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Abstract 

  

We show that the correlation integral can be decomposed into functions each related to a particular 
point of data space. For these functions, one can use similar polynomial approximations such as the 
correlation integral. The essential difference is that the value of the exponent, which would correspond 
to the correlation dimension, differs in accordance to the position of the point in question. Moreover, we 
show that the multiplicative constant in that polynomial approximation is proportional to the probability 
density estimation at that point. This finding is used to construct a classifier.  
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1. Introduction 
A lot of tasks of data mining have to do with associating objects to a limited number of types 
or classes. A typical task is whether an e-mail is spam or not. This is a classification into two 
classes. Many other tasks may be recognized as classification into several classes. Usually, 
objects to be classified are not used directly, but are described by some number of parameters 
(or features, variables etc.) There are many approaches to classification, simple ones or very 
sophisticated ones. In this chapter, an approach closely related to the characterization of 
fractals by the correlation dimension is introduced. 

The correlation dimension [1], [2] as well as other effective dimensions - Hausdorff, box-
counting, information dimension [3], [4] - is used to study features of different fractals and 
data generating processes. For estimation of the value of the correlation dimension in a 
particular case, linear regression is often used for logarithms of variables [1]. We write it in 
the form: 

    )ln()ln()ln( srqCs += ,  s = 1, 2,....                                               (1) 

 

Here, v is a correlation dimension and C is a multiplicative constant in the relation: 

  q
sCrs = , s = 1, 2, ....                                                           (2) 

Constant C has no particular meaning.  

In this Chapter, we show that the correlation integral can be decomposed in functions each 
related to particular point x of data space. For these functions one can use similar polynomial 
approximations as given by (2). The value of exponent q, which corresponds to the correlation 
dimension, differs in accordance to the position of the point x in question. Moreover, we show 
that the multiplicative constant C in these cases represents the probability density estimation 
at point x. This finding is used to construct a classifier. Tests with some data sets from the 
Machine Learning Repository [5] show that this classifier can have a very low classification 
error.  

2. Decomposition of the Correlation Integral 
We work in n-dimensional metric space with L2 (Euclidean) or L1 (taxicab or Manhattan) 
metrics. 

2.1 Correlation Integral 
The correlation integral, in fact, a distribution function of all binate distances in a set of points 
in a space with a distance was introduced by Grassberger and Procaccia in 1983 [1]. Camastra 
and Vinciarelli [6] consider the set {Xi, i = 1, 2, .. N} of points of the attractor. This set of 
points may be obtained e.g. from a time series with a fixed time increment. Most pairs (Xi, Xj) 
with i � j are dynamically uncorrelated pairs of essentially random points [1]. However, the 
points lie on the attractor. Therefore, they will be spatially correlated. This spatial correlation 
is measured by the correlation integral CI(r) defined according to: 

}:),({
1

lim)( 2 rXXjipairsofnumber
N

rC jiNI <−×= ∞→ . 

In a more comprehensive form one can write: 
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)Pr()( rXXrC jiI <−= . 

Grassberger and Procaccia [1] have shown that for a small r the CI(r) grows like a power 
νrrCI ~)(  and that the "correlation exponent" � can be taken as a most useful measure of the 

local structure of the strange attractor. This measure allows one to distinguish between 
deterministic chaos and random noise [6]. These authors also mention that the correlation 
exponent (dimension) � seems to be more relevant in this respect than the Hausdorff 
dimension Dh of the attractor. In general, there is � � � � Dh , where � is the information 
dimension [4], and it can be found that these inequalities are rather tight in most cases, but not 
all cases. Given an experimental signal and � < n (n is the degree of freedom or the 
dimensionality or the so-called embedding dimension), then we can conclude that the signal 
originates from deterministic chaos rather than random noise, since random noise will always 

result in n
I rrC ~)( . 

The correlation integral can be rewritten in form [6] 

)(
)1(

1
lim)(

1
�

≤<≤
∞→ −−

−
=

Nji
ijNI XXrh

NN
rC , 

where h(.) is Heaviside step function. From it 

r
rC I

r ln
)(ln

lim ∞→=ν .  

