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Technical report No. 1021

June 2008
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Abstract:

This paper brings some improvements on known estimates on rates of approximation by neural networks.
We proceed along the line proposed by V. Krkov applying integral representations. We prove that existence
of integral representation of a function is equivalent to limit of classical neural networks. We give two proofs
for finiteness of G-variation for Lp activation functions. This enables Maurey-Jones-Barron-type estimates
to be applied in this more general setting. We show that the known estimates cannot distinguish between
sigmoidal activation functions and provide limitations of the approach as well. Applying presented results
we finally give estimates for some concrete approximation schemas.
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In this paper we address a crucial question of interest when building a neural network: how
precisely can we approximate a given function using a limited number of units. We proceed along
the lines initiated by Barron in the respect that we study approximation by convex combinations of
“basic” functions and try to derive classes of functions that can be approximated in such a way.

In Section 1 we first review the pioneering work of Maurey [Ps81], Jones [Jo92], and Barron [Ba93],
and the extension by Darken, Donahue, Gurvits, and Sontag [DDGS93]. Then we show how these
results were utilized by Krkov, Kainen, and Kreinovich [KKK97] who (implicitly) used so-called G-
variation (explicitly defined in [Ku97]) of the function f to be approximated. We will see that bounded
G-variation is a sufficient (though not necessary) condition for good rates of approximation.

In Section 2 we first present results of [KKK97] where bounds on G-variation are obtained for
functions in the form of integral representation using continuous or Heaviside functions. We then
extend their results to more general function spaces. We do not require continuity of the functions
involved in the integral representation; we also present simpler proof of the estimate from [KKK97].
The obtained improvements enable more direct and more general application of results of Maurey,
Jones, Barron and Darken et al. giving approximation error rate of order O(n1/q) for one-hidden-layer
networks with n hidden units. Here q is a constant depending on the “type” of the involved function
space, but not on the “dimension”. E.g., if we are dealing with functions in Lp(Rd) (1 < p < 2) then
q = p/(p − 1) is the conjugate exponent; in particular, q does not depend on d (note that for high d
we may obtain large constant in the O(·), though, [KHS98]). Using Lp spaces for p 6= 2 is of practical
interest, as by using Lp-norm for 1 < p < 2 one can cope better with functions with peaks, which are
probably errors in measurement, so-called outliers [Re83, HaBu88]. We also present an interesting
property of G-variation for neural network approximation schema with sigmoidal activation functions
– we show that the presented estimates on approximation rates cannot distinguish between sigmoidal
activation functions (Theorem 2.9).

For our estimates on G-variation we need to have function f represented in form of an integral
representation. In Section 3 we listed examples of functions where such integral representation exists.
We generalise integral representation of function by using measure instead of weights. This enables
us to provide in Section 3.2 explanation and justification of the metaphor “neural network with
continuum many neurons”, which is used in [KKK97] to motivate special type of integral representation
of functions. By an application of Helly’s theorem on w∗ sequential compactness we get that, in a
proper setting, such representation is equivalent to a limit of “classical” finite neural networks.

In Section 4 we combine the three previous sections and thus provide a few concrete estimates on
rates of approximation of the type: If a function is “smooth enough” then it can be approximated by
one-hidden-layer neural network with n units with rate of approximation of O(n1/q). We also discuss
possibilities to weaken the smoothness assumptions.

Some of the results presented in this paper have been published in [S03a, S03b].

1 Rates of Approximation in Banach Spaces

A general topic (not only) in mathematics is, how to approximate some complicated object using
limited resources. To be more specific, we have a Banach space X of functions, and a set G ⊆ X of
functions we are allowed to use for approximation of a given function f ∈ X, while we want to use as
few functions from G as possible.

In Section 1.1 we show results from approximation theory that provide good rates of approximation
for function f in the closure of convex hull of the set of approximating functions. In Section 1.2
we show how the above results have been reformulated in a more explicit form taking into account
relationship between the set of approximating functions and the function to be approximated. We will
see that the condition of f being in convex hull is sufficient (though not necessary) for the existence
of efficient approximations of f . On the other hand, if f is merely in the closed linear span, the rates
of approximation of f may be arbitrary bad (Corollary 1.8).
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1.1 Approximations in the Closed Convex Hull

A frequent approach in approximation theory is to iteratively construct a sequence of approximants fn

to a function f , where at each step we add an appropriate element of G:

fn+1 = fn + g, g ∈ G . (1.1)

Here, g is chosen to minimize the norm ‖fn+1 − f‖ (or to make it close to inf{‖(fn + g) − f‖ : g ∈
G}). A natural setting for this is when X is a Hilbert space. Huber [Hu85] conjectured that for
projection pursuit regression (which corresponds to G consisting of all ridge functions) this method
always produces a sequence fn converging to f . This was affirmatively resolved by Jones [Jo87].
However, the convergence can in general be very slow.

In a subsequent work [Jo92] Jones studies approximations when slightly more general iterative step
is allowed – instead of adding some g ∈ G to the previous function, we take a convex combination:

fn+1 = αfn + (1− α)g, g ∈ G, α ∈ [0, 1] (1.2)

where g and α are chosen (approximately) optimal. Somewhat surprisingly, this modification signifi-
cantly increases the speed of convergence:

Theorem 1.1 (Maurey-Jones-Baron – Iterative rates in Hilbert sp. [Ba93, Jo92, Ps81])
Let G be a set of functions, subset of a Hilbert space H of functions on Rd. Suppose f is in cl conv G,
and that for every g ∈ G we have

√
‖g‖2H − ‖f‖2H ≤ ρ for some constant ρ ∈ R. Then it is possible to

find a sequence {fn} satisfying
‖f − fn‖H ≤ ρ√

n
,

by using the recurrence (1.2), when the functions g and numbers α are chosen sufficiently close to the
optimum. Observe that we have fn ∈ convn G.

Note that ρ does not depend on n, however it depends on H, G, and, in particular, on f . We
will present estimates of this constant later (Theorem 1.5 and 1.6), the dependence on f is actu-
ally the topic of the rest of the paper. The above result in slightly weaker version is attributed to
Maurey by Pisier [Ps81]. Barron [Ba93] was the first who noticed that it is applicable to neural
networks. He also provides the improved bound: instead of 1√

n
supg∈G ‖f − g‖H (Maurey) he obtains

1√
n

supg∈G
√
‖g‖2H − ‖f‖2H, which in the natural applications is lower.

We feel obliged to comment here that the title of the theorem (Iterative rates) is slightly misleading
but for a good reason. Maurey’s proof of the theorem is in fact probabilistic but we retain the title
iterative to stress that an iterative proof is possible as this is interesting from algorithmic point of
view. We follow this approach also in titles of further theorems.

The above result was extended in various ways. The strongest result obtained in this direction is
due to Makovoz [Mk96]. He replaces the bound ρ/

√
n by εn(G)/

√
n, where εn(G) ∈ (0, ρ] depends

on G and on n:

εn(G) = inf{ε > 0 : G can be covered by at most n sets of diameter ≤ ε} .

When G is finite-dimensional, εn(G) = o(1) (as n → ∞), so this is a stronger result. Consider
the particular case where G corresponds to neural networks with Heaviside activation functions, with
inputs in Rd. In this case G = Gϑ = {ϑ(a·x+b), a ∈ Rd, b ∈ R}. This yields [Mk96] an improved bound

on the error of the n-term approximation, namely O(1/n
1
2+

1
2d ). We will not pursue this direction, as

our particular interest is on the case of large d, where the improvement is only slight. The drawback
of Makovoz’ approach is that it does not yield existence of approximants that can be computed in an
iterative manner, as in (1.2).

Let us pause here to explain the dependence on the “dimension of the data”. In early proofs
of universal approximation property of neural networks, the “amount of work” needed for efficient
approximation of a function on Rd seemed to depend exponentially on the dimension d. This so-called
“curse of dimensionality” is obviously a major obstacle in applications of neural networks, as many
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interesting applications are intrinsically multi-dimensional. Theorem 1.1 tells us, that for a fixed
function f , space H and approximating functions G, the error of approximation decreases fast with n,
the number of approximants. This is certainly useful (and in particular proves superiority of the
approximation schema (1.2) over (1.1)), the dimension, however, is “cursed” in more ways than this.
One other problem is, that with increasing dimension of inputs, we are likely to see larger constants ρ
in Theorem 1.1. In [KHS98] a sequence of functions is presented, where ρ grows exponentially with the
dimension. Yet another problem is met when we consider the algorithmic point of view. The amount of
work to do “elementary operations” (estimating the norm, scalar product, etc.) with functions on Rd

grows exponentially with d. This can be remedied by using more sophisticated numerical methods (as
Monte Carlo), however. We address some of these issues in [SS08].

It is natural to ask, whether the above-mentioned result can be generalized to arbitrary Banach
spaces. Not only this is an interesting question in itself, it was motivated by the fact, that spaces Lp

(for p < 2) possess better approximation properties than L2: namely, they can cope better with an
“error in measurement” of the function to be approximated [Re83, HaBu88].

In Darken et al. [DDGS93] this question was addressed in a great detail. It is shown, that The-
orem 1.1 can be extended to any Banach space with unit ball that is not too “pointed” – namely
to any uniformly smooth space. We say that a Banach space X has modulus of smoothness % if
% : [0,∞) → [0,∞) is a function given by

%(r) := sup
‖f‖X=‖g‖X=1

(‖f + rg‖X + ‖f − rg‖X

2
− 1

)

(the supremum is taken over all f, g ∈ X of unit norm). It is easy to observe that %(r) ≤ r for any
Banach space, and that in a Hilbert space %(r) =

√
1 + r2− 1 = O(r2) (as r → 0). A Banach space is

termed uniformly smooth if %(r) = o(r) (as r → 0). This is in particular satisfied for Lp spaces with
1 < p < ∞, the modulus of smoothness is (see [DDGS93])

%(r) ≤
{

rp/p if 1 < p ≤ 2
p−1
2 r2 if 2 ≤ p < ∞.

