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Abstract

We show by standard automated theorem
proving methods and freely available automated
theorem prover software that axiom (A2),
stating that multiplicative conjunction implies
its first member, is provable from other axioms
in fuzzy logics BL and MTL without using
axiom (A3), which is known to be provable from
other axioms [1]. We also use freely available
automated model generation software to show
that all other axioms in BL and MTL are
independent.

1. Introduction

Among propositional fuzzy logics Hajek’s basic logic
BL [3] and Esteva and Godo’s monoidal t-norm based
logic MTL [2] play prominent roles. BL, which was
introduced as a common fragment of Lukasiewicz,
Godel and product logics, is the logic of continuous t-
norms' and their residua®. However, in [2] was shown
that the minimal condition for a t-norm to have a
residuum is left-continuity and authors proposed logic
MTL, which was later proved to be the logic of left-
continuous t-norms and their residua.

Standard Hilbert style calculus for BL comes from
Hajek. Esteva and Godo slightly addapted this system
for MTL by replacing one axiom by three other axioms.
Generally, both systems are almost identical. In a short
note by Cintula [1], it was shown that axiom (A3),
stating commutativity of multiplicative conjunction, is
provable from other axioms and thus redundant. Lehmke
proved that also axiom (A2), stating that multiplicative
conjunction implies its first member, is provable from
other axioms by using his own Hilbert style proof
generation software [4]. However, the proof used

axiom (A3) and thus was not a proof of independence
of both axioms (A2) and (A3).

We use a well known technique of automated theorem
proving to encode the Hilbert style calculus of a fuzzy
propositional logic into classical first order logic, and
standard automated theorem proving software to prove
axiom (A2), without using axiom (A3), in BL and MTL.
Moreover, by an easy application of similar technique
and standard automated model generation software we
show that none of the other axioms is redundant in BL
and MTL, independently of presence of axioms (A2)
and (A3).

The interest of this paper is solely in above stated
properties of Hilbert style calculus of BL and MTL. The
technique used to obtain them can be in our case used
completely naive.

The paper is organised as follows. In Section 2 we set
up notation and terminology. In Section 3 we give a
brief exposition of techniques used to obtain presented
results. Section 4.1 contains the proof of derivability
of axiom (A2) for MTL and Section 4.2 for BL. In
Section 5 the semantic proofs of independence of other
axioms are presented.

2. Preliminaries

We will touch only a few aspects of the theory. For
simplicity of notation, we use fuzzy logic for fuzzy
propositional logic and first order logic (FOL) for
classical first order logic. First order fuzzy logics and
classical propositional logic are not discussed in this

paper.

We define standard Hilbert style calculus for the Basic

I'A t-norm is a binary function  on linearly ordered real interval [0, 1] which satisfies commutativity, monotonicity, associativity and 1 acts as

identity element.

2The operation & = y is the residuum of the t-norm x if z = y = max{z | x x z < y}.
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Logic (BL) and the Monoidal T-norm based Logic
(MTL), which consist of axioms and modus ponens
as the only deduction rule. The language of BL and
MTL consists of implication (—), multiplicative (&) and
additive (A) conjunctions and a constant for falsity (0).

Definition 2.1 We define the basic logic BL as a Hilbert
style calculus with following formulae as axioms

A1) (¢ — ) — (¥ — x) = (¢ = X)),
&) — o,

(
A2) (
A3) (p &) = (&),

(
(
(

A4) (v & (p—=v)) = W & (¥ — ),
(A5a) (¢ — (1 —x)) = (¢ &) = X),
A5b) (¢ &) = x) = (¢ = (¥ = X)),
A6) (¢ =) —=x) = (¥ = ¢) = x) = x),

(A7) 0 — .
The only deduction rule of BL is modus ponens

(MP) If ¢ is derivable and ¢ — 1) is derivable then ) is
derivable.

Let us note properties stated by each axiom,
following [3]. Axiom (A1) is transitivity of implication.
Axiom (A2) states that multiplicative conjunction
implies its first member. Axiom (A3) is commutativity
of multiplicative conjunction. In BL, additive
conjunction ¢ A v is definable as ¢ & (¢ — ). The
equivalence of these two formulae is the divisibility
axiom. Axiom (A4) is commutativity of additive
conjunction. Axioms (AS5a) and (AS5b) represent
residuation. Axiom (A6) is a variant of proof by cases,
and states that if both ¢ — v and ) — ¢ implies Yy, then
X- Axiom (A7) states that false implies everything.

