

Cobalt-containing Mixed Oxide Catalysts for Removal of N2O from Nitric Acid Plant Tail Gases.

Obalová, L. 2018

Dostupný z http://www.nusl.cz/ntk/nusl-387722

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).

Datum stažení: 23.05.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

YDE

ová¹⁾,

rles

ho

ased

4,4'nainhibit
hibit
hibit
lled
H=N

an onal and

e or

ınd

Cobalt-containing mixed oxide catalysts for removal of N_2O from nitric acid plant tail gases

Lucie Obalová¹, Kateřina Pacultová¹, Anna Klegová¹, Kateřina Karásková¹, František Kovanda², Květuše Jirátová³

 ¹VSB-Technical University of Ostrava, Institute of Environmental Technology 17. listopadu 15, 708 33 Ostrava, Czechia, Tel.: +420 597 321 532, E-mail: <u>lucie.obalova@vsb.cz</u>,
 ²University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czechia
 ³Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 165 02 Prague 6, Czechia

Key words: Nitrous oxide, Catalytic decomposition, Mixed oxides, Cobalt spinel

Catalytic decomposition of N_2O belongs to the Best Available Technologies for N_2O abatement from nitric acid production, which has been recognized as the biggest industrial source of N_2O emission. Many efforts have been made to develop the catalyst for efficient nitrous oxide removal from nitric acid tail gases at economically appealing low temperature (below 400 °C). However, this issue still remains an unsolved problem due to the presence of inhibiting co-reactants in the feed gas (O_2, H_2O) and NO_x and the low concentration of the N_2O pollutant.

Presented contribution summarizes our research dealing with cobalt mixed oxide catalysts for low temperature N₂O catalytic decomposition. Tuning of the catalyst properties was guided by catalytic tests of N₂O decomposition including the effect of water, oxygen and NO_x inhibitors, TPR-H₂ and in-situ work function measurements. The optimal composition of the catalyst revealed in the laboratory experiments was successfully reproduced in large scale synthesis and shaping. In the pilot plant tests (130 days), high output in N₂O removal from the tail gases of the nitric plant was reached.

Acknowledgement

This work was financially supported by the Technology Agency of the Czech Republic (project no. TA 01020336) and by the Ministry of Education, Youth and Sports of the Czech Republic in the "National Feasibility Program I", project LO1208 "Theoretical Aspects of Energetic Treatment of Waste and Environment Protection against Negative Impacts".