Darken et al. [DDGS93] prove a result about approximating functions in Banach spaces based on
modulus of smoothness of these spaces. This theorem applied to Lp spaces yields Theorem 1.2. It
also turns out, that the convex combination in (1.2) can be chosen so that α = n/(n + 1).

Theorem 1.2 (Rates in Lp spaces – iterative [DDGS93]) Let G be a bounded subset of an Lp-
space X (1 < p < ∞), with f ∈ cl conv G given. Put q = p/(p − 1) and let ρ > 0 be such, that
‖f − g‖ ≤ ρ for all g ∈ G. Then for every ε > 0 there is a sequence {gn} ⊂ G such that the sequence
{fn} ⊂ conv G defined by

f1 = g1, fn+1 =
n

n + 1
fn +

1
n + 1

gn

satisfies

‖f − convn G‖ ≤ ‖f − fn‖ ≤ 21/p(ρ + ε)
n1−1/p

(
1 +

(p− 1) log2 n

n

)1/p if 1 < p ≤ 2

and

‖f − convn G‖ ≤ ‖f − fn‖ ≤ (2p− 2)1/2(ρ + ε)
n1/2

(
1 +

log2 n

n

)1/2 if 2 ≤ p < ∞.

When we lift the condition to construct the approximants iteratively, it is possible to get somewhat
better bounds. The improvement is only in the constant factor – in this case, however, the result is
tight for p ∈ (1, 2]; for p > 2 it is still “only” asymptotically tight. Theorem 1.3 is obtained by
a different approach than Theorem 1.2 – by using the probabilistic method in Banach spaces. We
discuss algorithmic consequences of this approach in [SS08].
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Theorem 1.3 (Rates in Lp spaces – probabilistic [DDGS93]) Let G be a bounded subset of an
Lp-space X (1 < p < ∞), with f ∈ cl conv G given. Put q = max{p/(p− 1), 2} and let ρ > 0 be such,
that ‖f − g‖ ≤ ρ for all g ∈ G. Then for all n

‖f − convn G‖ ≤ ρCp

n1/q
.

Here Cp = 1 if p ≤ 2 and Cp =
√

2
(
Γ(p+1

2 )/
√

π
)1/p for p > 2. For large p, Cp ∼

√
p/e.

Further we go into more detail regarding the constants that appear in the presented estimates.

1.2 Approximation Rates using G-variation

The results of Jones and of Darken et al. were used by Krkov [Ku97, Ku03], Krkov, Kainen, and
Kreinovich [KKK97] and Krkov, Kainen and Vogt [KKV07]. Krkov [Ku97] exhibited a natural way
to obtain functions f and system of functions G, such that f ∈ cl conv G and the constant ρ from the
previous section can be estimated. As we will build on and extend their results, we explain them now
in some detail.

Consider a set G of functions, a bounded subset of a Banach space X. For convenience, we will
assume that g ∈ G implies −g ∈ G.1 A function f ∈ X can be approximated arbitrarily well by a linear
combination of elements of G if and only if f ∈ cl spanG. To apply the results of [Jo92, DDGS93] we
need a set G′ such that f ∈ cl conv G′. As

cl spanG = cl
⋃
c>0

conv cG

we may try to put G′ = cG for some c. To this end, we follow Krkov [Ku97]2 and define G-variation
as the Minkowski functional of the set cl conv G. Note that G = −G implies conv G = {∑i cigi : gi ∈
G, ci ≥ 0,

∑
i ci ≤ 1}. Consequently, the set cl conv G is convex, bounded, balanced (that is, h ∈ conv G

and |a| ≤ 1 implies ah ∈ conv G) and closed. Thus, we may put

‖f‖G = inf{c > 0 | f ∈ cl conv cG} (1.3)

and we get a norm on the subspace {f : ‖f‖G < ∞}. Note that (1.3) defines ‖f‖G = ∞ if we do not
have f ∈ cl conv cG for any c. This will certainly happen if f /∈ cl spanG, in which case we can not get
arbitrary close approximations. It will also happen when f ∈ cl spanG \ spanG. As the next example
shows, this may occur even for “reasonable” f and G.

Example 1.4 (Infinite G-variation) Consider X = `2 and let {ek}∞k=1 be the orthonormal basis
(ek = (0, . . . , 0, 1, 0, . . . ) is the sequence with 1 exactly at the k-th place). Then we put f = (1/k)k≥1,
fn = (1, 1/2, . . . , 1/n, 0, . . . ), and G = {±ek | k ≥ 1}. It is easy to see that fn is the best approximant
to f in spann G and that ‖f − fn‖2 → 0. However, ‖fn‖G =

∑n
i=1

1
i ∼ log n, and so ‖f‖G = ∞.

In the example above, the error of approximation of f by combination of n terms is√∑
k>n

1
k2 = O(1/

√
n), so one may think, that the assumption on finite G-variation is not that

crucial. However, this is not the case, as we will show later, in Theorem 1.7.
We need one more definition to describe the approach of [Ku97, Ku03]. Let sG = sup{|g| : g ∈ G}.

Recall that we are assuming G to be bounded, so sG < ∞. A consequence of the definition of ‖f‖G is
that f ∈ cl conv cG for c ≥ ‖f‖G . If c = ‖f‖G , and g ∈ cG, then the following bound holds:

‖f − g‖ ≤ ‖f‖+ ‖g‖ ≤ 2 sup{‖h‖ : h ∈ cG} = 2sG‖f‖G .

Consequently, one gets the following corollaries of results of Jones/Barron and of Darken et al., as
stated by Krkov [Ku97, Ku03], see also [KKK97, KKV07].

1This will simplify some of the expressions and is satisfied for the practically interesting applications.
2who did extend the concept of variation with respect to half-spaces introduced in [Ba92].
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Theorem 1.5 (Rates with G-variation – iterative [Ku97]) Let H be a Hilbert space with norm
‖ · ‖H and let G be a bounded subset of H. Let us denote sG = supg∈G ‖g‖H. Then, for every
f ∈ cl spanG with finite ‖f‖G and for every natural number n the following holds:

‖f − spann G‖H ≤
√

(sG‖f‖G)2 − ‖f‖2H√
n

.

Theorem 1.6 (Rates with G-variation – probabilistic [DDGS93, Ku03]) Let G be a bounded
subset of an Lp-space X (1 < p < ∞) and sG = supg∈G ‖g‖p. Let f ∈ cl spanG have finite ‖f‖G.
Then for every n

‖f − spann G‖p ≤ 2CpsG‖f‖G
n1−1/t

,

where t = min{p, 2}, Cp = 1 if p ≤ 2 and Cp =
√

2
(
Γ(p+1

2 )/
√

π
)1/p for p > 2. For large p, Cp ∼

√
p/e.

Note that in both the theorems above one could instead of ‖f − spann G‖ write the more accurate
expression ‖f − convn cG‖, where c = ‖f‖G . This actually gives a stronger result: we do not need to
use the entire span of G to attain good approximation. This is interesting also from the numerical
point of view: it will not happen that we need to work with big numbers to approximate small ones
as convex combinations work with ci ∈ (0, 1),

∑
ci = 1.

Further one would like to estimate ‖f‖G in concrete instances of approximation schemas; we do this
for neural networks in the next section. Before that, we discuss assumptions in the above estimates
on rate of convergence.

Analogues of Theorem 1.6 are false in many spaces of interest, including C[0, 1] and L1[0, 1]. By
Theorem 2.3 and 2.4 in [DDGS93], in such spaces we may see arbitrary slow convergence even for
elements of G-variation equal to 1. We complement this by showing that the same happens in `p

spaces for elements of infinite G-variation. (Note that by the obvious embedding this yields the same
result for Lp spaces as well.)

Theorem 1.7 (Slow rate of approximation) Suppose 1 < p < ∞ and let (an)∞n=0 be a sequence
of real numbers decreasing to 0 so that the sequence (ap

n) is convex (that is, ap
n−1 +ap

n+1 ≥ 2ap
n). Then

there is a set G ⊆ `p and an element f ∈ cl spanG so that

‖f − spann G‖p = an.

So we have f ∈ cl spanG and the rate of convergence is an.
This is in particular possible for an = 1/nα (for any α > 0), and an = 1/ logk n (where logk

denotes k-times iterated logarithm). More generally, we may have an = 1/g(n) whenever g is a
concave increasing function with limit ∞.

Proof: We let G = {±ei : i ≥ 0}. Put bn = (ap
n − ap

n+1)
1/p for n ≥ 0 and f = (b0, b1, b2, . . . ). As

an ≥ an+1, the numbers bn are well-defined and an easy computation shows ‖f‖p = a0, in particular
f is in `p. Convexity of the sequence (ap

n) implies that bp
n = ap

n − ap
n+1 is decreasing, so the element

of spann G closest to f is fn = (b0, . . . , bn−1, 0, 0, . . . ). Now

‖f − fn‖p =
∑

i≥n

(ap
n − ap

n+1) = an ,

as claimed.
For the specific examples of sequences (an): (x−pα)′′ = pα(pα+1)x−pα−2 is positive for x > 0, α >

0, so x−pα is a convex function, thus n−pα is a convex sequence. If an = 1/g(n) then ap
n = 1/g(n)p.