There are methods for estimating the correlation dimension �, but the problem is that they are 
either too specialized for one kind of equation or they use some kind of heuristics that usually 
optimize the size of radius r to get the proper value of the correlation dimension. One of the 
most cited is Taken's estimator [7], [8], [9].  

2.2 Probability distribution mapping function 

Two important notions, the probability distribution mapping function and the distribution 
density mapping function are introduced here. We use these notions for developing a 
decomposition of the correlation integral and a new classifier. To understand these terms, we 
give a brief example that demonstrates them. 

Let a query point x be placed without loss of generality in the origin. Let us build balls with 
their centers at point x and with volumes Vi , i =1, 2, ...  

The individual balls are in one another, the (i-1)-st inside the i-th are like peels of an onion. 
Then the mean density of the points in the i-th ball is �i = mi/Vi. The volume of the ball of 
radius r in n-dimensional space is V(r) = const.rn. Thus, we have constructed a mapping 
between the mean density �i  in the i-th ball �i and its radius ri. Then �i = f(ri). Using a tight 
analogy between the density �(z) and the probability density p(z), one can write p(ri) = f(ri), 
and p(ri) is the mean probability density in the i-th ball with radius ri. This way, a complex 
picture of the probability distribution of the points in the neighborhood of a query point x is 
simplified to a function of a scalar variable. We call this function the probability distribution 
mapping function D(x, r), where x is a query point, and r the distance from it. More exact 
definitions follow: 

 

 



6 

Definition 1 

The probability distribution mapping function D(x, r) of the neighborhood of the query point 
x is the function �=

),(

)(),(
rxB

dzzprxD , where r is the distance from the query point and B(x, r) 

is a ball with center x and radius r. 

Definition 2 

The distribution density mapping function d(x, r) of the neighborhood of the query point x is 

function ),(),( rxD
r

rxd
∂
∂= , where D(x, r) is a probability distribution mapping function of 

the query point x and radius r. 

Note: It can be seen that for a fixed x, the function D(x, r), r > 0 is monotonically growing 
from zero to one. Functions D(x, r) and d(x, r) for a fixed x are one-dimensional analogs to 
the probability distribution function and the probability density function, respectively.  

One can write the probability distribution mapping function in the form  

�
−

=∞→
−

−
=

1

1

)(
1

1
lim),(

N

j
jN

rrh
N

rxD ,                                                         (3) 

where h(.) is the Heaviside step function. For a finite number of points, we have the empirical 
probability distribution mapping function 

�
−

=
−

−
=′

1

1

)(
1

1
),(

N

j
jrrh

N
rxD . 

2.3 Power approximation of the probability distribution mapping function 
Let us introduce a simple polynomial function in the form D(x, r) = Crq. We shall call it a 
power approximation of the probability distribution mapping function D(x, r). Exponent q is a 
distribution-mapping exponent.  

Definition 3 
The power approximation of the probability distribution mapping function D(x, rq) is the 

function rq such that C
r

rxD
q

q

→),(
  for +→ 0r . The exponent q is a distribution-mapping 

exponent.  

Using this approximation of the probability distribution mapping function D(x, r), we, in fact, 
linearize this function as a function of the variable z = rq in the neighborhood of the origin, i.e. 
in the neighborhood of the query point. The distribution density mapping function d(x, r), as a 
function of the variable z = rq, is approximately constant in the vicinity of the query point. 
This constant includes a true distribution of the probability density of the points as well as the 
influence of boundary effects.  

An important fact is that the distribution-mapping exponent reminds us of the correlation 
dimension by Grassberger and Procaccia [1]. Although, there are three essential differences: 
First, the distribution-mapping exponent is a local feature of the data set because it depends 
on a position of the query point, whereas the correlation dimension is a feature of the whole 
data space. Second, the distribution mapping exponent is related to the data only and not to a 
fractal or data generating process by which we can have an unlimited number of data points. 
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Third, the distribution mapping exponent is influenced by boundary effects, which have a 
larger influence with a larger dimension n and a smaller learning set size [6],  [10].  

