
Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

Běhounek, Libor
2008

Dostupný z http://www.nusl.cz/ntk/nusl-39082

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 23.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-39082
http://www.nusl.cz
http://www.nusl.cz

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

Modeling Costs of Program Runs in Fuzzified Propositional
Dynamic Logic

Post-Graduate Student:

MGR. LIBOR BĚHOUNEK
Supervisor:

DOC. PHDR. PETR JIRKŮ, CSC.

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague, Czech Republic

Faculty of Arts
Charles University in Prague

Celetná 20

116 42 Prague, Czech Republic

behounek@cs.cas.cz petr.jirku@ff.cuni.cz

Field of Study:
Logic

The work was supported by grant No. IAA900090703 Dynamic Formal Systems of the Grant Agency of the Academy
of Sciences of the Czech Republic and Institutional Research Plan No. AV0Z10300504. The advisor for my research

in the area of fuzzy logic is Prof. RNDr. Petr Hájek, DrSc. I have profitted from discussions with Marta Bı́lková
and Petr Cintula.

Abstract

The paper introduces a logical framework
for representing costs of program runs in
fuzzified propositional dynamic logic. The costs
are represented as truth values governed by
the rules of a suitable t-norm fuzzy logic.
A translation between program constructions
in dynamic logic and fuzzy set-theoretical
operations is given, and the adequacy of the
logical model to the informal motivation is
demonstrated. The role of tests of conditions in
programs is discussed from the point of view
of their costs, which hints at the necessity of
distinguishing between the fuzzy modalities of
admissibility and feasibility of program runs.

1. Introduction

It has been argued in [1] that t-norm fuzzy logics can
be interpreted as logics of resources or costs, besides
their usual interpretation as logics of partial truth.
Particular instances of costs are the costs of program
runs: typically, a run of a program needs various kinds of
resources like machine time for performing instructions,
operational memory or disk space for data, access to
peripheries or special computation units, etc. Depending
on the amount of the resources needed, some runs of
programs can be more costly than others. The most
usual logical model of programs and program runs is
presented by propositional dynamic logic, which will
be used as a basis for the present generalization. The
aim of this paper is to sketch a logical framework for
handling the costs of program runs by means of fuzzy
logic, with programs modeled abstractly in propositional

dynamic logic, and present some basic observations on
the proposed model.

The paper has the following structure: A brief
description of t-norm fuzzy logics and their cost-
based interpretation is given in Sections 2 and 3. The
apparatus of propositional dynamic logic is recalled
in Section 4. A combination of these approaches,
leading to a model of costs of program runs in
fuzzified propositional dynamic logic, is given in
Section 5. The role of tests of conditions in programs,
which necessitates distinguishing the feasibility and
admissibility of program runs in fuzzified propositional
dynamic logic, is discussed in Section 6.

It should be noted that the paper only presents an initial
sketch of the proposed approach to logical modeling of
program costs. The work on this approach is currently in
progress and a more comprehensive elaboration is being
prepared, with Marta Bı́lková and Petr Cintula as co-
authors.

2. T-norm fuzzy logic

In this section we give a short overview of the most
important t-norm fuzzy logics that will be needed later
on. Only the standard semantics of t-norm fuzzy logics
is presented here, as it suffices for the needs of this
paper. For more details on t-norm logics, including their
axiomatic systems and general semantics, see [2, 3].

In the standard semantics, formulae of t-norm fuzzy
logics are evaluated truth-functionally in the real
unit interval [0, 1]; i.e., propositional connectives

PhD Conference ’08 11 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

are semantically realized by operations on [0, 1]. In
particular, the connective called strong conjunction &
is in t-norm fuzzy logics realized by a left-continuous
t-norm, i.e., a left-continuous binary operation on [0, 1]
which is commutative, associative, monotone, and has
1 as its neutral element. The most important (left-)
continuous t-norms are

x ∗G y = min(x, y) Gödel t-norm

x ∗Π y = x · y product t-norm

x ∗Ł y = max(0, x + y − 1) Łukasiewicz t-norm

Every left-continuous t-norm ∗ has a unique residuum
⇒∗, defined as

x⇒∗ y = sup{z | z ∗ x ≤ y},

which interprets implication → in the logic L(∗) of the
left-continuous t-norm ∗. If x ≤ y, then x⇒∗ y = 1; for
x > y the residua of the above three t-norms evaluate as
follows:

x⇒G y = y

x⇒Π y = y/x

x⇒Ł y = min(1, 1− x + y)

Further propositional connectives of L(∗) are interpreted
in the following way:

• Negation ¬ as ¬∗x = x⇒∗ 0

• Equivalence↔ as

x⇔∗ y = min(x⇒∗ y, y ⇒∗ x)

• Disjunction ∨ as the maximum, and

• Weak conjunction ∧ as the minimum

Optionally, the delta connective Δ is added to L(∗) with
standard interpretation Δx = 1 if x = 1, and Δx = 0
otherwise. (We shall always use t-norm logics with Δ in
this paper.) The algebra

[0, 1]∗ = 〈[0, 1], ∗,⇒,∨,∧, 0,Δ〉

defining an interpretation of propositional t-norm logic
is called the t-algebra of ∗ (with Δ).