Definition 2.2 Hilbert style calculus BL™ is obtained
by dropping axioms (A2) and (A3) from BL.

We obtain a Hilbert style calculus of the monoidal
t-norm based logic MTL by weakening properties on
additive conjunction. In BL, we define ¢ A ¢ as an
abbreviation for p& (p—1). In MTL, we define additive
conjunction directly by three new axioms which state
that additive conjunction is commutative, implies its first
member and one implication of divisibility property.
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Definition 2.3 We obtain the monoidal t-norm based
logic MTL by replacing axiom (A4) in BL by following
three axioms

(A4a) (o & (p =) — (P A Y),
(A4b) (o ANP) — o,

(A4c) (o NY) — (h A ).

Definition 2.4 Hilbert style calculus MTL™ is obtained
by dropping axioms (A2) and (A3) from MTL.

2.1. First order logic and automated theorem
proving

A FOL model is a pair (D, I'), where domain D is a set
of elements and [ is an interpretation of symbols of a
language.

In FOL, terms are defined inductively as the smallest
set of all variables and constants closed under function
symbols in given language. We will have only one
predicate symbol Pr and thus all our atomic formulae
have a form Pr(t), where ¢ is a term. A literal 1
is an atomic formula (positive literal) or a negative
atomic formula (negative literal). A clause C'is a finite
disjunction of literals. Specifically, a Horn clause is a
clause with at most one positive literal. All clauses will
be for our purposes implicitly universally quantified.
Unification of literals | and I is a substitution o which
gives lo = l'c. So called most general unifier of | and I,
denoted mgu(l,!’), is a unification o such that for every
unification 6 of [ and I’ exists a unification 7 satisfying

0= (o).

The standard FOL automated theorem proving strategy
is resolution [5]. We can transform a problem of I' - ¢
to the problem of deciding whether set {T',—p} is
contradictionary. Let o mgu(l,1’), then resolution
calculus with (binary) resolution rule

CVvli D v Al
(CV D)o

and factoring rule

cvivy

(CVi)o
is refutational complete [5], which means that for

every contradictionary set eventually find a derivation
of empty clause which represents a contradiction.
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3. Usage of ATP methods

There is a well known technique for encoding
propositional Hilbert style calculus into classical FOL
through terms. The key idea is that formula variables in
axioms and rules are encoded as universally quantified
first order variables and propositional connectives as
first order function symbols. Moreover, we use one
unary predicate which says which terms are provable
(encoding of axioms) and how another provable term
can be obtained from provable terms (encoding of rules).
It is evident that our axioms and modus ponens rule
can be encoded easily. However, for more complicated
axioms and rules problems may arise.

For simplicity of notation, we write Fley, instead of the
set of all formulae in language L.

Definition 3.1 Let L be BL or MTL or their fragment.
We define term encoding f : Fle;, — Flepor.

First, a function [’ :
recursively as follows

FZEL — FIGFOL is deﬁned

0 pis0,
FW) = f'X) gish—x
flo) = W) & f'(x) eist&x
P @)y ne /0 eisAx
Xy  is a formula variable 1,

where & ¢, Ay and — ¢ are new binary function symbols,
written for better readability in infix notation, Oy is
a new FOL constant and Xy, is a new FOL variable
for every formula variable 1, but the same for every
occurrence of Y in the encoded formula.

Second, formula f () is the universal closure of formula
Pr(f'(y)), where Pr is a common new unary predicate
saying which terms are provable.

Finally, let ©1,...,pn, F W be a propositional rule
(in our case just (MP)), we define term encoding f
into classical FOL as the universal closure of formula
(f'(p1) Ao A fpn)) = f' (), where N\ and =
are standard logical connectives for comjunction and
implication in classical FOL and function [’ is defined
as above.

Example Let us have a system with axioms (A2), (A3)
and the only rule (MP). This propositional system will
be formalised, for better readability with X and Y
instead of X, and X, in FOL as follows
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(Aly) (VX,Y)Pr((X &;Y) —5 X),
(A2p) (VX Y)Pr((X &pY) =5 (Y & X)),

(MP;) (VX,Y)(Pr(X) A Pr(X —;Y) = Pr(Y)).