2.4 Decomposition of correlation integral to local functions 

We show, in this section, that the correlation integral is the mean of the distribution mapping 
function and that the correlation dimension can be approximated by the mean of the 
distribution mapping exponent as shown in the theorem below: 

Theorem 1 
Let there be a learning set of N points (samples). Let the correlation integral, i.e. the 
probability distribution of binate distances of the points from the learning set, be CI(r) and let 
D(xi, r) be the distribution mapping function corresponding to point xi. Then, CI(r) is a mean 
value of D(xi, r): 

�
=

∞→
=

N

i
iNN

I rxDrC
1

1 ),(lim)( .                                                           (4) 

Proof 

Let h(x) be a Heaviside step function and lik be the distance of k-th neighbor from point xi. 
Then the correlation integral is 

��
=

−

=
−∞→

−=
N

i

N

j
ijNNN

I lrhrC
1

1

1
)1(

1 )(lim)(  

and also 

� �
=

−

=
−∞→ �

�
�

�
�
�
�

�
−=

N

i

N

j
ijNNNI lrhrC

1

1

1
1

11 )(lim)(  .                                             (5) 

Comparing (5) with (3) we get (4) directly. 

The correlation dimension � can be approximated as a mean of the distribution mapping 
exponents 

�
=

=
N

i
iN q

1

1ν . 

2.5 Distribution mapping exponent estimation 
Let U be a learning set composed of points (patterns, samples) xcs, where c = {0, 1} is the class 
mark and s = 1, 2, …, Nc is the index of the point within class c. Nc is the number of points in 
class c and let N = N0 + N1 be the learning set size.  

Let point x ∉ U be given and let points xcs of one class be sorted so that index s = 1 
corresponds to the nearest neighbor, index s = 2 to the second nearest neighbor, etc. In 
Euclidean metrics, rs = ||x - xcs|| is the distance of the s-th nearest neighbor of class c from 
point x.  

We look for exponent q so, that q
sr is proportional to index s, i.e. for polynomial 

approximation 
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q
sCrs = , s = 1, 2, ..., Nc, c = 0 or 1,                                                        (6) 

where C is a suitable constant. Using a logarithm we get 

)ln()ln()ln( srqCs += , s = 1, 2, ..., Nc .                                                    (7) 

On one hand, we exaggerate distances nonlinearly to make small differences in the distance 
appear much larger for the purposes of density estimation. On the other hand, there is a 
logarithm of distance in (7), which decreases large influences of small noise perturbations on 
the final value of q. Note that it is the same problem as in the correlation dimension 
estimation where equations of the same form as (6) and (7) arise. Grassberger and 
Procaccia [1] proposed a solution by linear regression. In [2], [9], [11] different modifications 
and heuristics were later proposed. Many of these approaches and heuristics can be used for 
distribution mapping exponent estimation, e.g. use a half or a square root of Nc nearest 
neighbors instead of Nc to eliminate the influence of the limited number of the  points of the 
learning set.  

The system of Nc (or Nc/2 or �Nc as mentioned above) equation (7) with respect to an 
unknown q can be solved using standard linear regression for both classes. Thus, for two 
classes, we get two values of q, q0 and q1 and two values of C’, C’0 and C’1.  

At this point we can say that qc is something like a local effective dimensionality of the data 
space including the true distribution of the points of each class. At the same time, we get the 
constant C’c.  The values of qc and C’c are related to each particular point x and thus they vary 
from one point x to another.  

2.6 Probability density estimation 

Let n´c(r) be a number of points of class c up to distance r from the query point x. Let qc be 
the distribution mapping exponent for the points of class c and let  

zc = rqc.                                                                               (8) 

Also, let nc(zc) = n´c(r) = n´c(zc
1/qc). Then Pc(zc) = nc(zc)/N is a percentage of all points of class 

c up to distance r = zc
1/qc from the query point x., i.e. up to a “distance” measured by zc from 

point x.  

Due to polynomial approximation (6), nc(zc) = C’c.zc . It is a number of points up to distance r, 
which is related to zc according to (8). The derivative according to zc is dnc(zc)/dzc = C’c and it 
represents a number of points of class c on a unit1 of the zc, i.e., in fact, a density of points 
with respect to zc. 