Formulae that always evaluate to 1 are called tautologies
of the logic L(∗). The formulae that are tautologies of
L(∗) for all ∗ from some class K of left-continuous t-
norms form the t-norm logic of the classK. In particular,
Hájek’s [2] logic BL is the logic of all continuous t-
norms and the logic MTL of [3] is the logic of all left-
continuous t-norms: these general logics capture rules

valid independently of a particular t-norm realization
of &. The proofs in this paper will be carried out in the
logic MTL, thus sound for all left-continuous t-norms.

Propositional t-norm logics can be extended to their
first-order and higher-order variants. These are needed
for mathematical reasoning about fuzzy properties and
will be employed later in this paper. For the formal
apparatus of first-order fuzzy logic I refer the reader to
[2]; Higher-order fuzzy logic has been introduced in [4]
and described in a primer [5] freely available online.
Here we shall only recall that the quantifiers ∀,∃ are
respectively realized as the infimum and supremum of
the truth values, and that higher-order logic is a theory
of fuzzy sets and relations with terms {x | ϕ(x)}, each
of which represents the fuzzy set to which any element
x belongs to the degree given by the truth value of the
formula ϕ(x).

3. Fuzzy logics as logics of costs

In fuzzy logic, truth values x ∈ [0, 1] are usually
interpreted as degrees of truth, with 1 representing
full truth and 0 full falsity of a proposition. As
argued in [1], the truth values can also be interpreted
as measuring costs, with propositional connectives
representing natural operations on costs. Under this
interpretation, we abstract from the nature of costs (be
they time, money, space, or any other kind of resources)
and only assume that they are linearly ordered and
normalized into the interval [0, 1].

(The assumption of linear ordering can actually be
relaxed to more general prelinear orderings, which
cover most usual kinds of resources. In particular,
direct products of linear orderings fall within the class,
which allows vectors of costs, e.g., pairs of disk space
and computation time, to be represented within this
framework. In general, the cost-interpretation of fuzzy
logic is based on the fact that most common resources
show the structure of a prelinear residuated lattice.
However, for simplicity we shall only consider linearly
ordered costs that can be embedded in the real unit
interval here.)

Under the cost-based interpretation, the truth value 1
represents the zero cost (“for free”) and the truth value 0
represents a maximal or unaffordable cost. Intermediary
truth values represent various degrees of costliness, with
the usual ordering of [0, 1] inverse to that of costs
(the truth values can thus be understood as expressing
degrees of truth of the fuzzy predicate “is cheap”).
Strong conjunction & represents the fusion of resources,
or the “sum” of costs. Various left-continuous t-norms

PhD Conference ’08 12 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

represent various ways by which costs may sum, and
particular t-norm logics thus capture the rules that
govern particular ways of cost addition. For example,
the Łukasiewicz t-norm ∗Ł corresponds to the bounded
sum of costs: assume that costs sum up to a bound b > 0;
if we normalize the interval [0, b] to [0, 1] with the cost
c ∈ [0, b] represented by 1 − c/b ∈ [0, 1], then the
bounded sum on [0, b] corresponds to the Łukasiewicz
t-norm on [0, 1], since

(1− x) ∗Ł (1− y) = 1− (x + y)

unless the bound 0 (representing b) is achieved.
Similarly the product t-norm corresponds to the
unbounded sum of costs (via the negative logarithm),
with 0 representing the infinite cost. The Gödel t-norm
corresponds to taking the maximum cost as the “sum”,
which is also natural for some kinds of costs (e.g., the
disk space for temporary results of calculation, which
can be erased before the program proceeds). Other left-
continuous t-norms correspond to variously distorted
addition of costs, possibly suitable under some rare
circumstances.

Obviously, disjunction and weak conjunction
correspond, respectively, to the minimum and maximum
of the two costs. The meaning of implication is that of
surcharge: the cost expressed by A → B is the cost
needed for B, provided we have already got the cost
of A. (Observe that if the cost of B is less than or equal
to that of A, then indeed A → B evaluates to 1, as we
have already got the cost of B if we have the cost of A;
i.e., the “upgrade” from A to B is “for free”, which is
represented by the value 1.) The equivalence connective
represents the “difference” (in terms of &) between two
costs, and negation the remainder to the maximal cost.