The first derivative (replacing again n by a continuous variable) is

( 1
g(x)p

)′
=
−pg′(x)
g(x)p+1

,
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which is an increasing function (as g′ is decreasing and g increasing), thus ap
n is convex as required.

Computing the first derivative of the iterated logarithm reveals that it is a concave function, which
finishes the proof. 2

The convexity assumption in the above theorem may be a bit misleading. It is in fact possible to
do away with this assumption, if we only want a lower bound on the error of approximation.

Corollary 1.8 (Slow rate of approximation – lower bound) Suppose 1 < p < ∞ and let (an)∞n=0

be a strictly decreasing sequence of real numbers converging to 0. Then there is a set G ⊆ `p and an
element f ∈ cl spanG so that

‖f − spann G‖p ≥ an.

Proof: We find a sequence a′n ≥ an so that a′n decreases to 0 and (a′n)p is convex. This is a standard
exercise in analysis, we may for example take a′n = max{an, (2(a′n−1)

p−(a′n−2)
p)1/p]}. Then we apply

Theorem 1.7 for (a′n). 2

2 Properties of G-variation

So far we showed several results describing how efficiently can we approximate a function f using
functions in some set G, provided f ∈ cl conv cG holds for some constant c. (Recall that cl and
“approximation” are to be understood with respect to some Banach space that contains f and G.)
Several questions come up. Given G, for which functions f such finite constant c exists? How can we
estimate it?

In Theorem 1.7 we have shown that for elements of cl spanG, the rate of approximation can be
arbitrarily bad; this happens if the G-variation is infinite. Perhaps surprisingly, the situation turns
out to be different for systems G corresponding to neural networks – such systems G are sufficiently
rich, so that ‖f‖G is finite for large class of functions f .

In Section 2.1 we start with the general set-up and with bounds for the G-variation due to Krkov
et al. [KKK97]. In Sections 2.2 and 2.3 we follow up with developing bounds for G-variation that are
applicable in a more general setting of Banach spaces. Finally, in Section 2.4 we clarify the dependence
on the activation function.

2.1 G-variation: Continuous / Heaviside Activation Functions

To answer the questions regarding existence and finiteness of c in the expression cG we have to be
more specific as to the task investigated: We consider one-hidden-layer neural networks, which consist
of interconnected computational units with activation functions depending on parameters and input
variables: Consider a function ϕ(x, a) : H × A → R, where x ∈ H are inputs and a ∈ A parameters,
H ⊆ Rd, A ⊆ Rk. For a ∈ A we let ϕa = ϕ(·, a) be the function parametrized by a. One-hidden-layer
network with n units of type ϕ computes a function of d variables of the form:

f(x) =
n∑

i=1

wiϕai(x) ,

where wi ∈ R, ai ∈ A, and x ∈ H. More specifically, in the case of neural networks we would typically
let

ϕ(x, a) = σ(w · x + θ), where a = (w, θ) ∈ Rd+1 . (2.1)

for perceptron–type networks or

ϕ(x, a) = σ
(x− w

θ

)
, where a = (w, θ) ∈ Rd+1 (2.2)

6



for RBF networks.
Following Krková [Ku03] and Krková et al. [KKK97], we extend this notion to a “continuum of

hidden units”. That is, we consider functions with integral representation

f(x) =
∫

A

w(a)ϕ(x, a) da , (2.3)

with a weight function w : A → R. (We will discuss the relation between such generalized neural
networks and ordinary neural networks later, in Section 3.2.)

We wish to apply the results of the previous section to a more specific case of the set G, namely
we put

G = {±ϕa : a ∈ A} .

In the case that ϕ is given by (2.1), we use Gσ to denote this particular set G. We will consider the
set G as a subset of various spaces of functions from H to R. The results to follow show in various
circumstances how function f can be approximated by convex combinations of elements of G. In view
of Theorem 1.5 and 1.6, this amounts to estimating G-variation of f , that is ‖f‖G . (A surprising
phenomenon is that ‖f‖Gσ

does in fact not depend on σ, for a large class of functions σ. This first
appeared implicitly in [KKK97], we will prove this more generally as Theorem 2.9.) The following
result appears as Corollary 2.3 in [KKK97] (without explicitly using the term G-variation).

Theorem 2.1 (G-variation for continuous activation functions [KKK97]) Let d, k be posi-
tive integers, H ⊆ Rd and A ⊆ Rk compact sets. Finally, let w ∈ C(A), ϕ ∈ C(H × A) and
G = {±ϕa}.

Let f ∈ C(H) be represented as

f(x) =
∫

A

w(a)ϕ(x, a) da . (2.4)

Then f ∈ clC conv cG, where c =
∫

A
|w(a)| da. Using our previous terminology, ‖f‖G ≤ ‖w‖1.

We have to give some remarks here: The theorem speaks about supremum norm. Careful reader
might have noticed, that theorems on rates of approximation (Section 1.1) do not hold for this norm.
However, when the measure of H is finite (as it is when H is compact), then closure in C(H) is
contained in the closure in Lp(H). Consequently, the above theorem can be combined with the results
in Section 1.1.

Note that in [KKK97] a slightly sharper version is presented, with c =
∫

Aϕ
|w(a)| da, where Aϕ

is the set of a ∈ A, such that ϕ(x, a) 6= 0 for some x ∈ H. We present here the shorter statement,
because for natural choices of activation function ϕ we have Aϕ = A.

Without going into details, the main idea of the proof of Theorem 2.1 in [KKK97] is using the
definition of Riemann integral to approximate an integral by a sum. In Section 2.2 we generalize
this result to bounded functions in Lp. To prove that, we will use Luzin’s theorem to approximate
a measurable function by a continuous function (and Fubini’s theorem to deal with the error of the
approximation). In Section 2.3 we will use more abstract functional-analytic approach to generalize
this result even further, with easier (though non-constructive) proofs.

Theorem 2.1 was further extended in [KKK97] to ϕ(x, a) given by the Heaviside function (ϑ(x) = 1
for x ≥ 0, and ϑ(x) = 0 otherwise):

Theorem 2.2 (G-variation for Heaviside activation functions [KKK97]) Let d be a positive
integer, A ⊆ Sd−1 × R, where Sd−1 denotes the unit sphere in Rd. Let H be a compact subset of Rd

and let f ∈ C(H) be any function that can be represented as

f(x) =
∫

A

w(e, b)ϑ(e · x + b) d(e, b)

where w ∈ C(Sd−1 × R) is compactly supported and supp(w) ⊆ A. Then f ∈ clC conv cGϑ, where
c =

∫
A
|w(e, b)| d(e, b). Using our previous notation, ‖f‖Gϑ

≤ ‖w‖1.
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2.2 G-variation in Lp Spaces

In this section we shall use the Luzin’s theorem to extend Theorem 2.1 of Kůrková, Kainen and
Kreinovich [KKK97] to a more general setting, where the activation functions need no longer be
continuous. This also in a sense generalizes Theorem 2.2: we do not prove that some function is in
clC (closure in the supremum norm), but only that it is in clLp (closure in the Lp-norm), which is,
however, what we will use later to obtain rates of approximation using results in Section 4.

Theorem 2.3 (G-variation in Lp spaces) Let k, d be positive integers, let p ∈ [1,∞). Consider
sets A ⊆ Rk and H ⊆ Rd of finite measure, that is λk(A) < ∞ and λd(H) < ∞.

Consider functions w ∈ L1(A, λk) and ϕ ∈ Lp(H ×A, λd+k) such that there exists b ∈ R so that

• |w| ≤ b holds λk-almost everywhere on A and

• |ϕ| ≤ b holds λd+k-almost everywhere on H ×A.

Put f(x) =
∫

A
w(a)ϕ(x, a) da and G = {±ϕ(·, a) | a ∈ A} ⊆ Lp(H). Then

‖f‖G ≤ ‖w‖1.
Note: an almost everywhere bounded function on a set of finite measure is clearly in Lp for any p.

We still included the condition ϕ ∈ Lp and w ∈ L1 to indicate the “right” spaces to consider these
functions in. In particular, let us emphasize that in the definition of ‖f‖G the Lp norm is used.
See also the end of Section 2.3, where the achieved results are stated in terms of bounds on certain
operators.

x01 x02
x0d

x11
x1lx12

xi1 xim

xij = σ(
∑

k wijkxi−1,k − θij)

x

y

xi−1,1xi−1,2

Figure 2.1: Illustration of proof of Theorem 2.3.

Proof: In the definition of ‖f‖G , the underlying space (in our case Lp) is used. Thus, the statement
we are proving can be equivalently rewritten as follows

f(x) ∈ clp conv{cϕ(x, a) : a ∈ A, |c| ≤ ‖w‖1}.
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A ⊆ R
k

H ⊆ R
d

R

R

R

ϕ(x, a)=̇ϕ̃(x, a)

w(a)=̇w̃(a)

f(x) =
∫

A
w(a)ϕ(x, a)da

H × A

>
√

ε

=̇f̃(x)

F

U ′ ⊆ U

Figure 2.2: ?

We will prove that f can be approximated arbitrarily well (in Lp-norm) by functions of the type
∑

i

ciϕ(x, ai) with ai ∈ A, ci ≥ 0, and
∑

i ci ≤ ‖w‖1.

To achieve this we first approximate functions w and ϕ by continuous functions (using a version of
Luzin’s theorem) and then apply Theorem 2.1.

