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Dostupný z http://www.nusl.cz/ntk/nusl-38129
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Abstract:

Johnson mean is a new characteristic of the central tendency of continuous distributions. Johnson variance

was introduced as a new characteristics of the variability of distributions. In this paper we introduce a

Johnson difference in the sample space, which is used for a construction of confidence intervals for the

Johnson mean, and replace the expression for the Johnson variance by a more suitable one.
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1 INTRODUCTION: THE JOHNSON MEAN

It has been shown by (Fabián, 2008) that a continuous probability distribution F with interval support

X ∈ R can be characterized, besides the distribution function F (x) and density f(x), by its Johnson

score, defined as follows. Mapping η : X → R, where

η(x) =





x if (a, b) = R

log(x− a) if −∞ < a < b = ∞
log (x− a)

(b− x) if −∞ < a < b < ∞
− log(b− x) if −∞ = a < b < ∞,

(1.1)

is the Johnson transformation (Johnson, 1949) adapted for arbitrary interval support X = (a, b) ∈ R.

The Johnson score of distribution F with continuously differentiable density is

T (x) =
1

f(x)
d

dx

(
− 1

η′(x)
f(x)

)
(1.2)

where η is given by (1.1).

The philosophy behind this concept is the following. Any distribution F with interval support

X 6= R is viewed as a transformed ’prototype’ G with support R, that is, its distribution function is

F (x) = G(η(x)). Denoting by g the density of G, the density of F is

f(x) = g(η(x))η′(x), x ∈ X , (1.3)

where η′(x) = dη(x)/dx is the Jacobian of the transformation. Let us denote the score function of G

by Q so that

Q(y) = −g′(y)
g(y)

.

By setting y = η(x) we obtain from (1.2) and (1.3)

T (x) =
1

g(y)η′(x)
d

dy
(−g(y))

dy

dx
= Q(η(x)). (1.4)

By (1.1), the Johnson score of a prototype (a distribution with support R) is its score function. By

(1.4), the Johnson score of a distribution with interval support X 6= R is the transformed score func-

tion of its prototype. By (1.4) is defined a unique and useful scalar inference function for arbitrary

continuous distribution F satisfying the usual regularity conditions. We note that the Johnson trans-

formation was chosen not only due to its mathematical convenience for many distributions used in

statistics, but also on the base of other reasons discussed in (Fabián, 2008).

A unique solution x∗ of equation

T (x) = 0 (1.5)
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we call a Johnson mean of distribution F. Due to (1.4), the solution of (1.5) is unique if G is unimodal.

Confining ourselves to distributions with unimodal prototypes, the Johnson mean was shown to char-

acterize the typical value of distributions including the heavy-tailed distributions without mean, being

a value near the mean of the light-tailed ones.

From the point of view of the structure of the parameters, there are two different types of distri-

butions with support X 6= R :

i/ Distributions of the first type are the transformed distributions, prototypes of which have the

location parameter µ. These distributions have a parameter

t = η−1(µ),

called a Johnson parameter, the value of which is the Johnson mean of the distribution. Denoting

by f(x, t) the density and T (x; t) the Johnson score of a distribution of this type, it was shown that

function

S(x; t) = η′(t)T (x; t)

equals to the likelihood score l(x; t) = (∂/∂t) log f(x; t) for parameter t. The value

I(t) = ES2 = [η′(t)]2ET 2 (1.6)

thus appears to be the Fisher information for the Johnson parameter. An example is the exponen-

tial distribution with density f(x; λ) = λ−1e−x/λ and Johnson score T (x;λ) = x/λ− 1 with Johnson

parameter λ and Fisher information I(λ) = 1/λ2.

ii/ Distributions of the second type are the transformed distributions with prototypes without

location parameter. The Johnson score of them appears to be a new function and the Johnson mean,

a function x∗ = x∗(θ) of the parameters, is a new characteristic of their central tendency. For some

two-parameter distributions, x∗ is the ratio of the parameters. For example, the gamma distribution

with density f(x;α, γ) = γα

xΓ(α)x
αe−γx and Johnson score T (x;α, γ) = γx − α has Johnson mean

x∗ = α/γ.