Tautologies of a given t-norm logic represent
combinations of costs that are always “for free”. More
importantly, tautologies of the form A1 & . . .&An → B
express the rules of preservation of “cheapness”, as their
cost-based interpretation reads: if we have the costs
of all Ai together, then we also have the cost of B.
Particular t-norm fuzzy logics thus express the rules
of reasoning salvis expensis, in a similar manner as
classical Boolean tautologies of the above form express
the rules of reasoning salva veritate.

In the following sections we shall apply this
interpretation of fuzzy logic to a particular kind of
costs, namely the costs of program runs as modeled
in propositional dynamic logic.

4. Propositional dynamic logic

Propositional dynamic logic (PDL) provides an abstract
apparatus for logical modeling of behavior of programs.
For details on PDL see [6, 7].

PDL models programs as (non-deterministic) transitions
in an abstract space of states. (As such, PDL programs
can represent any kind of actions over an arbitrary
set of states, not only programs operating on the
states of a computer; the applicability of both PDL
and the present approach is thus much broader
than just to computer programs.) Programs can in
PDL be composed of simpler programs by means
of a fixed set of constructions (the usual choice is
that of regular expressions with tests, by which all
common programming constructions are expressible),
applied recursively on a fixed countable set of atomic
programs (representing, e.g., the instructions of a
processor). Propositional formulae of PDL express
Boolean propositions about the states of the state space,
and include, besides usual connectives of Boolean logic,
modalities corresponding to programs, by means of
which it is possible to reason about programs and their
preconditions and postconditions.

Formally, the sets Form of formulae and Prog of
programs of PDL are defined by simultaneous recursion
from fixed countable sets of atomic formulae and atomic
programs as follows:

• Every atomic formula is a formula; every atomic
program is a program.

• If ϕ and ψ are formulae, then ¬ϕ and (ϕ ∧ ψ)
are formulae (meaning not ϕ resp. ϕ and ψ). The
abbreviations �, ⊥, (ϕ ∨ ψ), (ϕ → ψ), and
(ϕ ↔ ψ) are defined as usual in Boolean logic,
with usual conventions on omitting parentheses.

• If α and β are programs, then α∗, (α ∪ β), and
(α;β) are programs (meaning repeat α finitely
many times, do α or β, and do α and then β,
respectively, where or and finitely many means a
non-deterministic choice).

• If ϕ is a formula and α is a program, then [α]ϕ is
a formula (meaning ϕ holds after any run of α).
The expression 〈α〉ϕ abbreviates ¬[α]¬ϕ.

• If ϕ is a formula, then ϕ? is a program (meaning
continue iff ϕ).

The semantic models of PDL are multimodal Kripke
structures 〈W,R, V 〉with W a non-empty set (of states),

PhD Conference ’08 13 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

R : Prog → 2W 2

an evaluation of programs by
binary relations on W (representing possible transitions
between states by the program), and V : Form → 2W

an evaluation of formulae by subsets of W (namely, the
sets of verifying states), such that

V¬ϕ = W \ Vϕ (1)

Vϕ∧ψ = Vϕ ∩ Vψ (2)

V〈α〉ϕ = Rα
← Vϕ (3)

Rα;β = Rα ◦Rβ (4)

Rα∪β = Rα ∪Rβ (5)

Rα∗ = R∗
α (6)

Rϕ? = Id ∩ Vϕ (7)

where ◦ denotes the composition of relations, ← the
preimage under a relation, R∗ the reflexive and transitive
closure of R, and Id the identity of relations. A formula
ϕ is valid in the model iff Vϕ = W , and is a tautology
iff is valid in all models.

PDL is sound and complete w.r.t. the axiomatic system
consisting of all propositional tautologies, the axioms

[α;β]ϕ↔ [α][β]ϕ (8)

[α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ (9)

[α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ (10)

[ϕ?]ψ ↔ (ϕ→ ψ) (11)

[α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ) (12)

and the rules of modus ponens (from ϕ and ϕ → ψ
infer ψ), necessitation (from ϕ infer [α]ϕ), and induction
(from ϕ→ [α]ϕ infer ϕ→ [α∗]ϕ).

For simplicity, we shall not consider expansions of
PDL by further program constructions like intersection,
converse, etc.

5. Modeling the costs of program runs

PDL does not take costs of program runs into
consideration. In PDL, possible runs of a program α
are modeled as transitions from a state w to a state
w′ such that Rαww′. The relation Rα representing the
program α is binary (crisp): thus the states w′ are either
accessible or unaccessible from w by a run of α. In
practice, however, it often occurs that although a state
w′ is theoretically achievable from w by α, the run of
α from w to w′ is not feasible—e.g., is too long (for
example, needs to perform 10100 instructions, a frequent
case in exponentially complex problems), requires too
much memory, etc. Obviously, such unfeasible runs
should not play a role in the practical assessment
whether some condition ϕ can or cannot hold after

the possible runs of α. Nevertheless, classical PDL
cannot exclude such unfeasible runs, as there is no sharp
boundary between feasible and unfeasible runs (i.e., the
feasibility of runs is a fuzzy property).