By dividing with total number of points N, we get a percentage of points of class c on a unit 
of zc. This percentage is equal to p(c|x, zc) = C’c/N. In the limit case for r � 0 (and zc as well) 
there is p(c|x, 0) = p(c|x) = C’c/N = Cc.  

Finally, as there are two classes, there must be p(0|x) = p(1|x) = 1 and then C’0 + C’1 = N. This 
result includes a priori probabilities Nc/N for both classes. When we need to exclude a priori 
probabilities we use the formula  

1100 //
/

)|(
NCNC

NC
xcp cc

′+′
′

= .                                                        (9) 

                                                
1 We cannot say “unit length” here, as the dimensionality of zc is (length)qc . 
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The generalization of the too many classes case is straightforward. For k classes there is  

�
=

′

′
= k

i
ii

cc

NC

NC
xcp

1

/

/
)|( , c = 1, 2, .. k.                                              (10) 

A more exact development follows: 

Definition 4 

Let  N be n-dimensional space with metrics �. Let there be a subset Q ⊆ N and a number 
q ∈ R+, 1 � q � n associated with subset Q. A q-dimensional ball with center at point x ∈ Q 
and radius r is Bq = B(q, x, r, �) = {y ∈ Q: �(x, y) < r}. The volume of Bq is 
V(q, x, r, �)  = S(q, �).rq , where  S(q, �) is a function independent of r. 

Note: The metrics � can be omitted when it is clear what metrics we are dealing with. 

Lemma 1 

Let B(q, x, R) be a q-dimensional ball with center at point x ∈ Q and radius R, and let 
V(q, x, r) be its volume. Let points in Q in the neighborhood of point x up to distance R be 
distributed with the constant probability density p = p0. Then, for r < R, where r is the 
distance from point x, the distribution function is given by 

),,(),,(),( 0
),,(

rxqVprxqpdVpdrrxP
RxqB

=== ��
 
. 

The proof is obvious. 

Conversely, let in Q hold ),,(.),( 0 rxqVprxP = , where p0 is a constant as long as r < R. It is 
obvious that this can be fulfilled even when the distribution density is not a constant. On the 
other hand, it is probably a rare case. Then we can formulate an assumption. 

Assumption 1  

If in Q holds ),,(),( 0 rxqVprxP =  then it holds p(x) = p0.  

Illustration 

A sheet of white paper represents 2 dimensional subspace embedded in 3 dimensional space. 
Let point x be in the center of the sheet. White points of paper are uniformly distributed over 
the sheet with some constant (probability) density and a distribution function 
(frequentistically the number of white points) is proportional to the circular area around point 
x. Thus, the distribution function grows quadratically with distance r from point x, and only 
linearly with the size of the circular area. And the size of circular area is nothing other than 
the volume of the two-dimensional ball embedded in 3 dimensional space.  

Theorem 2 

Let, in a metric space, each point belongs to one of two classes c = {0, 1}. Let, for each point 
x and each class c, a distribution mapping function D(x, c, r) exist where r is the distance from 
point x. Let Assumption 1 hold and the power approximation of the distribution mapping 
function be cq

crC , where qc is the distribution mapping exponent for point x and class c. Then 
it holds 0)()|( pqSCxcp c == .  
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Proof 

Let cq
c rz = be a new variable. We can rewrite D(x, c, r) as a function of variable zc in the 

form D(x, c, zc). The D(x, c, zc) is, in fact, a distribution function of the points of class c with 
respect to variable zc. When using a power approximation, we can write D(x, c, zc) =  Ccrq 
= Cc zc. This distribution function corresponds to uniform distribution in a subspace of 
dimension qc. We express rq with the help of the volume of the ball in qc-dimensional space 
with center x and radius r: D(x, c, zc) = CcV(qc, x, r)/S(qc) = P(x, r)/S(qc). From Assumption 1, 
it follows d(x, c, zc) = Cc  = p(x, r)/S(qc) and then p(x, r) = CcS(qc) = p0. 

Note: We see that beyond the unit ball volume S(qc), the proportionality constant Cc governs 
the probability density in the neighborhood of point x including this point. Also note that due 
to the ratios in formulas (9) and (10) the volume S(qc) of the ball in a qc-dimensional space in 
the probability estimation is eliminated. 