2 JOHNSON DISTANCE

Consider distribution Ft of the first type mentioned above. Its Johnson mean is x∗ = t so that

T (t; t) = 0. (2.1)

Let us measure the difference (the oriented distance) between x1 ∈ X and x2 ∈ X as a difference of

values of the Johnson score

dt(x1, x2) = T (x1; t)− T (x2; t). (2.2)
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Let Xn = (X1, ..., Xn) be random sample drawn from Ft. Due to (2.1),

1
n

n∑

i=1

dt(xi, t) =
1
n

n∑

i=1

T (xi; t)

so that the mean difference of the observed values from the maximum likelihood estimate t̂ of t is zero.

Thus (2.2) can be considered as a ’maximum likelihood distance’ in the sample space of distribution

Ft.

We suggest generalization of (2.2) for distributions of the second type (and, hence, for arbitrary

F ).

Definition 1 Let T be the Johnson score of distribution F with support X and Johnson mean x∗.

Define a Johnson difference of points x1, x2 ∈ X by

d∗(x1, x2) = T (x2)− T (x1). (2.3)

By (2.3) we define a distance of statistical individuals x1, x2 ∈ X in the sample space of distribution

F , a simple distance compatible in particular cases with the maximum likelihood estimator. Johnson

distances |d∗(x1, x2)| for a few distributions are given in Table 1.

Table 1. Johnson distance in the sample space of some distributions.

Distribution f(x) T (x) D(x1, x2)

normal 1√
2πσ

e−
1
2 ( x−µ

σ )2
x−µ
σ2

|x2−x1|
σ2

lognormal c√
2πx

e−
1
2 log2( x

t )c

c log(x
t )c c2| log x2

x1
|

Weibull c
x (x

t )ce−( x
t )c

c((x
t )c − 1) c

t |xc
2 − xc

1|
beta-prime 1

xB(p,q)
xp

(x+1)p+q
qx−p
x+1

q|x2−x1|
(x1+1)(x2+1)

3 ESTIMATES OF JOHNSON MEAN

Let Θ ⊂ Rm and {f(x, θ), θ ∈ Θ} be a family of distributions with support X ⊆ R. In what follows

we use a notation T (x; x∗, θ) instead of T (x; θ), accenting superfluously a real parameter x∗ = t for

distributions of the first type, and showing a virtual parameter x∗ for distributions of the second type.

For the gamma distribution, for instance, T (x; x∗, θ) = γ(x− x∗).

Having random sample Xn from Fθ with unknown θ, the estimate x̂∗ of the Johnson mean x∗ is

either the maximum likelihood estimate of the Johnson parameter for distributions of the first type,

or, in cases of distributions of the second type, it can be constructed from the maximum likelihood

estimate θ̂ of vector θ by setting x̂∗ = x∗(θ̂). However, Fabián (2008) has shown that, in some

important particular cases, x∗ can be estimated by a direct way. Denote by

T ′x∗ =
∂T (x; x∗, θ)

∂x∗
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the derivative of the Johnson score according to virtual parameter x∗. By Proposition 2, Fabián (2008),

the estimate of x̂∗ of x∗ from the equation
n∑

i=1

T (xi;x∗, θ) = 0 (3.1)

is AN(x∗, ω2), where

ω2 =
ET 2

(ET ′x∗)2
(3.2)

and where AN means ’asymptotically normal’.

4 CONFIDENCE INTERVALS FOR JOHNSON MEAN

The Johnson distance can be used for establishing confidence intervals for Johnson mean estimated

from (3.1).

Theorem 1 Let assumptions of Definition 1 hold and let x̂∗ be the estimate of x∗ from (3.1) based

on sample Xn drawn from F . Let d∗ be given by (2.3), T ′(x∗) = ∂T (x;x∗, θ)/∂x|x=x∗ 6= 0 and ω2 be

given by (3.2). Random variable
√

nd∗(x∗, x̂∗) is AN(0, [T ′(x∗)]2ω2).

Proof. By Proposition 2 (Fabián, 2008),
√

n(x̂∗ − x∗) is AN(0, ω2) where ω2 is given by (3.2). As

T ′(x∗) 6= 0,
√

n[T (x∗; x̂∗, θ) − T (x̂∗; x̂∗, θ)] is AN(0, [T ′(x∗)]2ω2) in distribution according Theorem

A, Chap.3.1 (Serfling, 1980). 2

Corollary. The normalized Johnson difference

√
nD(x∗, x̂∗) =

√
n

d∗(x∗, x̂∗|x̂∗)
|T ′(x∗)|ω =

T (x∗; x̂∗, θ)
|T ′(x∗)|ω/

√
n

(4.1)

is AN(0, 1).