A more realistic model can be obtained by considering
costs of program runs, by means of which we can
measure their feasibility. A simple model, which
nevertheless covers many common situations, would
assign the triple α,w,w′ such that Rαww′ in a model
of PDL a real number Cαww′ representing the cost of
the run of α from w to w′. The cost thus would be
represented by a function

C : Prog ×W 2 → [0,+∞],

i.e., we are weighting the arrows in the co-graph of Rα

by their costs; we assign the cost +∞ to impossible
runs with ¬Rαww′. The cost of a run of α1;α2; . . . ;αn

going from w0 through w1, w2, . . . to wn would be a
function f (most often, the sum) of the costs of the
runs of αi from wi−1 to w1. If there are different paths
between w0 and wn through which α1;α2; . . . ;αn can
run, we are interested in the cheapest path, i.e., the run
of α;β from w to w′ will be understood as costing

Cα;βww′ = inf
w′′

f(Cαww′′, Cβw′′w′). (13)

This model would allow us to work with the costs of
program runs in the expanded models of PDL and define
and investigate many useful notions related to costs by
means of classical mathematics and logic. Nevertheless,
since the important property of feasibility of a program
run is essentially a fuzzy predicate, we shall recast
this model in terms of the cost-based interpretation of
fuzzy logic. This will allow us to employ fuzzy logic
for a convenient definition of feasible runs and use
the apparatus of fuzzy logic for reasoning about the
costs on the propositional level, by replacing classical
rules of reasoning with those of fuzzy logic. For a
methodological discussion of this approach see [4, 5, 8,
9].

Thus we shall assume that the structure of costs
is that of some t-norm algebra (see Section 3 for
possible extension to more general algebras). Then,
instead of weighting the arrows in the co-graph of Rα

with costs, we can directly replace Rα with a fuzzy
relation R̃α ∈ [0, 1]W

2

, with the truth values of R̃αww′

representing the cost of the run of α from w to w′.

Since the sum of costs now translates to conjunction in
a suitable t-norm logic and since we are interested in the
cheapest runs if more paths are possible, (13) now

PhD Conference ’08 14 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

translates to

R̃α;βww′ ≡ (∃w′′)(R̃αww′′ & R̃βw′′w′) (14)

with logical symbols interpreted in a t-norm fuzzy logic,
i.e., in semantics,

R̃α;βww′ = supw′′(R̃αww′′ ∗ R̃βw′′w′)

It can be observed that the formula (14) has exactly the
same form as in classical PDL where Rα;β = Rα ◦Rβ ,
since by definition

(Rα ◦Rβ)ww′ ≡ (∃w′′)(Rαww′′ & Rβw′′w′) (15)

The only difference between (14) and (15) is that
the relations in (14) are fuzzy, and that the logical
operations are (therefore) interpreted in a t-norm fuzzy
logic instead of Boolean logic. This is in fact a general
feature of using the framework of formal fuzzy logic that
natural definitions usually take the same form as in the
crisp case, only with the logical symbols reinterpreted
in fuzzy logic (cf. [4, 5, 8, 9]): we shall see that
further definitions will follow this pattern, too. Indeed,
analogously to (15) it is usual [10] in fuzzy logic to
define the composition of fuzzy relations R̃ and S̃ as

(R̃ ◦ S̃)ww′ ≡ (∃w′′)(R̃ww′′ & S̃w′′w′), i.e.,

≡ supw′′(R̃ww′′ ∗ S̃w′′w′)

Consequently, we can write

R̃α;β = R̃α ◦ R̃β

in our setting, in full analogy with the definition (4) of
Rα;β in classical PDL.

Similarly it is natural to assume R̃α∪β = R̃α ∪ R̃β

as in (5), where (R̃ ∪ S̃)ww′ is defined for any fuzzy
relations R̃, S̃ as R̃ww′ ∨ S̃ww′, since the cost of a run
of α ∪ β between w and w′ should be the smaller of
the two costs of the runs of α and β between the same
states (which in [0, 1]∗ is represented by the larger of
the two truth values). Analogously one verifies that the
cost of α∗ is represented by the transitive and reflexive
closure R̃∗

α of the fuzzy relation R̃α defined as usual in
the theory of fuzzy relations [10], in full analogy to (6).