 

3. Classifier 

3.1 Classifier Construction 

In this section, we show how to construct a classifier that incorporates the idea above. Using 
formulas (9) or (10) we have a relatively simple method for estimating the probabilities 
p(c|x) . First, we sort the points of class c according to their distances from the query point x. 
Then, we solve the linear regression equation 

)ln()ln()ln( sCrq csc += , s = 1, 2, ..., K                                             (11) 

for the first K points especially with respect to the unknown Cc. Number K may be a half or a 
square root or so of the total number Nc of the points of class c. This is made for all k classes, 
c = 1, 2, .. k. Finally, we use formula (9) for k = 2 or formula (10) for more than two classes. 
Formulas (9) or (10) give a real number. For two class classification, a discriminant threshold 
(cut) θ must be chosen, and then if p(1|x) > θ, then x belongs to class 1 or else to class 0. The 
default value of θ is 0.5. 

3.2 Error Analysis 
There are two sources of errors. The first one depends on choosing the proper constant K, i.e. 
the number of nearest points to point x which is also the number of regression equations (11) 
used for computation of Cc. This is a problem very similar to the problem of the correlation 
dimension estimation. For correlation dimension estimation, many approaches including a lot 
of heuristic ones exist, see e.g. [2], [9], [11]; we do not discuss it in detail here.  

The other kind of error is an error of estimation by linear regression. The Gauss–Markov 
theorem [12] states that in a linear model in which the errors have an expectation of zero and 
are uncorrelated and have equal variance, the best linear unbiased estimators of the 
coefficients are the least-squares estimators. At the same time, it holds that the regression 
coefficients, as random variables, have normal distribution [12], [14] each with a mean equal 
to the true value and with variance given by the well-known formulae [13] [14]. When the 
data is of the same quality, the variance converges to zero proportionally to 1/K for the 
number of samples K going to infinity.  
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In our case Gauss-Markov assumptions are well fulfilled, especially the assumption of 
homoscedasticity, i.e., all errors have the same variance. It is given by fact that each class 
usually represents a particular “source” of data with a particular statistic. Regression 
equations are constructed for each class separately here, i.e. all samples should have the same 
or very similar statistical characteristics including variance.  

Variable ln(Cc) is found by linear regression and has normal distribution. Then variable Cc 
has lognormal distribution. From it, it follows that if 	lnCc is the mean (also mode and 
median) of ln(Cc) and �2

lnCc its variance then variable Cc = exp(ln(Cc)) has the median 
Me = exp(	lnCc). The mean of Cc is exp(ln(Cc)+ �2

lnCc /2), i.e. it is slightly larger than the 
median. On the other hand, the mode is slightly smaller as it holds that Mo = exp(ln(Cc)- 
�

2
lnCc). Considering these three measures of position, we use the median for Cc estimation, 

using formula Cc = exp(ln(Cc)). ln(Cc) is found by the linear regression above. For variance 
of the lognormal distribution, it holds  

�
2
Cc = (exp(�2

lnCc) -1).exp(2	lnCc  + �2
lnCc). 

From the fact that variance regression coefficients converge to zero proportionally to 1/K for 
the number of samples K going to infinity, the �2

Cc converges to zero proportionally to 1/K as 
well. Simply, for a small �2

lnCc there is exp(�2
lnCc) 
 1 + �2

lnCc and exp(2	lnCc +  �2
lnCc)  = 

(exp(	lnCc))2(1 + �2
lnCc) 
 C2

c . Then �2
Cc 
  �2

lnCcC2
c  and because �2

lnCc ~ 1/K  and C2
c is a 

constant here then �2
Cc ~ 1/K. 

We can conclude that variable Cc converges to its true value as fast as the standard linear 
regression (11) used for estimation of its logarithm ln(Cc). 

Error estimation 

When using linear regression for (11), it is easy to state individual residuals �i and thus to 
know the true sum of the squared residuals �

=

=
K

i
i

1

2ρρ . The standard deviation on a parameter 

estimate is [ ] jj
t

j XX
K

1)(
1

ˆ −

−
= ρσ , j=1, 2 and the 100(1-�)% confidence interval is 

j
K

j t σβ α ˆˆ
2,

2
−

± . Variables � and [(XtX)-1]jj are known during computation of ln(Cc) and thus one 

can get the confidence interval for ln(Cc) which is symmetric. Due to exponential 
transformation, Cc has an asymmetric confidence interval.  