After replacing x∗ and ω in the denominator of (4.1) by their estimates x̂∗ and ω̂, respectively, we

obtain the approximate (100− α)% confidence interval for x∗ from equation

|T (x∗; x̂∗, θ)| ≤ λn|T ′(x̂∗)|ω̂, (4.2)

where λn = uα/2/
√

n and uα/2 is the (α/2)-th quantile of the normal distribution.

The densities and Johnson scores of some commonly used two-parameter distributions, together

with their Johnson mean x∗ and variance ω2 of its estimate x̂∗ computed in (Fabián, 2008) are given

in Table 2.

We find the (100−α)% confidence intervals for the Johnson mean of them. Since they all are two-

parameter distributions, the estimate of ω can be constructed not only from the maximum likelihood

estimates of the parameters, but in some cases directly using the second equation of the system of the

Johnson score moment equations (Fabián, 2008) in the form

1
n

n∑

i=1

T 2(xi; x∗, θ) = ET 2. (4.3)
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The first two distributions in Table 2 are the distributions with support R.

Normal distribution: The maximum likelihood equations and equations (3.1) and (4.3) are identi-

cal. x̂∗ is the arithmetic mean with the usual confidence bounds.

Logistic distribution: By Table 2, x̂∗ = µ̂ and ω̂2 = 3σ̂2 where µ̂ and σ̂ are either the maximum

likelihood or Johnson score moment estimates. Since T ′µ(µ̂) = 1/2σ̂, condition (4.2) appears to be

|e µ̂−µ
σ̂ − 1| ≤ λnρ(e

µ̂−µ
σ̂ + 1) where ρ =

√
3/2 so that

µ ∈
(

µ̂− σ̂ log
1− λnρ

1 + λnρ
, µ̂ + σ̂ log

1 + λnρ

1− λnρ

)
.

Table 2. Density, Johnson score, Johnson mean and variance of the estimate of the Johnson mean

of some distributions.

Distribution f(x) T (x) x∗ ω2

normal (R) 1√
2πσ

e−
1
2 ( x−µ

σ )2
x−µ
σ2 µ σ2

logistic (R) 1
σ

e
x−µ

σ

(1+e
x−µ

σ )2

1
σ

e
x−µ

σ −1

e
x−µ

σ +1
µ 3σ2

lognormal c√
2πx

e−
1
2 log2( x

t )c

c log(x
t )c t t2

c2

Weibull c
x (x

t )ce−( x
t )c

c((x
t )c − 1) t t2

c2

hyperbolic 1
2K0(c)x

e−
c
2 ( x

t + t
x ) c

2 (x
t − t

x ) t 2
K(c)

t2

c2

gamma γα

xΓ(α)x
αe−γx γx− α α/γ α/γ2

inverse gamma γα

xΓ(α)x
−αe−γ/x α− γ/x γ/α γ2/α3

beta-prime 1
xB(p,q)

xp

(x+1)p+q
qx−p
x+1 p/q p(p+q)2

q3(p+q+1)

Pareto (a,∞) cac/xc+1 (c+1)(x−a)
x − 1 c+1

c a a2(c+1)2

c3(c+2)

beta (0, 1) xp−1(1−x)q−1

B(p,q) (p + q)x− p p
p+q

pq
(p+q+1)(p+q)2

Here Γ is the gamma function, B the beta function, K(α) = (K2(α)
K0(α) − 1) where Kν is the McDonald

function. If not indicated, X = (0,∞).

Next three distributions in Table 2 are the distributions with support (0,∞) which are of the first

type, i.e., with Johnson parameter t. The Johnson mean is the value of the Johnson parameter.

Lognormal distribution: By Table 2, T (x; t, c) = c2 log(x/t), T ′(t) = c2/t. By (3.1), t̂ is the

geometric mean. By (4.2), D(t, t̂) = ĉ log(t/t̂) so that

t ∈ (t̂e−λn/ĉ, t̂eλn/ĉ).

Since ET 2 = 1, it follows from (4.3) that ĉ2 = n/
n∑

i=1

log2(xi/t̂).