The reinterpretation in fuzzy logic of (3), which expands
to

V〈α〉ϕw ≡ (∃w′)(Rαww′ & Vϕw′) (16)

yields a very natural modality expressing that after a
feasible run of α the condition ϕ can hold. (Notice that
this definition reflects the motivation for taking the costs
of program runs into account, described in the beginning
of this section.)

It can be observed in (16) that even if Vϕ is crisp, a
fuzzy Rα will yield a fuzzy V〈α〉ϕ. Thus, because of
the interplay of programs and formulae in PDL, our
fuzzification of programs necessitates a fuzzification of
formulae as well. A model of our fuzzified PDL is thus
a triple 〈W, R̃, Ṽ 〉, where W is a non-empty crisp set
of states, R̃ maps programs α to fuzzy relations R̃α ∈

[0, 1]W
2

, and Ṽ gives fuzzy sets Ṽϕ ∈ [0, 1]W of states
which fuzzily validate ϕ (i.e., Ṽϕw is the truth value of
ϕ in w).

Thus in the fuzzified (16), which reads

Ṽ〈α〉ϕw ≡ (∃w′)(R̃αww′ & Ṽϕw′), (17)

the subformula R̃αww′ can be understood as expressing
the fuzzy proposition “w′ is cheaply accessible from
w by a run of α” (which is a fuzzy-propositional
reading of the cost represented by R̃αww′) and Ṽϕw′

as the fuzzy proposition “ϕ holds in w′” (viz, to the
degree expressed by Ṽϕw′). Both R̃αww′ and Ṽϕw′

can thus be understood as fuzzy propositions, and their
combination in a single formula thus does not present
a type mismatch: we only assume that the cost is
represented by a truth value of the fuzzy proposition “the
run is cheap”, and that the mapping of costs to [0, 1]∗ is
such that the conjunction ∗ of truth values coincides with
summation of costs. (This assumption is more natural
if Ṽϕ for non-modal ϕ are assumed to be crisp, since
then the fuzziness of Ṽψ for modal ψ arise exactly
from considering the costs R̃αww′ in (16). However, in
many real-world applications of fuzzified PDL it may
be desirable to have non-modal formulae fuzzy as well:
then, if different algebras of degrees are needed for
Ṽ and R̃ in a particular model, one can use suitable
direct products of t-norm algebras; I omit details here.)
Particular interpretations ∗ of & and particular mappings
of actual costs under consideration to [0, 1]∗ will then
yield concrete ways of calculating the truth values of this
expression in particular models; importantly, however,
the rules of general fuzzy logics like BL or MTL
allow deriving theorems on program costs that are valid
independently of a concrete representation in [0, 1]∗.

Returning to (16), one can observe that again it coincides
with the usual definition of preimage of a fuzzy set in a
fuzzy relation (see, e.g., [11]). Thus we can write

Ṽ〈α〉ϕ = R̃α
← Ṽϕ,

again in full analogy with (3).

The derived semantical clause for [α]ϕ, which in the
classical case reads

V[α]ϕw ≡ (∀w′)(Rαww′ → Vϕw′), (18)

PhD Conference ’08 15 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

yields in the fuzzy reinterpretation

Ṽ[α]ϕw ≡ (∀w′)(R̃αww′ → Ṽϕw′), (19)

a useful fuzzy modality expressing that after all feasible
(or cheap enough) runs of α the fuzzy condition ϕ will
hold. (Similar comments as in the case of 〈α〉ϕ are
applicable.) The operation defined by (18) for crisp Rα

and Vα and by (19) for fuzzy R̃α and Ṽα is denoted by
←� and called the subproduct preimage in [11], where
it is studied as a particular case of BK-subproduct 	.
(These notions were introduced by Bandler and Kohout
in [12] for crisp relations and generalized for fuzzy
relations in [13]. Further references to the literature on
←� and its properties in fuzzy logic are given in [11].)
Thus we can write

V[α]ϕ = Rα
←� Vϕ

Ṽ[α]ϕ = R̃α
←� Ṽϕ

respectively for crisp and fuzzy PDL. Notice that
unlike in classical PDL, [α]ϕ and 〈α〉ϕ are no longer
interdefinable in fuzzified PDL, as the clauses (17) and
(19) do not generally satisfy Ṽ¬〈α〉ϕ = Ṽ[α]¬ϕ in fuzzy
logic, unless the negation ¬ is involutive. Both [α] and
〈α〉 therefore need to be present in the language of
fuzzified PDL as primitive symbols.

As an example of theorems that can be proved in our
framework, we shall check the soundness of the axioms
(8)–(12) and the three inference rules of classical PDL in
our fuzzified PDL semantics. The validity of the axiom
(8) in any model M = 〈W, R̃, Ṽ 〉 is proved as follows:

M |= [α;β]ϕ↔ [α][β]ϕ

iff Ṽ[α;β]ϕ = Ṽ[α][β]ϕ

iff R̃α;β
←� Ṽϕ = R̃α

←� Ṽ[β]ϕ

iff (R̃α ◦ R̃β) ←� Ṽϕ = R̃α
←� (R̃β

←� Ṽϕ),

where the last identity is an easy property of ←�, see [11,
Cor. 5.17].