We start, however, by showing that we can restrict to the case when A and H are compact. A finite
measure subset of Rn can be approximated arbitrarily closely by its compact subsets (Lemma 15.3
and Theorem 26.1 of [LuMa95]). So let us choose ε > 0 and find compact sets Acp, Hcp, so that
Acp ⊆ A, Hcp ⊆ H, λk(A \ Acp) < ε, and λd(H \Hcp) < ε. We apply the theorem for sets Acp, Hcp

instead of A, H. That is, we put

f cp(x) =
∫

Acp

w(a)ϕ(x, a) da

for x ∈ Hcp and find an approximation of f cp in Lp(Hcp) by a function f̃ =
∑

i ciϕ(x, ai), where
ai ∈ Acp, ci ≥ 0, and

∑
i ci ≤ ‖w‖L1(Acp) ≤ ‖w‖L1(A)(= ‖w‖1). We can demand

‖f cp − f̃‖Lp(Hcp) < ε

9



and we only need to observe, that f̃ (extended to H) is close to f . Clearly, |f(x) − fcp(x)| < ε · b2

whenever x ∈ Hcp. For any x ∈ H, we have max{|f(x)|, |f̃(x)|} < b‖w‖1. Together we have

‖f − f̃‖p
Lp(H) =

∫

H

|f(x)− f̃(x)|p dx

=
∫

Hcp

|f(x)− f̃(x)|p +
∫

H\Hcp

|f(x)− f̃(x)|p

≤ ‖(f − f cp) + (f cp − f̃)‖p
Lp(Hcp) +

∫

H\Hcp

(|f(x)|+ |f̃(x)|)p

≤ (‖f − f cp‖Lp(Hcp) + ‖(f cp − f̃)‖Lp(Hcp)

)p +
∫

H\Hcp

(|f(x)|+ |f̃(x)|)p

≤ (ε · b2 · λd(Hcp) + ε
)p + (2b · ‖w‖1)p · ε

= O(ε), as ε tends to 0.

Thus we will assume further on, that A, H are compact sets.
Let us fix an ε > 0, we may assume that ε < 1. Using Luzin’s Theorem we find a continuous

function w̃ on A and a set E ⊆ A such that

w̃ = w on A \ E, |w̃| ≤ b on A, and λk(E) < ε .

Similarly, we find function ϕ̃ on H ×A and a set F ⊆ H ×A such that

ϕ̃ = ϕ on (H ×A) \ F , |ϕ̃| ≤ b on H ×A, and λd+k(F ) < ε .

In order to apply Theorem 2.1 we need to define another small “exceptional set” to describe where
our approximation fails, namely the set of such a’s that for many x’s the functions ϕ and ϕ̃ differ
on (a, x). To be precise, put

U ′ =
{
a ∈ A | λd{x; (a, x) ∈ F} >

√
ε
} ∪ E .

By an application of Fubini’s theorem we get that λk(U ′) <
√

ε + ε. Continuity of measure implies
that we can choose an open set U ⊇ U ′ such that λk(U) < 2

√
ε (recall that ε < 1). Finally we define

f̃(x) =
∫

A\U
ϕ̃(x, a)w̃(a) da

G̃ = {±ϕ̃(·, a) | a ∈ A \ U} .

Next we use Theorem 2.1 for the functions w̃, ϕ̃, and f̃ , set G̃ and with the set A\U in place of A.
We conclude that

‖f̃‖G̃ ≤ ‖w̃‖1 .

This means that there is n ∈ N, and ci ∈ R, ai ∈ A \U (i = 1, . . . , n) such that
∑n

i=1 |ci| ≤ ‖w̃‖1, and
for the function f̃1 defined by

f̃1(x) =
n∑

i=1

ciϕ̃(x, ai)

we have |f̃(x)− f̃1(x)| < ε for all x ∈ H. We use these parameters to define our desired approximant,
f1:

f1(x) =
∑

i

ciϕ(x, ai) .

We have ‖w̃‖1 =
∫

A\U |w̃| =
∫

A\U |w| ≤
∫

A
|w| = ‖w‖1. To finish the proof, we need to establish an

upper bound on ‖f − f1‖p. To this end, we first use the triangle inequality

‖f − f1‖p ≤ ‖f − f̃‖p + ‖f̃ − f̃1‖p + ‖f̃1 − f1‖p .

Now we deal with these three terms one by one.

10



(A) ‖f̃ − f̃1‖p

We know that |f̃(x)− f̃1(x)| < ε on H, thus ‖f̃ − f̃1‖p < ελd(H).

(B) ‖f̃1 − f1‖p

Observe first, that

|f̃1(x)− f1(x)| =
∣∣∣
∑

i

ci

(
ϕ̃(x, ai)− ϕ(x, ai)

)∣∣∣

≤
∑

i

|ci|
∣∣ϕ̃(x, ai)− ϕ(x, ai)

∣∣ .

Due to the bounds on ϕ and ϕ̃, each of the absolute values in the last sum is at most 2b for every
x ∈ H. Moreover, each of these absolute values is equal to 0 for most of x ∈ H, namely up to a set of
measure

√
ε (recall that ai /∈ U). Now, we have

‖f̃1 − f1‖p
p =

∫

H

|f̃1 − f1|p

=
∫

H

|f̃1 − f1|p−1|f̃1 − f1|

≤
∫

H

(2b‖w‖1)p−1|f̃1 − f1|

≤ (2b‖w‖1)p−1

∫

H

n∑

i=1

|ci|
∣∣ϕ̃(x, ai)− ϕ(x, ai)

∣∣ dx

= (2b‖w‖1)p−1
n∑

i=1

|ci|
∫

H

∣∣ϕ̃(x, ai)− ϕ(x, ai)
∣∣ dx

According to the previous paragraph, we can bound each of the integrals in the last sum by 2b
√

ε,
yielding

‖f̃1 − f1‖p
p ≤ (2b‖w‖1)p−1

∑

i

|ci| · 2b
√

ε

≤ (2b‖w‖1)p−1‖w̃‖1 · 2b
√

ε

≤ (2b‖w‖1)p−1‖w‖1 · 2b
√

ε

= (2b‖w‖1)p
√

ε .

(C) ‖f − f̃‖p

Here we proceed similarly as in part (B):

|f(x)− f̃(x)| =
∣∣∣∣∣
∫

A\U
(w(a)ϕ(x, a)− w̃(a)ϕ̃(x, a)) da +

∫

U

w(a)ϕ(x, a) da

∣∣∣∣∣

≤
∫

A\U

∣∣w(a)ϕ(x, a)− w̃(a)ϕ̃(x, a)
∣∣ da +

∫

U

∣∣w(a)ϕ(x, a)
∣∣ da

We will use that both |w(a)ϕ(x, a)| and |w̃(a)ϕ̃(x, a)| are at most b2, the set U is small, and |w(a)ϕ(x, a)−
w̃(a)ϕ̃(x, a)| is “usually” zero. In particular, |f(x)− f̃(x)| ≤ 2b2λk(A).
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‖f − f̃‖p
p =

∫

H

|f − f̃ |p

=
∫

H

|f − f̃ |p−1|f − f̃ |

≤
∫

H

(2b2λk(A))p−1|f − f̃ |

≤ (2b2λk(A))p−1

∫

H

(∫

A\U
|w(a)ϕ(x, a)− w̃(a)ϕ̃(x, a)| da

+
∫

U

|w(a)ϕ(x, a)|da

)

Next we use Fubini’s theorem – note that we integrate a nonnegative measurable function:

≤ (2b2λk(A))p−1

(∫

H×(A\U)

|w(a)ϕ(x, a)− w̃(a)ϕ̃(x, a)| d(x, a)

+
∫

H×U

|w(a)ϕ(x, a)| d(x, a)

)

≤ (2b2λk(A))p−1

(∫

F

|w(a)ϕ(x, a)− w̃(a)ϕ̃(x, a)| d(x, a) +
∫

H×U

b2 d(x, a)

)

≤ (2b2λk(A))p−1

(
ε2b2 + λd(H)2

√
ε b2

)

By combining (A), (B), and (C) we see that we can choose ε small enough to get as good approx-
imation as desired. 2

We have proven ‖f‖G ≤ ‖w‖1 for f computed by one-hidden-layer neural network with L∞ (almost
everywhere bounded) activation function. Together with Theorem 1.6 we derive rates of approximation
for this approximation schema:

Corollary 2.4 (Rates in Lp) Let k, d be positive integers, A a compact subset of Rk and H a com-
pact subset of Rd. Let w ∈ L1(A, λk) and ϕ ∈ Lp(H ×A, λd+k) for some 1 < p < ∞. Additionally let
w and ϕ be bounded almost everywhere on A and H×A respectively. Let G={ϕ(·, a) : a ∈ A} be bounded
and sG= supϕ∈G ‖ϕ‖p. Let f be any function that can be represented as f(x) =

∫
A

w(a)ϕ(x, a) da.
Then

‖f − spann G‖p ≤ 2CpsG‖w‖1
n1−1/t

,

where t = min{p, 2} and Cp = 1 if p ≤ 2 and Cp =
√

2
(
Γ(p+1

2 )/
√

π
)1/p for p > 2.

As in Theorems 1.5 and 1.6 one could write instead of ‖f−spann G‖p the more accurate expression
‖f − convn cG‖p, with c = ‖w‖1.