This confidence interval computation can be easily included into the construction of the 
classifier. 

 

4. Experiments 
The method described above has one free parameter to be set up, the number of nearest 
neighbors used for linear regression. We tested different possibilities, e.g. the square root of 
the total number of samples Nc of the learning set, one third, and one half of the number of 
samples of the learning set, and a simplest robust modification of the linear regression. We 
found that the use of a half of the total number Nc of samples of the learning set often to be 
quite practical. 

Another strategy uses a robust procedure in linear regression. The approach starts with half of 
the points of the learning set nearest to the query point in the same way as the previous one. In 
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this step, the largest residuum is found and the corresponding sample of the learning set is 
excluded. This procedure is repeated until the largest residuum is small enough or ¼ of the 
total number Nc of the samples of the learning set remain. Then, the result of the linear 
regression is accepted.  

The experiments described below follow the procedures described by Paredes and Vidal [15] 
as truly thorough tests. The tests consist of three kinds of experiments. The first one is a test 
with a synthetic data set [15] for which Bayes limit is known and one can estimate how close 
a particular approach allows one to get close to this limit. The second uses real-life data from 
the UCI Machine Learning repository [16]. The third consist of a more detailed comparison of 
the results for three selected data sets from [16].  

In the experiments, we compare results obtained by the method described here with the results 
of some standard methods and up-to date Learning Weighted metrics method by Paredes and 
Vidal [15]. In each set of the tasks, we give a short description of the problem, the source of 
data, test procedure, results, and a short discussion.  

4.1 Synthetic Data 

Synthetic data [15] is two dimensional and consists of three two dimensional normal 
distributions with identical a-priori probabilities. If � denotes the vector of the means and Cm 
is the covariance matrix, there is 

Class A: � = (2, 0.5)t,   Cm = (1, 0; 0, 1) (identity matrix) 

Class B: � = (0, 2)t,   Cm = (1, 0.5; 0.5, 1) 

Class C: � = (0, -1)t,   Cm = (1, -0.5; -0.5, 1). 

In this experiment, we used a simple strategy of using half of the total number of samples of 
the learning set nearest to the query point.  

Fig. 1 shows the results obtained by different methods for different learning sets sizes from 8 
to 256 samples and testing set of 5000 samples all from the same distributions and mutually 
independent. Each point was obtained by averaging over 100 different runs.  

In our method “QCregre”, we used a simple strategy of using half of the total number of 
samples of the learning set nearest to the query point in this experiment.  

The results are shown in Fig. 1. For other methods, i.e. 1-NN method with L2 metrics and 
variants of the LWM method by Paredes and Vidal [15], the values were estimated from the 
literature cited.  

 In Fig 1, it is seen that the use of the class probability estimation with the method 
presented here in this synthetic experiment outperforms all other methods shown in Fig. 2 and 
for a large number of samples, it quickly approaches the Bayes limit. 
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Fig. 1. Comparison of classification errors of the synthetic data for different approaches. In 
the legend, 1-NN (L2) means the 1-NN method with Euclidean metrics, CW, PW, and CPW 
are three variants of the method by Paredes and Vidal; points are estimated from the reference 
[15]. “Bayes” means the Bayes limit. QCregre means the method presented here. 

 

4.2 Data from the Machine Learning Repository 
Data sets prepared just for running with a classifier were prepared by Paredes and Vidal and 
are available on the net [17]. We used all data sets of this corpus. Each task consists of 50 
pairs of training and testing sets corresponding to 50-fold cross validation. For DNA data 
[16], Letter data (Letter recognition [16]), and Satimage (Statlog Landsat Satellite [16]) the 
single partition into training and testing set according to the specification in [16] was used. 
We also added the popular Iris data set [16] with ten-fold cross validation. 

The results obtained by the QCregre approach presented here, in comparison with data 
published in [15], are summarized in Table 1. Each row of the table corresponds to one task 
from [16]. For tasks where the data is not available from [15], only the results for 1-NN 
method with L2 metrics were amended.  