Similarly, the validity of the axiom (9) is proved by

M |= [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

iff Ṽ[α∪β]ϕ = Ṽ[α]ϕ∧[β]ϕ

iff R̃α∪β
←� Ṽϕ = Ṽ[α]ϕ ∩∧ Ṽ[α]ϕ

iff (R̃α ∪ R̃β) ←� Ṽϕ = (R̃α
←� Ṽϕ) ∩∧ (R̃β

←� Ṽϕ),

where the last identity is again an easy property of ←�,
see [11, Cor. 5.16]. Notice that weak conjunction ∧ is
in order in the fuzzy version of (9), corresponding in the
proof to min-intersection defined for any fuzzy sets Ũ , Ṽ
as (Ũ ∩∧ Ṽ)w ≡ Ũw ∧ Ṽ w.

In order to verify the axiom (10), we need a few
definitions and lemmata. First, define for any fuzzy
relation R̃ its iterations

R̃0 = Id (20)

R̃n+1 = R̃ ◦ R̃n (21)

for all n ∈ N. Furthermore, the union
⋃
A of a crisp or

fuzzy set A of fuzzy relations is in higher-order fuzzy
logic defined as(⋃

A
)
ww′ ≡ (∃R̃)(AR̃ & R̃ww′).

Obviously, for any fuzzy relation R̃,

∞⋃
n=0

R̃n = R̃0 ∪
∞⋃

n=1

R̃n = Id ∪
∞⋃

n=1

R̃n

by (20). It can trivially be verified that by definitions,
Id ←� Ṽ = Ṽ , thus also R̃0 ←� Ṽ = Ṽ , for any fuzzy
relation R̃ and any fuzzy set Ṽ . Finally, it can be proved
(cf. [10]) that the transitive and reflexive closure R̃∗ of
a fuzzy relation R̃ is in fuzzy logic characterized in the
same way as in classical mathematics, viz

R̃∗ =
∞⋃

n=0

R̃n = Id ∪
∞⋃

n=1

R̃n

Now we can show the soundness of (10), which amounts
to the general validity of Ṽ[α∗] = Ṽϕ∧[α][α∗]ϕ. We have
the following chain of identities, justified by definitions
and previous lemmata:

Ṽ[α∗]ϕ = R̃α∗
←� Ṽϕ =

=
(∞⋃

n=0

R̃n
α

)
←� Ṽϕ

=
(
Id ∪

∞⋃
n=1

R̃n
α

)
←� Ṽϕ

= (Id ←� Ṽϕ) ∩∧

((∞⋃
n=1

R̃n
α

)
←� Ṽϕ

)

= Ṽϕ ∩∧

((
R̃α ◦

∞⋃
n=0

R̃n
α

)
←� Ṽϕ

)
= Ṽϕ ∩∧ Ṽ[α;α∗]ϕ = Ṽϕ∧[α][α∗]ϕ.

Notice again that weak conjunction is in order in
fuzzified (10).

The soundness of the rule of induction amounts to the
validity of inferring

Ṽϕ ⊆ R̃∗
α

←� Ṽϕ from Ṽϕ ⊆ R̃α
←� Ṽϕ.

PhD Conference ’08 16 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

By induction, we shall prove that from Ṽϕ ⊆ R̃α
←� Ṽϕ

we can infer Ṽϕ ⊆ R̃n
α

←� Ṽϕ for all n ∈ N, i.e., by [14,
Lemma B.8(L5)],

Ṽϕ ⊆
⋂
n∈N

(R̃n
α

←� Ṽϕ),

which is by [11, Cor. 5.16] equivalent to the required

Ṽϕ ⊆
(⋃

n∈N

R̃n
α

)
←� Ṽϕ.

The first step Ṽϕ ⊆ R̃0
α
←� Ṽϕ of the induction is trivially

valid by R̃0
α

←� Ṽϕ = Id ←� Ṽϕ = Ṽϕ. For the induction
step, we need to infer

Ṽϕ ⊆ R̃n+1
α

←� Ṽϕ from Ṽϕ ⊆ R̃n
α

←� Ṽϕ,

i.e., by [14, Th. 4.3(I14)],

(R̃n
α ◦ R̃α) → Ṽϕ ⊆ Ṽϕ, from R̃α

→ Ṽϕ ⊆ Ṽϕ.