2.3 Estimates of G-variation via Hahn-Banach Theorem

In this section we provide a generalization (and also an alternative proof) of the result of the previous
section. We extend Theorems 2.1 and 2.3 (the estimate of G-variation) to more general Banach spaces
in place of C(K), resp. Lp ∩ L∞. We also generalize the integral formula to employment of signed
measures.
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The proof of the main result in this section is in fact shorter than previously presented proofs of
weaker results. This is achieved by using more advanced tools from functional analysis. A slight draw-
back is that this approach (relying on Hahn-Banach theorem) is no longer constructive: given formula
f(x) =

∫
A

w(a)ϕ(x, a) da, the previous proofs suggested a technique to really obtain a sequence of
convex combinations that converge to f . The functional-analytic approach, on the other hand, only
proves that such a sequence exists. This, however, has no implications for our present considerations;
we revisit this issue in [SS08].

The main tool we will use in this section is the following version of geometric Hahn-Banach
theorem [Lax02, LuMa95].

Theorem 2.5 (Geometric Hahn-Banach [Lax02]) Let X be a Banach space, consider x ∈ X
and T ⊆ X. Then x ∈ cl conv T , unless there is a functional ` ∈ X∗ and z ∈ R such that

`(x) > z and `(t) < z for every t ∈ T . (2.5)

First we present an alternative proof (a generalization) of Theorem 2.1.

Theorem 2.6 (G-variation for continuous activation functions using measure) Let d, k be
positive integers, H ⊆ Rd and A ⊆ Rk compact sets. Suppose ν is a signed Radon measure on A.
Finally, let ϕ ∈ C(H ×A) and G = {±ϕa}.

Let the function f ∈ C(H) be represented as f(x) =
∫

A
ϕ(x, a) dν(a).

Then f ∈ clC conv cG, where c = ‖ν‖ is the norm of ν. Using our previous terminology, ‖f‖G ≤
‖ν‖.

Proof: Let (P, N) be a Hahn decomposition for the measure ν. That is, A is the disjoint union of P
and N , and ν(E) ≥ 0 (resp. ≤ 0) whenever E ⊆ P (resp. E ⊆ N). Define the function s by

s(a) =

{
+1 for a ∈ P

−1 for a ∈ N

that is, s(a) is the “sign of ν at a”. In particular, we have c = ‖ν‖ =
∫

A
s(a) dν(a).

If c = 0 then ν(E) = 0 for any set E, thus f(x) ≡ 0 and the assertion is true. So we may assume
c > 0; note that c = ‖ν‖ < ∞, as ν is a signed measure.

We need to prove that f ∈ cl conv cG. Suppose the contrary; according to the geometric Hahn-
Banach theorem (Theorem 2.5), there is a constant z, and a functional ` ∈ C(H)∗ such that (2.5) is
true with x = f and T = cG. Let µ be the signed measure defining `.

We have `(f) > z and for every a

`(±cϕa) = ±c

∫

H

ϕa dµ < z . (2.6)

By definition,

`(f) =
∫

H

f dµ

=
∫

H

∫

A

ϕ(x, a) dν(a) dµ(x) .

Note, that ϕ(x, a) is a continuous function and it is only integrated over a compact set. So, the
integral of the absolute value is finite and, obviously, both ν and µ are σ-finite (they are even finite).
Thus we can use Fubini’s theorem to get

`(f) =
∫

A

∫

H

ϕ(x, a) dµ(x) dν(a)

=
1
c

∫

A

s(a)
∫

H

s(a)cϕ(x, a) dµ(x) dν(a) .
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Next, we use (2.6) and the definition of s

≤ 1
c

∫

A

s(a)z dν(a)

=
z

c
‖ν‖

= z .

This contradiction finishes the proof. 2

As a corollary, we obtain an alternative proof for Theorem 2.1 (that appears as Corollary 2.3
in [KKK97]). Actually, we obtain a stronger version, as we do not require w to be continuous.

Corollary 2.7 (G-variation for continuous activation functions (weaker assumptions)) Let
d, k be positive integers, H ⊆ Rd and A ⊆ Rk compact sets. Let w ∈ L1(A), ϕ ∈ C(H × A) and
G = {±ϕa}.

Finally let the f ∈ C(H) be represented as f(x) =
∫

A
w(a)ϕ(x, a) da.

Then f ∈ clC conv cG, where c =
∫

A
|w(a)| da. Using our previous terminology, ‖f‖G ≤ ‖w‖1.

Proof: We define a signed measure ν by letting for any Lebesgue-measurable E ⊆ A

ν(E) =
∫

E

w(a) da .

We easily get

‖ν‖ =
∫

A

|w(a)| da = ‖w‖1
and

f(x) =
∫

A

w(a)ϕ(x, a) =
∫

A

ϕ(x, a) dν(a) .

It only suffices to apply Theorem 2.6 and we conclude. 2

Now we present a theorem bounding G-variation for Lp activation function.

Theorem 2.8 (G-variation for Lp activation functions using measure) Let d, k be positive in-
tegers, let p ∈ (1,∞). Consider sets H ⊆ Rd and A ⊆ Rk, and a signed Radon measure ν on A. Let
ϕ be a measurable function such that there is b ∈ R so that for any a ∈ A the function ϕa = ϕ(·, a) is
in Lp(H,λd), and ‖ϕa‖p ≤ b. Put G = {±ϕa, a ∈ A}.

Let the function f be represented as f(x) =
∫

A
ϕ(x, a) dν(a) (that is, the integral exists for almost

every x).
Then f ∈ clLp conv cG, where c = ‖ν‖ is the norm of ν. Using our previous terminology, ‖f‖G ≤

‖ν‖.

Proof: We proceed similarly as in the proof of Theorem 2.6. Again, we use Hahn decomposition
of ν to define s(a) as the “sign of ν at a” and put c = ‖ν‖ =

∫
s(a) dν(a). We first remark that f

is in Lp(H, λd): For any linear functional l in (Lp)∗ we will derive in (2.7) that l(f) is finite. This
shows, that f is an element in (Lp)∗∗, and as Lp is reflexive, we see that indeed f ∈ Lp.

If f 6∈ cl conv cG then, using Theorem 2.5 again, there is an ` ∈ (Lp)∗ such that

`(f) > z > `(±cϕa)

for some z and all a ∈ A. Let ψ ∈ Lq (with 1/p + 1/q = 1) be the representant of `. Similarly as
before, we get

`(f) =
∫

H

fψ

=
∫

H

∫

A

ϕ(x, a)ψ(x) dν(a) dλ(x)
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To apply Fubini’s theorem, we observe that ϕ(x, a)ψ(x) is a measurable function, and that
∫

H
|ϕ(x, a)ψ(x)| ≤(∫

H
|ϕ(x, a)|p

)1/p(∫
H
|ψ(x)|q

)1/q

= ‖ϕa‖p‖ψ‖q (Hölder inequality for |ϕa| and |ψ|). Consequently,

∫

H

∫

A

|ϕψ| ≤ ‖ν‖ · b · ‖ψ‖q (2.7)

and we may use Fubini’s theorem to obtain

`(f) =
∫

A

∫

H

ϕ(x, a)ψ(x) dλ(x) dν(a)

=
1
c

∫

A

s(a)
∫

H

s(a)cϕ(x, a)ψ(x) dλ(x) dν(a)

≤ 1
c

∫

A

s(a)z dν(a)

= z

Again, by Hahn-Banach Theorem we found a contradiction. 2

Note, that we get Theorem 2.3 as a corollary. Also we recovered a version of a result of [KKK97]
(Theorem 2.2). We do not obtain that f is in the closure in the supremum norm. This, however,
is not needed to apply the Maurey-Jones-Barron theorem or any of the other theorems on rates of
approximation.

The technique of using Hahn-Banach theorem can be applied to other spaces as well – all we
need is to have elements of the dual to that space “behave nicely with respect to integration”, that
is, some version of Fubini’s theorem holds. Natural candidates to consider in this setting would be
Sobolev spaces, leading to a simultaneous approximation of a function and its derivatives. We will
not elaborate on this topic, as it was already researched by Hornik et al. [HSW89].

Before we end this section, let us remark that we can express the obtained results in terms of
functional analysis. Define an operator Tϕ by

Tϕ(ν) =
∫

A

ϕ(·, a) dν(a) .

We consider Tϕ as an operator from M(A) (the space of all signed measures on A) to a subspace
of C(H) (or Lp(H), etc.) with the norm ‖·‖G (the subspace consists of functions of finite ‖·‖G-norm).
Then the above results say that the operator norm of Tϕ is at most (in fact exactly) equal to 1.

2.4 Surprising Property of G-variation

In this short section we are going to prove a surprising property of the Gσ-variation, namely its
independence of σ for a large class of activation functions.

We will assume σ is a sigmoidal function (that is limx→−∞ σ(x) = 0, limx→∞ σ(x) = 1 and σ is
nondecreasing). Note that we do not require continuity: after all, from practical perspective, the
easiest functions to evaluate are step functions, that is linear combinations of characteristic functions
of intervals.

If we consider Gσ as a subset of Lp(H) (for a compact set H) then the Gσ-variation ‖f‖Gσ does not
depend on σ. A version of this result appears implicitly in [KKK97]. However, there σ was assumed
to be either continuous, or the Heaviside function.

Theorem 2.9 (Gσ-variation independent of σ) Suppose 1 < p < ∞, let H ⊆ Rd be a compact
set and f ∈ Lp(H). Then there is cf ∈ [0,∞] so that for any sigmoidal function σ we have

‖f‖Gσ = cf .