Weibull distribution: Here T (x; t, c) = (x/t)c − 1, T ′(t) = c/t and D(t; t̂) = (t/t̂)ĉ − 1 so that

t ∈ (t̂(1− λn)1/ĉ, t̂(1 + λn)1/ĉ)
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where t̂ and ĉ are the maximum likelihood estimates or solutions of (3.1) and (4.3) with ET 2 = 1.

Hyperbolic distribution: Here T (x; t, c) = c
2 (x

t − t
x ) and T ′(t) = c/t. From (3.1), t̂ =

√
x̄x̄H where x̄

is the mean and x̄H = n/
∑n

i=1 1/xi is the harmonic mean. Using ω from Table 2, we obtain condition

(4.2) in the form
∣∣t/t̂− t̂/t

∣∣ ≤ λn

√
2/K(ĉ).

The estimate ĉ can be obtained from (4.3), which appears to be
∑n

i=1 x2
i

nt̂2
+

nt̂2∑n
i=1 1/x2

i

= 2
K2(c)
K0(c)

.

The remaining distributions in Table 2 are the distributions of the second type without Johnson

parameter.

Gamma distribution: Here T (x; x∗, γ, α) = γ(x− x∗) so that from (3.1) x̂∗ = x̄. Since D(x∗; x̄) =
√

α̂|x∗/x̄− 1| and ET 2 = α, we obtain

x∗ ∈ (x̄− λnρ̂, x̄ + λnρ̂) (4.4)

where ρ̂2 = 1/α̂ = 1
n

∑n
i=1 x2

i /x̄2 − 1 using (4.3). (4.4) is the usual confidence interval for the mean

(the reason is the linear Johnson score of the distribution).

Inverse gamma distribution: T (x;x∗, γ, α) = α(1 − x∗/x) so that from (3.1) x̂∗ = x̄H . Since

D(x∗; x̂∗) =
√

α̂(1− x̂H/x∗) and ET 2 = α, we obtain

x∗ ∈
(

x̄H

1 + λnρ̂
,

x̄H

1− λnρ̂

)

where ρ̂2 = 1/α̂ = (x̄2
H/ 1

n

∑n
i=1 1/x2

i − 1) by (4.3).

Beta-prime distribution: T (x; x∗, p, q) = q(x−x∗)/(x+1) and T ′(x∗) = q/(1+x̂∗) so that condition

(4.2) appears to be |x∗ − x̂∗| ≤ λnω̂(x∗ + 1)/(x̂∗ + 1) and the confidence interval is

x∗ ∈
(

x̂− λnρ̂

1 + λnρ̂
,
x̂ + λnρ̂

1− λnρ̂

)

where ρ̂ = ω̂/(x̂∗ + 1). Explicit formulas for x̂∗ and ω̂ see Fabián (2008).

Pareto distribution: Using Table 2, the Johnson score of the Pareto distribution with support

(a,∞) is T (x; x∗, c) = (c + 1)(1 − a/x) − 1 = c(1 − x∗/x) where x∗ = c+1
c a. Making use of (3.1),

x̂∗ = x̄H . Since T ′(x∗) = c/x∗ and ET 2 = c/(c+2) so that ω = x̂∗/
√

c(c + 2), the confidence interval

for Johnson mean is

x∗ ∈
(

x̄H

1 + λnρ̂
,

x̄H

1− λnρ̂

)

where ρ̂ = 1/
√

ĉ(ĉ + 2) = 1
n

∑n
i=1(1− x∗/xi)2 = x̄2H/(x̄H − x̄2H)1/2 and where x̄2H = n/

∑n
i=1 1/x2

i .

Beta distribution: The Johnson mean x̂∗ = p/(p+q) = x̄ from (3.1). T (x; x∗, p, q) = (p+q)(x−x∗),

T ′(x∗) = p + q, ET 2 = pq/(p + q + 1) so that ω2 = pq/(p + q + 1)(p + q)2 = σ2 and

x∗ ∈ (x̄− λnσ̂, x̄ + λnσ̂),

where σ̂2.
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5 VARIANCE OF JOHNSON MEAN AND JOHNSON VARI-

ANCE

This paper is a continuation of the paper by (Fabián, 2008) where value (3.2) was proposed to be

considered a measure of variability of distributions. However, we later noticed that ω2 of some

distributions of the second type is finite. Since there is no reason for such behavior of the measure

of the variability of any distribution, it seems to us now that the measure proposed by (Fabián,

2006, 2007) is the more suitable one. It is the reciprocal value of generalization of (1.6) for arbitrary

distribution.