In the QCregre method, we used a rather complex strategy of robust modification of linear 
regression as described above. The interesting point is the experiment with the simplest 
strategy of using half of the samples nearest to the query point. For some tasks we obtained 
very good results. In Table 2, the results are shown together with the results for other methods 
published in [16] for tasks “Heart”, “Ionosphere”, and “Iris”.  Here, we shortly characterize 
these data sets as follows: 

The task “Heart” indicates the absence or presence of heart disease for a patient. 

For the task “Ionosphere”, the targets were free electrons in the ionosphere. "Good" radar 
returns are those showing evidence of some type of structure in the ionosphere. "Bad" returns 
are those that do not; their signals pass through the ionosphere. 

The task “Iris” is to determine whether an iris flower is of class Versicolor or Virginica. The 
third class, Setoza is deleted, as it is linearly separable from the other two. 100 samples, four 
parameters and ten-fold cross validation were used, as in [18]. 
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Table 1. 
Classification error rates for different datasets and different NN-based approaches by [18] and 
LWM1. Empty cells denote data not available. 
Dataset L2 CDM CW PW CW QcregreL2 
Australian 34.37 18.19 17.37 16.95 16.83 22.72 
balance 25.26 35.15 17.98 13.44 17.6 41.32 
cancer 4.75 8.76 3.69 3.32 3.53 4.08 
diabetes 32.25 32.47 30.23 27.39 27.33 33.54 
DNA 23.4 15 4.72 6.49 4.21 46.63 
German 33.85 32.15 27.99 28.32 27.29 42.49 
glass 27.23 32.9 28.52 26.28 27.48 49.46 
heart 42.18 22.55 22.34 18.94 19.82 22.67 
ionosphere 19.03         12.87 
iris 6.91         5.00 
led17 20.5         21.84 
letter 4.35 6.3 3.15 4.6 4.2 44.20 
liver 37.7 39.32 40.22 36.22 36.95 43.33 
monkey1 2.01         10.91 
phoneme 18.01         23.03 
Satimage 10.6 14.7 11.7 8.8 9.05 28.95 
segmen 11.81         15.87 
sonar 31.4         40.01 
vehicle 35.52 32.11 29.38 29.31 28.09 45.96 
vote 8.79 6.97 6.61 5.51 5.26 8.79 
vowel 1.52 1.67 1.36 1.68 1.24 16.81 
waveform21 24.1 0 0 0 0 52.97 
waveform40 31.66 0 0 0 0 58.12 
wine 24.14 2.6 1.44 1.35 1.24 8.68 
 

We do not describe these tasks in detail here as all of them can be found in descriptions of 
individual tasks of the Repository and also the same approach to testing and evaluation was 
used. Especially, splitting the data set into two disjoint subsets, the learning set and the testing 
set and the use of cross validation were the same as in [16] or – for the Iris database as in [18].  

We also checked some standard methods for comparison as follows: 

• 1-NN – standard nearest neighbor method [19] 

• Sqrt-NN – the k-NN method with k equal to the square root of the number of samples of 
the learning set [10] 

• Bay1 – the naïve Bayes method using ten bins histograms [20] 

• LWM1 – the learning weighted metrics by Paredes and Vidal [15]. 

For k-NN, Bayes, LWM and our method the discriminant thresholds θ  were tuned 
accordingly. All procedures are deterministic (even Bayes algorithm) and then no repeated 
runs were needed. 
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Table 2. 
Classification errors for three different tasks shown for the different methods presented in the 
Machine Learning Repository. The note [fri] means the results according to the report by 
Friedman [18]. The results computed by authors are shown in bold.  
Heart  Ionosphere  Iris  