(Recall that sigmoidal function means a function R→ R that is nondecreasing with limits in ±∞ being
0 and 1; we do not demand continuity.)
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Proof: We put c = ‖f‖Gϑ
and show that for any sigmoidal function σ we have ‖f‖Gσ

= c. To this
end, we prove an auxiliary claim first, reducing to a question about functions of one real variable.
Then we utilize this claim by letting either σ1 or σ2 be the Heaviside function ϑ.

Claim Let σ1, σ2 be two sigmoidal functions so that for each finite interval J ⊆ R
σ2(t) ∈ cl conv{σ1(rt + s) : r, s ∈ R} ,

where the closure is taken in Lp(J). Then for any function f ∈ Lp(H) we have ‖f‖Gσ1
≤ ‖f‖Gσ2

.

Indeed, by definition of the G-variation, there are functions fapx(x) that are arbitrarily close
to f(x) (in Lp(H)-norm), and that are of form

fapx =
∑

i

ciσ2(ai · x + bi),
∑

i

|ci| ≤ ‖f‖Gσ2
.

If the assumptions of the Claim are satisfied, then we can approximate each of σ2(t) by a finite
convex combination gi(t) =

∑
j ki,jσ1(ri,jt + si,j) in Lp(J) for a finite interval J containing

∪i{ai · x + bi : x ∈ H}. If we put E(t) = |gi(t)− σ2(t)|p, we get
∫

H

E(ai · x + bi) dx ≤ B

|ai|
∫

J

E(t) dt .

Here B is the upper bound on λd−1(Hai,c), where Hai,c = {x ∈ H : ai · x = c} are the sections
of H. In particular, B can be chosen as a constant depending only on H. So we can for any
given ε > 0 find functions gi so that ‖gi(ai · x + bi) − σ2(ai · x + bi)‖Lp(H) < ε. By triangle
inequality it follows that ‖fapx(x)−∑

i cigi(ai · x + bi)‖Lp(H) < ε, too.
Also

∑
i

∑
j |ciki,j | =

∑
i |ci|

∑
j ki,j =

∑
i |ci| ≤ ‖f‖Gσ2

, which finishes the proof of the
claim.

(A) ‖f‖Gσ ≤ ‖f‖Gϑ
for any f (This part appears in [KKK97], we repeat the simple argument for

reader’s convenience.) According to the Claim, we only need to observe, that for any M , ‖σ(Nt) −
ϑ(t)‖Lp([−M,M ]) tends to zero as N → ∞. To observe this, we only need for any ε > 0 choose N so
large that σ(ε ·N) > 1− ε and σ(−ε ·N) < ε. Then

‖σ(Nt)− ϑ(t)‖p
Lp([−M,M ]) ≤

∫

[−ε,ε]

|σ(Nt)− ϑ(t)|p +
∫

[−M,−ε]∪[ε,M ]

|σ(Nt)− ϑ(t)|p

≤ 2ε · 1 + 2M · εp

A choice of arbitrarily small ε finishes the proof.

(B) ‖f‖Gϑ
≤ ‖f‖Gσ for any f Now we pursue with the more surprising part of the proof. We will

actually prove something stronger than required by the Claim. Namely, for any ε > 0 there is a
function g of form

g(t) =
k∑

i=1

ciϑ(t− bi) (2.8)

so that |g(t) − σ(t)| ≤ ε for every t ∈ R \ {b1, . . . , bk}. This clearly implies that g and σ are close in
Lp norm on any set of finite measure.

We will construct g by inductively finding points bi. We will rely heavily on the result from first-
year analysis: all points of discontinuity of a nondecreasing function σ are jumps, that is, for any x
there exists σ(x−) (the limit from the left) and σ(x+) (the limit from the right).

To start the process, we put b0 = −∞ and h0 = 0. Now, whenever bi was defined (and bi < ∞),
we put

bi+1 = sup{x ∈ R : σ(x) ≤ hi + ε}
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and

hi+1 = σ((bi+1)+) .

Now for any y > bi+1 we have σ(y) > hi + ε, so in particular hi+1 = σ((bi+1)+) ≥ hi + ε. This
implies our process ends after at most b1/εc+1 steps (recall that σ is bounded by 1). When we reach
bk+1 = ∞, we define g by (2.8) with ci = hi − hi−1.

Next, observe that for any i = 0, 1, . . . , k we have σ((bi+1)−) ≤ hi + ε (by definition of bi+1.
As for t ∈ [bi, bi+1) the constructed function g(t) is equal to

∑
1≤j≤i(hj − hj−1) = hi, we see that

|g(t) − σ(t)| ≤ ε unless t is one of the points bi. Thus we conclude that (B) holds as well and this
finishes the proof. 2

Let us now comment about implications of the above result. The result applies whenever we want
to estimate the rate of convergence in Lp norm, using results of Maurey, Jones, Barron, and Darken et
al. As far as these estimates are concerned, all sigmoidal functions are of equal utility. Let us mention
some limitations for practical applications, though:

• In part (A) of the above proof (“any σ is at least as good as the Heaviside function”) we need
to use large multiplicative coefficients, which is not numerically feasible.

• It says nothing about convergence in the supremum norm. (For supremum norm the analog of
Maurey-Jones-Barron theorem is false [DDGS93]. See the discussion preceding Theorem 1.7 for
more details.)

• To elaborate further on the previous point, we can extend part (B) of the above proof to get
the following simple bound for estimates in the supremum norm: If ‖f − spann Gσ‖ ≤ ε then
‖f − spanN Gϑ‖ ≤ 2ε with N = n/ε.

• Theorem 2.9 implies equality of bounds on the rate of convergence. It is quite possible, that
for problems of practical interest, convergence will be faster (but perhaps not for all activation
functions). This question deserves further study.

3 Integral Representations

As we have seen in the previous section we needed integral representation of the function f to estimate
its G-variation. Thus a natural question is: when does such a representation exist?

In Section 3.1 we present several specific examples of functions where integral representation is
known to exist. In Section 3.2 we discuss relationship between integral representation and neural
network with number of units going to infinity.

3.1 Integral Representations for Specific Classes of Functions

In this section we present known integral representations for specific types of function f .

A. Absolutely continuous functions Let us consider one-dimensional functions first. Let f be an
absolutely continuous function on [a, b]. It is known (see, e.g., Corollary 23.5 of [LuMa95]) that
f ′ exists almost everywhere as a function in L1[a, b]. Moreover,

f(x) = f(a) +
∫ x

a

f ′(t) dt .

Assume now that f(a) = 0 and recall that ϑ(x) is the Heaviside function (ϑ(x) = 1 if x ≥ 0, ϑ(x) = 0
otherwise). Then the above formula can be expressed as

f(x) =
∫ b

a

f ′(t)ϑ(x− t) dt . (3.1)
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B. Integral representation of f(x) based on Poisson’s theorem / inverse Radon transform To apply the
above mentioned types of bounds we need function f expressed in the form of an integral as in (2.4). To
this end, the following consequence of Poisson’s theorem of potential theory was proved in [KKK97].
(The same result, but only for functions in the Schwartz space, is obtained in [Ito91] using inverse
Radon transform [He99]. In [KKV06] a variant of Theorem 3.1 (for functions of weakly controlled
decay) is proved and in [KKV07] this is utilized to find bounds on G-variation in terms of the Sobolev
norm.)

Let De be the operator of directional derivative in the direction given by e, that is Def(y) =
limh→0

f(y+h·e)−f(y)
h . For a positive integer d, D

(d)
e is d-fold iteration of De. Note, that if f is Cd,

that is the partial derivatives of order at most d exist and are continuous, then one can use the partial
derivatives to express all directional derivatives. Finally, Heb = {y ∈ Rd : y · e + b = 0}.

Theorem 3.1 (Integral representation in Cd(Rd) [KKK97]) For every odd positive integer d
every compactly supported function f ∈ Cd(Rd) can be represented as

f(x) = −ad

∫

Sd−1

∫

R

(∫

Heb

D(d)
e f(y) dy

)
ϑ(e · x + b) dbde

where ad = (−1)(d−1)/2

2(2π)d−1 .

Thus from Theorems 1.6, 1.5, and 2.2 it follows that if f ∈ Cd(Rd), then it can be approximated
efficiently by neural networks with Heaviside activation functions, that is with rate O( 1

n1−1/p ) in the
space Lp, 1 < p ≤ 2 and with rate O( 1√

n
) for p > 2. We can get the same conclusions with somewhat

weaker assumptions. Namely, instead of requiring d continuous derivatives, we only ask for weak
derivatives (as members of an Lp space):

Theorem 3.2 (Integral representation in W d,p(Ω)) Let d be an odd integer, p > 1 and let Ω ⊆
Rd be a bounded open set with a C1 boundary. Then every f in the Sobolev space Wd,p(Ω) can be
represented as

f(x) = −ad

∫

Sd−1

∫

R

(∫

Heb

D(d)
e f(y) dy

)
ϑ(e · x + b) dbde

where ad = (−1)(d−1)/2

2(2π)d−1 .

Proof: Let f be a function in Wd,p. It is known [Lan93] that we can find functions fn ∈ C∞(Ω)
such that ‖fn − f‖d,p < 1/n. For fn we know the formula

fn(x) = −ad

∫

Sd−1

∫

R

(∫

Heb

D(d)
e fn(y) dy

)
ϑ(e · x + b) dbde (3.2)

from several sources ([He99], [Ito91], Theorem 2.1, [KKV07]). It remains to show, how we can derive
the same formula for f itself.