By [11, Cor. 4.14], the former is equivalent to

R̃α
→ (R̃n

α
→ Ṽϕ) ⊆ Ṽϕ,

which follows from R̃α
→ Ṽϕ ⊆ Ṽϕ by monotony of →

w.r.t. ⊆ [11, Cor. 4.7].

A discussion of the test construction is postponed
to Section 6; therefore we shall skip checking the
soundness of the the axiom (11). The soundness of the
rule of modus ponens and the axioms of propositional
logic is demonstrated in [15], as 〈W, Ṽ 〉 forms the usual
intensional semantics for fuzzy logic. The soundness
of the rule of necessitation amounts to the validity of
inferring W ⊆ R̃α

←� Ṽϕ, i.e., R̃α
→ W ⊆ Ṽϕ, from

W ⊆ Ṽϕ; but since R̃α only operates on W , it is
immediate that R̃α

→ W ⊆W ⊆ Ṽϕ.

On the other hand, the axiom (12) fails in fuzzy PDL,
as it is well known (already from [2]) that fuzzified
Kripke frames do not in general validate the modal
axiom K. Since also the interdefinability of 〈α〉 and [α]
fails for non-involutive negation, dual axioms and rules
for 〈α〉 need to be added to a prospective axiomatic
system of fuzzified PDL. I omit the discussion of these
axioms here; it can nevertheless be hinted that since the
relationship between the semantic clauses for 〈α〉 and
[α] is that of Morsi’s duality [16] (combined with the
duality between fuzzy relations and their converses), the
formulation and soundness of the dual axioms and rules
for 〈α〉 can be obtained from the axioms and rules for
[α] automatically by the same duality.

6. The role of tests

In classical PDL, tests ϕ? have the role in branching
complex programs: they are employed in definitions of
such programming constructions as if–then–else, while–
do, or repeat–until. They do not themselves affect the
state in which a program run is, but bar a further
execution of the program if their condition is not met. A
straightforward fuzzification of the semantic condition
(7), R̃ϕ? = Id ∩ Ṽϕ, would interpret tests in fuzzy
PDL as programs which do not change the state, but can
decrease the “passability” of the run through the current
state according to the truth value of the condition ϕ.
This, however, does not correspond to the primary
motivation of R̃αww′ as the cost of the run of α from
w to w′: the condition ϕ may be cheap to test, but can
have a low truth degree in w, or vice versa. The two
roles of the truth value yielded by the test ϕ? do not
match in fuzzy PDL: the truth degree of ϕ should affect
the possibility of further execution, while the cost of
performing the test of ϕ should contribute to the overall
cost of the run of a complex program. Neither of the
two roles can be sacrificed, since the former is necessary
for branching the program (by the fuzzy if–then–else
and cycle constructions), while without the latter we
would be unable to distinguish between feasible and
unfeasible runs (which was our primary motivation for
the fuzzification of PDL).
Unless we want to stipulate that the conventional
complexity (or cost) of a test be identified with the truth
value it yields, thus equating the accessibility of paths
of program execution with their costs (by which the
actual cost of performing the computation is replaced by
a different conventional measure), we may have to admit
that the identification of the feasibility (or cost) value
with the value of accessibility was too bold and that
these two fuzzy relations on W have to be distinguished.
If we denote the fuzzy accessibility relation by R̃α and
the feasibility relation by C̃α, then the test ϕ? would
contribute to R̃α by the truth value of ϕ, while to C̃α by
the cost of performing the test. For instance, performing
a test of a difficult tautology may contribute a lot to the
cost of the run, while not decreasing the “correctness”
degree of the run at all. We may then distinguish the
modality 〈α〉R̃ϕ expressing that there is a “correct” run
to a state where ϕ holds from 〈α〉R̃∩C̃ϕ expressing
that there is a “correct feasible” run validating ϕ (all
conditions understood fuzzily). Their semantic clauses
are, respectively:

Ṽ〈α〉R̃ϕw ≡ (∃w′)(R̃αww′ & Ṽϕw′)

Ṽ〈α〉R̃∩C̃ϕw ≡ (∃w′)(R̃αww′ & C̃αww′ & Ṽϕw′)

The apparatus of costs of program runs thus appears

PhD Conference ’08 17 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

Libor Běhounek Modeling Costs of Program Runs in Fuzzified Propositional Dynamic Logic