Before stating a crucial lemma we make some remarks.
For a set of formulae I', we define f(I") as a set of all
f-translated formulae from I'. We write f(M P) for the
term encoding f of modus ponens rule.

By an easy observation we realize that all translated
axioms and modus ponens translation, written in form
of disjunction, are Horn clauses.

Lemma 3.2 Let L be BL or MTL or their fragment with
the set of axioms A, T arbitrary set of formulae, and p
arbitrary formula, both in language of L. Then I' -1, ¢,

if and only if f(A), f(T), fF(MP) Fror f()-

Proof: A Hilbert style proof of ¢ from I' can be
easily translated into a Hilbert style proof of f(y)
from f(A), f(T') and f(MP) in classical FOL using
generalisation rule, if Froy, ¥ then Fror Vzi, and
Fror Yoy — 1.

The opposite direction can be shown by using a
resolution refutation. It is an easy observation that only
Horn clauses occur in such a resolution refutation.
And this fragment has a property that given resolution
refutation can be reordered in such a way that a
backward translation gives a proof of ¢ in I'. n

Demonstrating the independence of some axiom, we
are also interested in unprovability. There is a standard
model theoretical technique for proving that some
formula ¢ is unprovable from a set of formulae I'. From
soundness theorem in FOL it is enough to show a FOL
model in which all formulae from I" are true and formula
 is false. By previous lemma we can easily transform
a problem of unprovability ¢ from I" in a Hilbert style
calculus to a problem of finding classical FOL model in
which f(A), f(T'), f(MP) and = f(y) are true.

We have thus transformed the problem of provability
of formula in propositional fuzzy logic Hilbert style
calculus into FOL and we can try to solve it by
standard automated theorem proving software. We
can use a theorem prover for showing that some
formula (in an encoded form) is provable from other
formulae using given rules, or a model generator
software to find a model which demonstrates its
unprovability. Traditionally, both computations are
executed in parallel.
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Generally speaking, because of undecidability of FOL,
this technique cannot be fully satisfiable. Moreover,
abilities of automated theorem provers and automated
model generators are very limited and highly dependent
on software configuration. However, several results were
obtained by this or similar techniques, which proved its
usability, see for instance Wos’s papers [6].

We are not going to describe technique used by
automated theorem provers and model generators,
because these systems are rather complicated. For our
experiments we used freely available E prover in version
0.999-0013, which is based on superposition (restricted
paramodulation) calculus. For building models we used
freely available Paradox 2.3* finite model finder which
iteratively tries to find finite models by transforming a
given problem into SAT problems.

Tuning software for obtaining results can be highly
complicated. Nevertheless, for all our results standard
configuration is sufficient as well as almost any state
of the art prover or model generator. However, the
presented form of results was obtained by experimenting
with software configuration and some configurations are
better suited for direct extraction of proofs in Hilbert
style calculus.

4. Provability of axiom (A2)

We present a proof of axiom (A2) separetely for
MTL™ and BL™. Both proofs are obtained by proving
weakening formula ¢ — (¢ — ) which immediately
gives a proof of axiom (A2). We note that the original
prover proofs were slightly adapted.

4.1. MTL™

First, we present proof for MTL™which is shorter.
It may look surprising, because MTL™ is weaker
than BL™. However, for the proof of axiom (A2),
axioms (A4a)—(A4c) are evidently better suited than
axiom (A4).

Lemma 4.1 The following formulae are provable in
MTL™:

@) (p& (p—v)) =,

®) (¢ =) =) = x) = (¢ —=X),

© ¢—(p—9)

) o= (=)

Proof:

a)
L ((p&(p—1) = (eAY) = ([ AY) = x) = (g & (p— 1)) — X)) (A1)
2 ((pAY) = x) = ((p&(p—9) —x) by (Ada), 1
3 (p&(p—9)) = by (A4db), 2

4 p—((p—v)—p)
5 (p—=v) =)= x) = (¢ —x)

= (p—=9)—=9) =) = (p—= (=) — )

6

70— (p—= ((p—=vY) =)

8 ((¢—= (=)= ¢) = x) = (¢—X)
9: p—=(p—9)

3http://www.eprover.org
‘http://www.cs.chalmers.se/~koen/folkung/
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by (a), (A5b)
by 4, (A1)

by 4, 4

by 6, (b)

by (7), (A1)
by 8, (b)
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d)