Algorithm Test Algorithm Error Algorithm Test 

QCregre1 0.178 QCregre1 0.02013 scythe[fri] 0.03 

LWM1 0.189 Bay1 0.02013 QCregre1 0.04878 

Bayes  0.374 LWM1 0.0265 sqrt-NN 0.04879 

Discrim  0.393 

IB3  

(Aha & Kibler, 
IJCAI-1989)  0.033 mach:ln [fri] 0.05 

LogDisc  0.396 
backprop an 
average of over  0.04 mach-bth [fri] 0.05 

Alloc80 0.407 sqrt-NN 0.0537 CART 0.06 

QuaDisc  0.422 
Ross Quinlan's C4 
algorithm  0.06 mach [fri] 0.06 

Castle  0.441 nearest neighbor  0.079 mach:ds [fri] 0.06 

Cal5  0.444 
"non-linear" 
perceptron 0.08 1-NN 0.0609 

Cart  0.452 "linear" perceptron  0.093 LWM1 0.0686 

Cascade  0.467    Bay1 0.0854 

KNN  0.478    CART 0.11 

Smart  0.478    k-NN 0.8 

Dipol92 0.507       

Itrule 0.515       

BayTree 0.526       

Default 0.56       

BackProp  0.574       

LVQ 0.6       

IndCart  0.63       

Kohonen 0.693       

Ac2  0.744       

Cn2  0.767       

Radial  0.781       

C4.5  0.781       

NewId  0.844       
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5. Discussion 
In the first part of this discussion we show that the approach presented can be useful in some 
cases. Some notes on the computational complexity and relation of the distribution mapping 
exponent to the correlation dimension follow: 

The main goal of this chapter is to show that the correlation integral can be decomposed into 
local functions – the probability distribution mapping functions (PDMF). Each PDMF 
corresponds to a particular point of data space and characterizes the probability distribution in 
some neighborhood of a given point. In fact, the correlation integral is a distribution function 
of the binate distances of the data set, and PFMF is a distribution function of the distances of 
the points of the data set from a particular point, the query point x. We have also shown that – 
similarly as the correlation integral – the PDMF can be approximated by a polynomial 
function. This polynomial approximation is governed by two constants, the distribution 
mapping exponent, which can be considered as the local analog to the correlation dimension, 
and a multiplicative constant. It is proven here that this multiplicative constant is very closely 
related to the probability density at the given point. The estimation of this constant is used to 
construct a classifier.  

This classifier is slightly related to the nearest neighbor methods. It uses information about 
distances of the neighbors of different classes from the query point and neglects information 
about the direction where the particular neighbor lies.  

Nearest neighbor methods do not differentiate individual distances of nearest points. E.g. in 
the k-NN method the number of points of one and the other class among k nearest neighbors 
is essential, but not the individual distances of points. The method proposed here takes the 
individual distances into account even if these distances are a little bit hidden in the regression 
equations. The method outperforms 1-NN, k-NN as well as LWM (learning weighted metrics) 
by Paredes and Vidal [15] in many cases and can be found as the best one for some tasks.   

By use of the notion of distance, i.e. a simple transformation En � E1, the problems with the 
curse of dimensionality are easily eliminated at the loss of information on the true distribution 
of the points in the neighborhood of the query point. The curse of dimensionality [21], [22] 
means that the computational complexity grows exponentially with dimensionality n, while 
the complexity only grows linearly here. 

The method has no tuning parameters except for those related to linear regression. There is no 
true learning phase. In the "learning phase" only the standardization constants are computed 
and thus this phase is several orders of magnitude faster than the learning phase of the neural 
networks or other various methods. 

In the regression equations there are multiplicative constants Cc. We have shown that these 
constants are proportional to the probabilities p(c|x) that point x is of class c. Thus, Cc allows 
one to differentiate between the densities of the classes at point x and the distribution mapping 
exponent q has no use in this task. One can deduce that neither the correlation dimension nor 
the distribution mapping exponent govern the probability that point x is of a class c. Their role 
in the probability density estimation and classification is indirect via polynomial 
transformation only.  

There is an interesting relationship between the correlation dimension and the distribution 
mapping exponent qc. The former is a global feature of the fractal or data generating process; 
the latter is a local feature of the data set and is closely related to the particular query point. 
On the other hand, if linear regression were used, the computational procedure is almost the 
same in both cases. Moreover, it can be found that values of the distribution mapping 
exponent usually lie in a narrow interval <-10, +10> percentage around the mean value.  
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The question arises what is the relation of the distribution mapping exponent statistics to the 
overall accuracy of the classification. 
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