By definition of Wd,p-norm we easily conclude that D
(d)
e fn → D

(d)
e f in Lp-sense. Consequently,

for any given ε > 0 and every sufficiently large n we have ‖D(d)
e fn −D

(d)
e f‖p < ε. Then we have for

each e ∈ Sd−1

∣∣∣∣
∫

R

(∫

Heb

(D(d)
e fn(y)−D(d)

e f(y)) dy
)
ϑ(e · x + b) db

∣∣∣∣

≤
∫

R

(∫

Heb

|D(d)
e fn(y)−D(d)

e f(y))|dy
)
ϑ(e · x + b) db

≤
∫

Ω

|D(d)
e fn(y)−D(d)

e f(y))| dy
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and by the power mean inequality we get that for some C depending only on the measure of Ω

≤ C‖D(d)
e fn −D(d)

e f‖p

≤ Cε .

Consequently, the right-hand side of (3.2) for f and for fn differ by at most adλd−1(Sd−1)Cε. The
difference of the left-hand sides of (3.2) can be estimated using the Sobolev inequality:

‖fn − f‖C(Ω) ≤ C ′‖fn − f‖d,p ≤ c1ε .

Here c1 depends only on d, p, and Ω. It follows, that there is a constant c2 > 0 such that for each
ε > 0 the representation (3.2) holds for f with the error at most c2ε. Letting ε > 0 go to 0 finishes
the proof. 2

C. Wavelets For set G obtained from functions of RBF type (2.2), the theory of wavelets is of use.
The basic result there is the following. Let σ be an L2 function with ‖σ‖2 = 1, such that

∫ |σ̂(a)|2
|a| da

is finite (such σ is called a wavelet). Under suitable conditions (which we will not describe here in
detail) one has

f =
∫

wa,bσ

(
x− b

a

)
d(a, b) ,

where wa,b are suitable “weights”. For more details, any book about wavelets, e.g. [Bl98] can be of
use.

D. Integral representation of f(x) based on Fourier transform Another approach to bounds on ‖f‖G
(although without this notation) is due to Barron [Ba93]. Let B ⊆ Rd be bounded. Let ΩB,ρ be the
set of all functions f : B → R such that

1. For some complex-valued measure F̂ ( dω) and for any x ∈ B

f(x) = f(0) +
∫

(eiω·x − 1)F̂ ( dω) .

2. We have
∫ |ω|BF ( dω) ≤ ρ. Here F ( dω) denotes the magnitude distribution of F̂ ( dω) from

part 1, and |ω|B = supx∈B |x · ω|.

Examples of such functions include functions f for which the Fourier transform f̂ exists, the
inverse Fourier transform produces f , and ωf̂(ω) is integrable. Many more examples (positive definite
functions, functions in Cs where s = bd/2c+ 2, etc.) are listed in [Ba93].

Theorem 3.3 (Integral representation based on Fourier transform [Ba93]) Let σ be any sig-
moidal function, let f ∈ ΩB,ρ. Then ‖f(x)− f(0)‖Gσ ≤ ρ. Consequently, f(x)− f(0) can be approxi-
mated well by elements in Gσ:

‖(f(x)− f(0))− convn ρGσ‖2 ≤ ρ√
n

.

To compare with Theorem 2.2, this method is more widely applicable; it does not yield an explicit
formula for f(x), though.
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3.2 Networks with Continuum Many Units

The term neural network with continuum many units was metaphorically used in [KKK97] to describe
a function in integral representation

f(x) =
∫

A

w(a)ϕ(x, a) da (3.3)

where it is to be understood that for every a we have a function ϕ(·, a) as the activation function of
one neuron; we take this neuron with weight w(a). This concept enabled an interesting application
of results of Section 1.1. It is not clear, however, what is the relation between the class of functions
representable as (3.3), functions realizable by finite neural networks, that is expressible as

f(x) =
n∑

i=1

ciϕ(x, ai) (3.4)

and functions that can be approximated by finite networks.
In this section we will try to clarify these relationships. To this end, we extend the notion of neural

network with continuum many neurons even further. For any signed measure ν on A, we consider the
function

f(x) =
∫

A

ϕ(x, a) dν(a) . (3.5)

Any function representable by (3.3) can be represented as (3.5), when ν has density w(a).
We recall (and introduce) some notation. We have a continuous function ϕ on H × A. As in

previous sections, we put G = {±ϕ(·, a), a ∈ A}. In this notation, finite neural networks compute
functions in spanG. As we want to restrict the size of the weights towards the output neuron, it makes
more sense to consider functions in conv cG for some real c. Functions that can be approximated by
such bounded finite networks are those in cl conv cG. Finally, we let I(c,G) denote the set of functions f
that can be represented as (3.5) for some measure ν on A with ‖ν‖ ≤ c.

It is obvious that conv G ⊆ cl conv G and conv cG ⊆ I(c,G). Less obvious is the relationship
between cl conv G and I(c,G):

Theorem 3.4 (Sum ⇒ Integral) Let ϕ ∈ C(H × A), H and A compact subsets of Rd and Rk,
respectively. Then for every real c

cl conv cG ⊆ I(c,G) .

Explicitly, every function that can be approximated by functions of form
∑m

i=1 ciϕ(x, ai) for
∑m

i=1 |ci| ≤
c can be expressed as f(x) =

∫
ϕ(x, a) dν(a) for some signed measure ν of norm at most c.

Proof: Let f be a function in cl conv cG, and choose a sequence fn converging to f . We can write
fn =

∑mn

i=1 cn,iϕ(an,i, x), where
∑

i |cn,i| ≤ c. We let νn be the weighted counting measure, that is for
any set E ⊆ A we put

νn(E) =
∑

i:an,i∈E

cn,i .

Recall that the space M(A) of signed measures on A is the dual to C(A). As C(A) is separable, Helly’s
theorem implies that the ball of radius c in M(A) is w∗-sequentially-compact. This in particular implies
that there is a measure ν and a subsequence νnk

converging to ν in the w∗ topology (as ν is w∗-limit
of measures with norms at most c its norm is at most c as well). This in turn means that for every
function g ∈ C(A) we have

∫
g dνnk

→ ∫
g dν. We apply this for g = ϕ(·, a) for every x ∈ H. We

obtain
fnk

(x) =
∫

A

ϕ(x, a) dνnk
(a) →

∫

A

ϕ(x, a) dν(a) .

As limn fn(x) = f(x) by our choice of fn, this finishes the proof. 2

In Theorem 2.6 we showed the converse to the above theorem: if a function f(x) is in form (3.5)
then it is a limit of functions of form (3.4). This tells us that certain functions can be approximated
well. Moreover, combination of Theorem 2.6 and 3.4 concludes our intention to compare these two
ways to extend the notion of neural networks to infinity.
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4 Applications

In this section we combine results regarding rates of approximation (Section 1), G-variation (Section 2)
and integral representation (Section 3) to derive practically applicable results.

We start with a result that appears already in [KKK97].

Corollary 4.1 (Approximation for Cd(Rd) functions [KKK97]) Let d be an odd positive inte-
ger and f ∈ Cd(Rd) a compactly supported function. Let σ be a continuous sigmoidal function. Then
there is a constant C so that

‖f − spann Gσ‖2 ≤ C√
n

.

Corollary 4.2 (Approximation for Cd(Rd) functions in Lp, gen. sigm. function) Let
1 < p < ∞, let d be an odd positive integer and f ∈ Cd(Rd) a compactly supported function. Let σ be
a nondecreasing sigmoidal function (not necessarily continuous). Then there is a constant C so that

‖f − spann Gσ‖p ≤ C

n1−1/t
,

where t = min{p, 2}.

Proof: By Theorem 3.1 we have integral representation of f using Heaviside functions:

f(x) = −ad

∫

Sd−1

∫

R

(∫

Heb

D(d)
e f(y) dy

)
ϑ(e · x + b) dbde .

Thus by Theorem 2.2 we obtain bounded Gϑ-variation, bound given by integral of directional deriva-
tives:

Gϑ ≤
∫

Sd−1

∫

R
ad

∣∣∣
∫

Heb

D(d)
e f(y) dy

∣∣∣ dbde).

Using Theorem 2.9 we observe that Gϑ(f) = Gσ(f) for any sigmoidal activation function σ. Now it
remains to use Theorem 1.6, we observe that Gσ is Lp-bounded on support of f and having shown
that Gσ(f) is finite we conclude the proof. 2

Corollary 4.3 (Approximation for Wd,p(Rd) functions in Lp, gen. sigm. function) Let
1 < p < ∞, let d be an odd positive integer, let Ω ⊆ Rd be a bounded open set with a C1 boundary and
consider an f ∈ Wd,p(Ω). Let σ be a nondecreasing sigmoidal function (not necessarily continuous).
Then there is a constant C so that

‖f − spann Gσ‖p ≤ C

n1−1/t
,

where t = min{p, 2}.

Proof: By Theorem 3.2 we have integral representation of f using Heaviside functions:

f(x) = −ad

∫

Sd−1

∫

R

(∫

Heb

D(d)
e f(y) dy

)
ϑ(e · x + b) dbde

(the derivatives are taken in the weak sense). Thus by Theorem 2.8 we find that the Gϑ-variation is
bounded. The bound is given by integral of directional derivatives:

Gϑ ≤
∫

Sd−1

∫

R
ad

∣∣∣
∫

Heb

D(d)
e f(y) dy

∣∣∣ db de .