10: ((p— @) =) = (¢ — )

by (), (A1)

I ((p = (¥ = (0 &))) = ) = (((p &) = (p & ) — @) by (ASb), (A1)

12 o= (&) = (9 &) — ) by 11, (b)

13: (¢ = (=) = (1= (¢ = 9) &) = (0 = (¢ = 9)) &) = (¢ = (9 — ) 12

14: (g = (=) &v) = (= (¢ =) &¥)) = (v = (¢ = ¢)) by (c),13

15: (¢ = (e =) &) = (v = (9= ¢)) by 14,10

16: (p—=(e—9) = W= (p—(p—9) by 15, (ASb)

17: = (¢ = (¢ — ¢)) by (c), 16

18: (¢ = (=) —9) = (W —9) by 17, (A1)

19: = (¥ = ¢) by 18, (b)

|

Now by application of (A5a) we immediately obtain 4.2. BL™

Corollary 4.2 Axiom (A2) is derivable in MTL™.

Let us note that we do not use axioms (A4c), (A6)
and (A7). On the contrary, all other axioms are
necessary, which can be demonstrated by Section 5
methods.

Corollary 4.3 (see Cintula [1]) Axiom (A3) is deriv-
able in MTL™.

It is worth pointing out that axiom (A3) can be proved
by similar technique used to prove axiom (A2).

We are going to prove a similar lemma for logic BL™.
Let us note that we will use axiom (A6) and axiom (A7),
which are not necessary, but shorten the proof, whereas
all other axioms are necessary.

Lemma 4.4 The following formulae are provable in
BL™:

(@ »— ¢,

®) (p& (p—0)) =1,

© (e &) =1,

) o= (¥ — )

Proof:
a)
I (=)= (e—=9) = (((p—p) &p)—0) (ASa)
22 (((p—=@)=(p—=9) = (((p—=p) &) =) = (=) = (b= 9) = (g =) &) = p)) —
(¢ = p) &p) =) (A6)
3 (((p—=p) = (=)= ((p—=9) &) =) = ((¢— @) &p) =) by 1,2
4 (=) &)= by 1,3
5 (((p—= @) &) =) = ((p—=9) = (9 — ) by (A5b)
6: (p—=p) = (p—9) by 4,5
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7 ((p—9) = (=) = (((p—p) = (p—9) = (¢ — ) (A6)
8: (=)= (p—9) = (p—9) by 6,7
9: o — by 6, 8
b)
10: (¢ =) = (¢ =) = ((p = ¥) & @) = 1) (A5a)
I ((p =) &)= by (a), 10
12: (¢ =) &) =) = (¥ = x) = (¢ = ¥) &p) = X)) (A1)
13: (b= x) = (¢ = ¥) & p) = X) by 11, 12
14: (0= (W —¢) = (0&Y) — o) (A5a)
150 (0& ) — ¢ by (A7), 14
16: (0& ) =) = (x = (0&Y)) & x) = ¢) 13
17: (x = (0& ) &x) = ¢ by 15, 16
18: ((p = (0& ) &) = x) = ((p— (0& ) — (¢ — X)) (Asb)
19: (¢ = (0& %)) = (¢ — x) by 17,18
20: (p&(p—0) = (0&(0—¢)) (A4)
21: (p& (9 —0)) = (0& (0= ¢))) = (0 & (9 = 0)) = ) 19
22: (& (9 —0) = by 20, 21
¢
23t o= ((p—0) =) by (b), (A5b)
24 (p = ((p—0) =) = (¢ —=0) > ¥) = x) = (¢ = X)) (A)
25: (¢ = 0) =) = x) = (¢ = x) by 23,24
26: (p— 1) = (0—-9) by (A7), (A1)
27: (¢ = 0) =) = (0= 9)) = (¢ = (0= 19)) 25
28: o — (00— 1) by 26,27
29: o= (Y= (&) by (a), (A5b)
30: (p— )= (W= ((p— ) &) 29
3: Y= ((p— ) &) by (a), 30
32: (p = (0—=9) = (x = x) & (¢ — (0—9))) 31
33: (x = x) & (p— (0—1)) by 28, 32
3: ((p—= )& ((p—9) = (0—1)) = (0=9) & (0—=9) = (¢ — ))) (A4)
35: (0—=¥) & ((0—v) = (¢ —¢)) by 33,34
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36: ((p &) = (0—=x) = (= (¥ = (0—x))) (ASb)