to operate best on PDL with fuzzified accessibility
relations of programs, whose truth degrees do not
express the degrees of feasibility (or costs) of
program runs, but the degrees of their admissibility
(or “correctness”, in the sense of the satisfaction
of conditions passed through). The fuzzification of
admissibility can be developed independently, without
regarding costs of runs at all, thus making the same
idealization as regards costs as classical PDF, i.e., with
equating feasibility and admissibility of runs. Such
fuzzification only generalizes the framework of PDL
to permit fuzzy conditions like “if the temperature is
high, do α” (which may be quite useful in real-world
applications) and a measure of “correctness” of some
transitions between states by programs (capturing for
instance such phenomena as rounding numerical results
etc.).
Adding moreover the apparatus for costs then makes
the (already fuzzified) model more realistic by the
possibility of distinguishing not only (the degree of)
correctness, but also (the degree of) feasibility of (more
or less correct) runs of programs. The double nature
of tests regarding the truth and cost degrees, however,
seems to exclude the possibility of adding the apparatus
of costs directly to crisp rather than already fuzzified
PDL, unless we forbid tests on feasibility (e.g., of the
form (〈α〉R̃∩C̃ϕ)?), which automatically fuzzify the
admissibility of runs.
Various kinds of restrictions on tests (e.g., allowing only
tests of atomic formulae, non-modal formulae, formulae
not referring to feasibility, etc.) would, however,
strongly affect the requirements on the models and
their properties. An elaboration of these considerations
is left for future work, as are the problems of
axiomatizability of such systems of fuzzy PDL and a
detailed investigation of their properties.

References

[1] L. Běhounek, “Fuzzy logics interpreted as logics
of resources,” in XXII Logica Volume of Abstracts,
(Prague), Institute of Philosophy, Academy of
Sciences of the Czech Republic, 2008. XXII
International Conference Logica, held on June 16–
19, 2008 in Hejnice, Czech Republic.

[2] P. Hájek, Metamathematics of Fuzzy Logic, vol. 4
of Trends in Logic. Dordercht: Kluwer, 1998.

[3] F. Esteva and L. Godo, “Monoidal t-norm based
logic: Towards a logic for left-continuous t-
norms,” Fuzzy Sets and Systems, vol. 124, no. 3,
pp. 271–288, 2001.

[4] L. Běhounek and P. Cintula, “Fuzzy class theory,”
Fuzzy Sets and Systems, vol. 154, no. 1, pp. 34–55,
2005.

[5] L. Běhounek and P. Cintula, “Fuzzy Class Theory:
A primer v1.0,” Tech. Rep. V-939, Institute of
Computer Science, Academy of Sciences of the
Czech Republic, Prague, 2006. Available at
www.cs.cas.cz/research/library/reports 900.shtml.

[6] D. Harel, “Dynamic logic,” in Handbook
of Philosophical Logic (D. M. Gabbay and
F. Guenthner, eds.), vol. II: Extensions of Classical
Logic, pp. 497–604, Dordrecht: D. Reidel, 1st ed.,
1984.

[7] D. Harel, D. Kozen, and J. Tiurin, Dynamic Logic.
Cambridge MA: MIT Press, 2000.

[8] L. Běhounek and P. Cintula, “From fuzzy logic to
fuzzy mathematics: A methodological manifesto,”
Fuzzy Sets and Systems, vol. 157, no. 5, pp. 642–
646, 2006.

[9] L. Běhounek and P. Cintula, “Fuzzy class
theory as foundations for fuzzy mathematics,” in
Fuzzy Logic, Soft Computing and Computational
Intelligence: 11th IFSA World Congress, vol. 2,
(Beijing), pp. 1233–1238, Tsinghua University
Press/Springer, 2005.

[10] L. A. Zadeh, “Similarity relations and fuzzy
orderings,” Information Sciences, vol. 3, pp. 177–
200, 1971.

[11] L. Běhounek and M. Daňková, “Relational
compositions in Fuzzy Class Theory.”
To appear in Fuzzy Sets and Systems
(doi:10.1016/j.fss.2008.06.013), 2008.

[12] W. Bandler and L. J. Kohout, “Mathematical
relations, their products and generalized
morphisms,” Tech. Rep. EES-MMS-REL 77-
3, Man–Machine Systems Laboratory, Department
of Electrical Engineering, University of Essex,
Essex, Colchester, 1977.

[13] W. Bandler and L. J. Kohout, “Fuzzy relational
products and fuzzy implication operators,” in
International Workshop of Fuzzy Reasoning
Theory and Applications, (London), Queen Mary
College, University of London, 1978.

[14] L. Běhounek, U. Bodenhofer, and P. Cintula,
“Relations in Fuzzy Class Theory: Initial steps,”
Fuzzy Sets and Systems, vol. 159, no. 14, pp. 1729–
1772, 2008.

[15] L. Běhounek, “Fuzzification of Groenendijk–
Stokhof propositional erotetic logic,” Logique et
Analyse, vol. 47, no. 185–188, pp. 167–188, 2004.

[16] N. N. Morsi, W. Lotfallah, and M. El-Zekey, “The
logic of tied implications, part 2: Syntax,” Fuzzy
Sets and Systems, vol. 157, pp. 2030–2057, 2006.

PhD Conference ’08 18 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0163282