In [KKV06] this computation is carried on to provide an upper bound on Gϑ variance in terms of
Sobolev norm (even Sobolev seminorm) ‖ · ‖d,1. As Ω is of finite measure, this implies a bound
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‖f‖Gϑ
= O(‖ · ‖d,p). Using Theorem 2.9 we observe that Gϑ(f) = Gσ(f) for any sigmoidal activation

function σ. Now it remains to use Theorem 1.6, we observe that Gσ is Lp-bounded on support of f
and having shown that Gσ(f) is finite we conclude the proof. 2

By using Theorem 2.9 instead of results in [KKK97], we can weaken the assumption on σ – we do
not need σ continuous, it is enough, if σ is nondecreasing and bounded. More disagreeable, though,
are the assumptions required on f , which are perhaps too strong for applications. We mostly care
about rather large d, so we need f to be very smooth. Next, we will discuss the possibilities to weaken
this requirement. First, we will see that for d = 1 such weakening is possible. (Similar result for σ
being the Heaviside function is suggested in [KKV06].)

Theorem 4.4 (Rates for absolutely continuous functions) Let f be an absolutely continuous
function on [a, b]. Let σ be any sigmoidal function (not necessarily continuous). Then there is a
constant C so that

‖f − spann Gσ‖p ≤ C

n1−1/p
.

Proof: We represent f(x) in form (3.1) (Section 3.1, part A). Theorem 2.8 implies that ‖f‖Gϑ
≤ ‖f ′‖1

(which we know is finite). From Theorem 2.9 we know that ‖f‖Gσ
= ‖f‖Gϑ

, so it remains to use
Theorem 1.6. 2

We see that we lowered the smoothness assumption – we require f to be absolutely continuous,
instead of being C1. However, it is possible to weaken the assumptions on f even further and at
the same time improve the approximation, at least in the one-dimensional case. (This result may be
known in the analysis community, we have been unable to find it in the literature, though.)

Theorem 4.5 (Rates for bounded variation functions) Let f be a bounded variation function
on [a, b]. Then

‖f − spann Gϑ‖∞ ≤ ‖f‖BV [a,b]

n− 1
.

If σ is any sigmoidal function (not necessarily continuous) then we have for any p ∈ (1,∞) and a
constant c = c(a, b, p)

‖f − spann Gσ‖p ≤
c‖f‖BV [a,b]

n− 1
.

Proof: It is known from calculus (see, e.g., Theorem 1.2 in Section X.1 of [Lan93]) that a bounded
variation function can be expressed as a difference of two nondecreasing functions, f = f1 − f2 in
such a way, that ‖f‖BV [a,b] = d1 + d2, where di = fi(b) − fi(a). Using the technique in the proof of
Theorem 2.9 (part (B)) we approximate fi(x)−fi(a) by a function gi(x), which is a linear combination
of ni shifts of the Heaviside function ϑ, so that ni ≤

⌊
di

ε

⌋
and for all but finitely many values of x we

have 0 ≤ (
fi(x)− fi(a)

)− gi(x) ≤ ε. Consequently,

|(g1(x)− g2(x) + f(a)
)− f(x)| ≤ ε

for all but finitely many values of x. We may realize addition of f(a) as one extra Heaviside function,
so we found an approximation using n1 + n2 +1 ≤ d1+d2

ε + 1 Heaviside functions and achieved an L∞
error ε.

The second assertion follows immediately by approximating ϑ(t) by σ(Nt) for N large enough. 2

We remark that a weaker version of the above theorem (with the usual rate of convergence O(1/n1−1/p)
in Lp-norm) could be proved also using Theorem 2.8: if f is a bounded variation function on [a, b] and
µf the corresponding Riemann-Stieltjes measure, then we have the following formula (Proposition 1.8
in Section X.1 of [Lan93])

f(x)− f(a) =
∫ x

a

1 dµf ,
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whenever f is continuous at both a and x. As bounded variation function is continuous at all but
finitely many points, we can indeed apply Theorem 2.8.

Next, we will consider the case of larger d.
In Theorem 3.2 we decreased the differentiability requirement – instead of existence of continuous

d-fold derivatives as in 4.1 and 4.2 we only require that d weak derivatives exist (and are bounded in
the Lp norm). This may not seem as a tremendous improvement. On the other hand, in this setting
we have the following result that presents a limit on how much can we weaken the assumptions on
the function to be approximated.

Theorem 4.6 (Good rates =⇒ many weak derivatives) Let σ : R → R be a continuous func-
tion. Suppose that for each function f ∈ Wm,2(Bd) (where Bd is the unit ball in Rd) there is a
constant C so that

‖f − spann Gσ‖2 ≤ C√
n

.

Then m ≥ (d− 1)/2.

Proof: By Theorem 4.7 of Maiorov [Ma99] there is a function f ∈ Wm,2(Bd) such that

‖f − spann Gσ‖2 ≥ C ′n−m/(d−1) .

So we have C√
n
≥ C ′n−m/(d−1). Considering the limit as n →∞ finishes the proof. 2

For convenience of the reader we give full version of Mairov’s theorem we used here:

Theorem 4.7 (Lower bound on rates of approximation for perceptron [Ma99]) Let m ≥ 1
and d ≥ 2. Then for each n there exists an f ∈ Wm,2(Bd); ‖f‖m,2 ≤ 1 for which

inf
g∈Rn

‖f − g‖2 ≥ Cn−m/(d−1).

Here the positive constant C is independent of f and n, Bd denotes the unit ball in Rd.

We finish this discussion by mentioning the connection with Theorem 4.8:

Theorem 4.8 (Upper bound on rates of approximation for perceptron [Mh96]) Let I be an
open interval. Assume σ : R → R is such that σ ∈ C∞(I) and σ is not a polynomial on I. Then for
each p ∈ [1,∞], m ≥ 1 and d ≥ 2

sup
f∈Wm,p(Bn);‖f‖m,p≤1

inf
g∈Mn(σ)

‖f − g‖p ≤ Cn−m/d,

for some constant C independent of n.

Indeed, this theorem actually gives better bounds on ‖f−spann Gσ‖p than the results of this chap-
ter. The drawback, however, is that we need to use linear combinations with unbounded coefficients.
(The inspection of the proof, as presented in [Pi99] shows that, indeed, unbounded coefficients are
crucial for the proof.) This renders the result useless for practical applications: we can find good
approximation of f in form

n∑

i=1

ciσ(ai · x + bi) (4.1)

for small n, but at the expense of using large coefficients ci. Consequently, we need to do the compu-
tations with a high precision – which only shows that n is not an appropriate measure of complexity
of the expression (4.1). This problem is partially avoided by using convex combinations (or, rather,
combinations with bounded sum of the coefficients). However, a detailed study of the numerical issues
involved remains to be done.

Similar results as in Theorem 4.4 can be easily derived for wavelets and Baron’s representation –
paragraphs C and D in Section 3.1.
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5 Conclusion

In this chapter we studied properties of approximations of functions using convex combinations. Re-
sults of Maurey, Jones and Barron and of Darken et al. show that, when applicable, such convex
combinations yield good rates of approximation (independent of input dimension).

Further study of constants that appear in these rates bring the notion of G-variation (as defined
in [Ku97]). To maintain the mentioned rates when approximating a function f by functions from G
we have seen that fininte G-variation of f is needed. Pursuing this idea Krkov [Ku97] shows that for
continuous approximating functions in G for f representable as integral of these functions weighted by a
continuous function G-variation is finite. She proves this result also for Heaviside activation functions.
We extend these results to Lp almost everywhere bounded activation functions and weights by a
constructive proof (Theorem 2.3) and nonconstructively using Hahn-Banach Theorem to continuous
or Lp activation functions and weights represented by any signed measure (Theorems 2.6 and 2.8).
We further investigate the notion of G-variation and show that for f with infinite G-variation we
can have arbitrarily slow convergence of approximation (Theorem 1.7). A surprising result comes
from Theorem 2.9 - we show that the presented rates of approximation cannot distinguish between
sigmoidal functions.

As mentioned above, all the presented results require f to representable as an integral. In Section
3 we overview known results towards this direction and also show that integral representation is a
necessary condition for f to be approximable with good rates of approximation by convex sums of
continuous activation functions (Theorem 3.4).

In Section 4 we combine the above mentioned and present a few instances of theoretical bounds
on rates of approximation for specific functions f showing how to easily derive corollaries of the type
using results of previous sections. One more interesting and less obvious result of this section is the
less optimistic information presented in Theorem 4.6 – if we wish to have good rates of approximation
for function f we have to demand it to have many weak derivatives.
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[LuMa95] J. Lukeš,J. Malý: Measure and Integral, Matfyzpress, Praha, (1995).

[Ma99] V. E. Maiorov: On best approximation by ridge functions, Journal of Approximation The-
ory, 99 (1999), no. 1, 68–94.

[Mk96] Y. Makovoz: Random approximants and neural networks, Journal of Approximation The-
ory 85 (1996), 98–109.

[Mh96] H. N. Mhaskar, Neural networks for optimal approximation of smooth and analytic func-
tions, Neural Computation, 8 (1996), 164–177.

[Pi99] A. Pinkus: Approximation theory of the MLP model in neural networks, Acta Numerica
(1999), 143–195.

[Ps81] G. Pisier: Remarques sur un resultat non publi’e de B. Maurey, in Seminaire D’Analyse
Fonctionnelle, 1980-1981, ’Ecole Polytechnique, Centre de Math’ematiques, Palaiseau,
France (1981).

[Re83] W.J. Rey: Introduction to Robust and Quasi-Robust Statistical Methods, Springer-Verlag,
Berlin, (1983).

[S03a] T. Šidlofová: Bounds on Rates af Approximation by Neural Networks in Lp-spaces, Artifi-
cial Neural Nets and Genetic Algorithms, SpringerVerlag, (2003), 23–27.
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