37: ¢ = (v — (0= x)) by 28, 36

38: (=W = (0—=x) = (= 0—x) =& = (p—9) (A1)

39: (= (0—x) =& = (p—8) by 37, 38

40: (¢ = (0=9) = (=) = x) = (¢ = X)) (AD)

41: (= (0=9)) = (0=¥) = x) = (¢ —=x) = = (=) =x) = (¢ —X))) 39

42: €= ((0=9) = x) = (¢ = X)) by 40, 41

43: (p = ((0=9) = x) = (€= X)) = ((p& (0= ¢) = X)) — (£ = X)) (A5a)

44: (p& ((0—=7) = x)) = (E—x) by 42,43

45: (0= ) & (0= ) = (b =) = (¢ = (b =) 44

46: o — (P —1p) by 35,45

47: (p &) — o by 46, (ASa)
d)

48: (v & x) = x) = (((p = (W& X)) &) = X) 13

49: ((p = (P & x)) &) = x by (c), 48

50: (p— (Y &x)) = (¢ —x) by 49, (A5b)

5L ((p& (o =) = (W& (v — ) = (v & (p = ¥) = (¥ — ) 50

52: (p&(p—= ) = (¥ — o) by (A4), 51

53 o= ((p =)= (W —9)) by 52, (ASb)

54 (lp—=¥) = W —9) = x) = (p—X) by 53, (A1)

55: (W—=9) = (W—9) = ((p—=v) = (W —9) = (V=) (A6)

56: ((p =) = (W —¢) = (¥—9p) by (a), 55

57: o — (1 — ) by 56, 54

Now again by application of (ASa) we immediately
obtain

Corollary 4.5 Axiom (A2) is derivable in BL™.

Corollary 4.6 (see Cintula [1]) Axiom (A3) is deriv-
able in BL™.

It is worth pointing out that axiom (A3) can be again
proved by similar technique used to prove axiom (A2).

PhD Conference *08

5. The independence of axioms

We know that axioms (A2) and (A3) are redundant
in BL and MTL. Is any other axiom redundant in
BL or MTL? We answer this question negatively for
every remaining axiom by presenting a model and a
valuation which make the axiom false, but all other
axioms including (A2) and (A3) and modus ponens rule
are true in the model. It means that none of the axioms
but (A2) and (A3) is redundant in original systems BL
and MTL. We obtain immediately that all axioms in
BL™ and MTL™ are independent.
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All models are finitely valued structures with elements
labeled by natural numbers, presented in form of truth
tables. Let us note that in all models except for (A7) we
interpret constant O as the minimal element 0 and truth
as the maximal value in a model, e.g. in a four member
model it has value 3.

The important point to note is that checking falsity of
axiom in a given model under a given valuation is an
easy task. On the other hand, to show that all other
axioms are true in the model, exhausting checking is
sometimes needed. Fortunately, for computer it is an
easy task. We naturally do not present these proofs.

For shortening the presentation we present models
for BL and MTL at once. Only models for logic
specific axioms (A4) and (A4a)—(A4c) are presented
separately. Moreover, we prefer the same definition for
multiplicative and additive conjunction.

We start by a group of axioms common to BL and MTL.

5.1. Axiom (A1)

For showing the independence of axiom (A1) we need a
model in which implication is not transitive. We present
such a model which falsifies axiom (A1) for valuation
p=1,%=0and y = 2.

wl\)»—tougc

>
OOOO;
_—0 O O =
O O O O
W o OO Ww
W= ol
— W W WMo
—_— W W W =
—_— L = W N
L W W W W

Table 1: Truth tables for (A1)

5.2. Axiom (AS5a)

First of the residuation axioms (AS5a) fails evidently for
@ = 2,7 = 1 and x = 0. Both conjunctions are defined
separately.

