s can be found such that

r − 1

r
< s <

r(d + 1)− 2d

rd(2− r)
.

Setting λ := η−s this means that for any positive
constants H , H1 and H2, suitable η ∈ (0, 1〉 can be
found such that

H1λ
r−2 = H1η

s(2−r) > Hη
r(d+1)−2d

rd ,

H2λ = H2η
−s > Hη

1−r
r .

For such η, the assertions (29)-(30) follow from (31)
and (32).
�

4. Further notes

Note that in comparison to Theorem 1 in [1], its
assumption (15) is not of any use here and is simply
missing in Lemma 1 and Theorem 2. This is, however,
not a generalization of the previous result but merely a
correction of a mistake. The energy estimates procedure
provided in [1] is formulated in terms of vvvN instead of
uuuN , which is (in the context of applying Brouwer’s fixed
point theorem) not correct. The author apologizes for
this inconvenience.

Note that the constraint r > 2 − 1
d

does not allow
to extend the result for inner flows in case of two
dimensions, because 2 − 1

d
= 3

2 = 3d
d+2 . In

three dimensions, while the “homogeneous Dirichlet”
Theorem 2.1 in [2] holds for r down to 2d

d+2 = 6
5 , the

“small data” Theorem 2 requires 2d
d+1 = 3

2 < r and the
“inner flows” Corollary 3 assumes 2− 1

d
= 5

3 < r.
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