Definition 2 Let T be the Johnson score of distribution F with support X and Johnson mean x∗.

The value

ω∗2 =
1

[η′(x∗)]2ET 2
(5.1)

will be called a Johnson variance.

According to Proposition 1 (Fabián, 2008), for distributions of the first type it holds that ω∗ = ω.

This relation holds true also for some distributions of the second type, such as the gamma, inverse

gamma and Burr XII distributions. However, in a general case are ω2
∗ and ω2 different. Let us give a

simple example.

EXAMPLE 5.1 Johnson variance and variance of the estimate of Johnson mean of the power distri-

bution.

Consider the power distribution with support (0,1) and density f(x;α) = αxα−1. According to

(1.2), its Johnson score is

T (x) =
1

αxα−1

d

dx
(−x(1− x)αxα−1) = (α + 1)x− α

so that the Johnson mean x∗ = α
α+1h equals to the mean. Since ET2 = α/(α + 2) and 1/η′(x∗) =

x∗(1− x∗) = α/(α + 1)2,

ω2
∗ =

1
[η′(x∗)]2ET2 =

α(α + 2)
(α + 1)4

.

On the other hand, T (x) = (α + 1)(x− x∗) and T ′x∗ = −(α + 1) so that

ω2 =
ET2

(ET ′x∗)2
=

α

(α + 1)2(α + 2)
.

The variance of the estimate of the Johnson mean equals to the usual variance [cf. (Balakrishnan,

Nevzorov, 2003)]. Both measures ω2
∗ and ω2 as functions of 1/α are compared in Fig. 1. Apart from

the absolute values, the course of both curves is very similar, maxima are at α =
√

2 − 1 for ω2
∗ and

at α = (
√

5− 1)/2 for ω2. Power distributions corresponding these maxima are plotted in Fig. 2.
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Figure 2. Power distributions with maximal Johnson variance (full line) and maximal variance

(dotted line).

Other distributions of the second type with ω∗ 6= ω discussed in Fabián (2008) or in the present

paper are given in Table 3.

Table 3. Johnson variance and variance of the estimate of the Johnson mean of some distributions

of the second type.

Distribution X f(x) ω∗2 ω2

beta-prime (0,∞) 1
xB(p,q)

xp

(x+1)p+q

p(p+q+1)
q3

p(p+q)2

q3(p+q+1)

Fisher-Snedecor (0,∞) (p/q)p

B(p,q)
xp−1

( p
q x+1)p+q

p+q+1
pq

(p+q)2

pq(p+q+1)

Pareto (a,∞) cac/xc+1 a2(c+1)2(c+2)
c3

a2(c+1)2

c3(c+2)

beta (0, 1) xp−1(1−x)q−1

B(p,q)
p
q

p+q+1
(p+q)2

pq
(p+q+1)(p+q)2

EXAMPLE 5.2 Confidence intervals for distributions with equal Johnson variances.

The theoretical confidence intervals (b−, b+) for the Johnson mean x∗ = 2 of some distributions

from Table 2 with the values of parameters chosen such that all distributions have the Johnson variance

ω∗ = 1 are given for sample length n = 50 in Table 4. Except the gamma and beta distributions

with usual confidence interval, Johnson confidence intervals are non-symmetric, the heavier-tailed

distribution the more skewed to the right.
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Table 4. Theoretical confidence intervals for n = 50, α = 0.05 for some distributions with

x∗ = 2, ω∗ = 1.

Distribution b− b+

Weibull 1.7004 2.2603

gamma 1.7238 2.2772

lognormal 1.7412 2.2973

beta-prime 1.7462 2.3054

inverse gamma 1.7565 2.3218

The results of the simulation experiments are in an excellent agreement with the predicted intervals.

As an example, for the beta-prime distribution (x∗ = 2, ω∗ = 1) we obtained after the 5000 simulation

experiments with sample length n = 50 the average value of the sample Johnson mean x̄∗ = 2.0090

with standard deviation σ̂x∗ = 0.1343, which is equal to the theoretical value ω/
√

50 (according to

the formula in Table 2, ω = 0.95). The average confidence interval was (b−, b+) = (1.7552, 2.3143),

shifted with respect to the predicted interval on x̂∗ − x∗ = 0.009.
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