&lo 1 2 3 A0 1 2 3
0[0 0 00 0[O0 0 O O
1jo o 2 2 1]0 1 1 1
210 2 0 2 2]0 1 1 1
3]0 2 2 3 3|0 1 1 3
— |0 1 2 3
03 3 3 3
1|1 3 3 3
212 3 33
3]0 2 1 3

Table 2: Truth tables for (A5a)
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5.3. Axiom (AS5b)

To demonstrate the independence of axiom (AS5b),
much easier model than for axiom (A5a) is needed.
A two valued model with classical implication and
both conjunctions false for all values is sufficient.
Axiom (A5b) fails for ¢ = 1,9 = 1 and x = 0.

A0 1 =0 1
0 [0 0 01 1
1 ]0 0 1o 1

Table 3: Truth tables for (ASb)

5.4. Axiom (A6)

The independence of axiom (A6) can be easily shown
by an algebraic arguments. It represents prelinearity and
logics without prelinearity have been already studied.
Moreover, MTL without axiom (A6) represents Hohle
Monoidal Logic ML. Nevertheless, we present our
standard semantic argument. Axiom (A6) fails for ¢, ¢
and y represented by 1,2 and 3.

A0 1 2 3 4
0 |0 0 0 0 0
1 [0 1 0 1 1
2 1o 0o 2 2 2
3 /01 2 3 3
4 10 1 2 3 4
—~l0o 1 2 3 4
0 |4 4 4 4 4
112 4 2 4 4
201 1 4 4 4
300 1 2 4 4
410 1 2 3 4

Table 4: Truth tables for (A6)

5.5. Axiom (A7)

It is evident that axiom (A7) is independent of other
axioms, because of new symbol 0. For demonstration
it is enough to interpret O as truth and all connectives
classically. In such model, axiom (A7) easily fails and
all other axioms are evidently true.

Ao 1 =0 1
0 [0 O 01 1
1|0 1 10 1

Table 5: Truth tables for (A7)

Now we present BL and MTL specific cases.
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5.6. Axiom (A4)

If we take ¢ A 1 as an abbreviation for p & (¢ — ),
axiom (A4) represents commutativity of additive
conjunction in BL. For ¢ = 1 and ¢ = 2, additive
conjunction is not commutative.

&
0
1
2
3

S OO OO
—_0 O O =
N OO O
W N = OlWw
W= ol
SN DN WO
—_— N W W —
N W W W N
W W W W W

Table 6: Truth tables for (A4)

We show the independence of axioms (A4a)—(A4dc) by
small models, in which axioms (A1)—-(A3) and (A5a)—
(A7) are evidently true, because of & and — definition.
Therefore to complete the proof it is sufficient to
show the (in)validity of axioms (A4a)-(A4c) in the
corresponding truth tables only.

5.7. Axiom (A4a)

Axiom (A4a) fails for ¢ = 1 and ¥
(A4b) and (A4c) are evidently true.

= 1, but axioms

-
0
1

»—O?F
oS OO
S O =
S | O
—_

O OO
—_ O =
—_ O >

Table 7: Truth tables for (A4a)

5.8. Axiom (A4b)

Axiom (A4b) fails for ¢ = 0 and » = 1, but axioms
(Ada) and (A4c) are evidently true.

&lo 1 AJO 1 —]0 1
00 0 0[0 1 01 1
1jo 1 1)1 1 10 1

Table 8: Truth tables for (A4b)

5.9. Axiom (A4c)

Axiom (A4c) fails for ¢ = 1 and ¥
(A4a) and (A4b) are evidently true.

= 0, but axioms

&lo 1 AJO 1 —]0 1
00 0 0[O0 0 01 1
1jo 1 1)1 1 10 1

Table 9: Truth tables for (A4c)
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Corollary 5.1 A4/l axioms but (A2) and (A3) are
independent of each other in BL.

Corollary 5.2 All axioms but (A2) and (A3) are
independent of each other in MTL.

It is worth pointing out that the independence of
axioms could be presented also by studying some known
algebraic structures, which has several indisputable
theoretical advantages. On the other hand, our approach
seems to be easier for presentation.

6. Summary and conclusion

We presented the complete solution of dependence
and independence of axioms in prominent fuzzy
propositional logics BL and MTL by using simple
technique from automated theorem proving. Also other
similar problems can be solved using these methods and
state of the art theorem provers and model generators.

Nevertheless, our approach has several drawbacks. First,
abilities of current theorem provers are limited and
in some situations even short proofs are inaccessible
for them without special settings. Second, abilities of
automated model generators are also very limited, e.g.
infinite models are highly problematic.
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