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1 JOHNSON SCORE AND JOHNSON MEAN

It has been shown by (Fabián, 2008) that a continuous probability distribution F with interval support
X ∈ R can be characterized, besides the distribution function F (x) and density f(x), by its Johnson
score, defined as follows. Mapping η : X → R, where

η(x) =


x if (a, b) = R

log(x− a) if −∞ < a < b = ∞
log

(x− a)
(b− x)

if −∞ < a < b < ∞
− log(b− x) if −∞ = a < b < ∞,

(1.1)

is the Johnson transformation (Johnson, 1949) adapted for arbitrary interval support X = (a, b) ∈ R.

Definition 1 (Fabián 2001). The Johnson score of distribution F with interval support X and
continuously differentiable density is

T (x) =
1

f(x)

d

dx

(
− 1

η′(x)
f(x)

)
(1.2)

where η is given by (1.1).

The philosophy behind this concept is the following. Any distribution F with interval support
X ̸= R is viewed as a transformed ’prototype’ G with support R, that is, its distribution function is
F (x) = G(η(x)). Denoting by g the density of G, the density of F is

f(x) = g(η(x))η′(x), x ∈ X , (1.3)

where η′(x) = dη(x)/dx is the Jacobian of the transformation. Let us denote the score function of G
by Q so that

Q(y) = −g′(y)

g(y)
.

By setting y = η(x) we obtain from (1.2) and (1.3)

T (x) =
1

g(y)η′(x)

d

dy
(−g(y))

dy

dx
= Q(η(x)). (1.4)

By (1.1), the Johnson score of a prototype (a distribution with support R) is its score function. By
(1.4), the Johnson score of a distribution with interval support X ≠ R is the transformed score func-
tion of its prototype. By (1.4) is defined a unique and useful scalar inference function for arbitrary
continuous distribution F satisfying the usual regularity conditions. We note that the Johnson trans-
formation was chosen not only due to its mathematical convenience for many distributions used in
statistics, but also on the base of other reasons discussed in (Fabián, 2008).

A unique solution x∗ of equation
T (x) = 0 (1.5)

we call a Johnson mean of distribution F. Due to (1.4), the solution of (1.5) is unique if G is unimodal.
Confining ourselves to distributions with unimodal prototypes, the Johnson mean was shown to char-
acterize the typical value of distributions including the heavy-tailed distributions without mean, being
a value near the mean of the light-tailed ones.

From the point of view of the structure of the parameters, there are two different types of distri-
butions with support X ≠ R :

i/ Distributions of the first type are the transformed distributions, prototypes of which have the
location parameter µ. These distributions have a parameter

t = η−1(µ),
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called a Johnson parameter, the value of which is the Johnson mean of the distribution. Denoting
by f(x, t) the density and T (x; t) the Johnson score of a distribution of this type, it was shown that
function

S(x; t) = η′(t)T (x; t)

equals to the likelihood score l(x; t) = (∂/∂t) log f(x; t) for parameter t. The value

I(t) = ES2 = [η′(t)]2ET 2 (1.6)

thus appears to be the Fisher information for the Johnson parameter. An example is the exponential
distribution with density f(x;λ) = λ−1e−x/λ and Johnson score T (x;λ) = x/λ − 1 with Johnson
parameter λ and Fisher information I(λ) = 1/λ2.

ii/ Distributions of the second type are the transformed distributions with prototypes without
location parameter. The Johnson score of them appears to be a new function and the Johnson mean,
a function x∗ = x∗(θ) of the parameters, is a new characteristic of their central tendency. For some
two-parameter distributions, x∗ is the ratio of the parameters. For example, the gamma distribution
with density f(x;α, γ) = γα

xΓ(α)x
αe−γx and Johnson score T (x;α, γ) = γx − α has Johnson mean

x∗ = α/γ.

2 JOHNSON SCORE MOMENTS AND JOHNSON VARI-
ANCE

Definition. (Fabián 2001). Moments of the Johnson score T of distribution F with support X

Mk = ET k =

∫
X
T (x)k dF (x), k = 1, 2, ...

will be called Johnson score moments.

Proposition. The k−th order Johnson score moment of transformed distribution

F (x) = G(η(x)) (2.1)

coincides with the k−th order score moment of its prototype G.

Proof. Making use of (2.1) and (1.4),∫
X
T k(x) dF (x) =

∫
X
Qk(η(x)) dG(η(x)) =

∫ ∞

−∞
Qk(y) dG(y).

2

It follows from (1.4) that if g(y) = O(e−y) then Q(y) = O(1). The Johnson scores of heavy-
tailed distributions are bounded. Although the usual moments mk =

∫
xkdF (x) of many heavy-tailed

distributions do not exist or do exist only within a certain range of parameters, the existence of the
corresponding Johnson score moments is obvious.
Definition 2 (Fabián 2006, 2008). Let T be the Johnson score of distribution F with support X and
Johnson mean x∗. The reciprocal value of generalization of (1.6) for arbitrary distribution,

ω∗
2 =

1

[η′(x∗)]2ET 2
(2.2)

is called Johnson variance.
It was shown that in Fabián (2006, 2007, 2008) that (2.2) appears to be a suitable description

of the variability of distributions both heavy-tailed (the usual variance of which do not exist) and
light-tailed ones.

In cases of the three most encountered supports, Johnson variance is

ω2
∗ =

1

ET 2
·

 1 if X = R
x2
∗ if X = (0,∞)

x2
∗(1− x2

∗) if (0, 1).
(2.3)
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3 JOHNSON SCORE MOMENT ESTIMATES

Let Θ ⊂ R and Xn = (X1, ..., Xn) be a random sample of size n with components i.i.d. by Fθ0 from a
general parametric family F = {Fθ(x) : θ ∈ Θ}. We are interested in estimators of the true parameter

θ0 ∈ Θ, i.e. in sequences of Rm−valued measurable mappings θ̂n = θ̂n(X1, ..., Xn). The maximum
likelihood method provides m likelihood scores, whereas the Johnson score is a unique function.
Nevertheless, it can be used for the estimation of m-dimensional parameter θ using a modification of
the moment method, utilizing the natural estimators of the corresponding Johnson score moments of
the empirical distribution function Fn(x) = n−1

∑n
i=1 δ(xi ≤ x).

Definition. Let TFθ
be the Johnson score of a distribution Fθ regular in the usual sense (e.g. Serfling

(1980, pp. 144) on support X and Mk(θ), k = 1, ...,m be the corresponding moments. Define the
Johnson score moment estimate as a (X1, ..., Xn)-measurable solution of systems of equations

θ̂n :
1

n

n∑
i=1

T k
Fθ
(Xi) = Mk(θ), 1 ≤ k ≤ m. (3.1)

Obviously, the system (3.1) can be written in the equivalent form∫
X
ΠFθ

(x) dFn(x) = 0,

where, denoting by comma the matrix transpose,

ΠFθ
(x)′ = [Πk,θ(x)]

′ = [TFθ
(x)k −Mk(θ)]

′ : 1 ≤ k ≤ m).

Estimate (3.1) is an M -estimate so that we can immediately state the following theorem:

Theorem 1 (Fabián, 2001). Let TFθ
and Mk(θ) be continuously differentiable according to θj. Let

for each θ ∈ Θ exist finite Dj,k(θ), j, k = 1, ...,m, where

Dj,k(θ) =

∫
X

∂Πk,θ(x)

∂θj
dFθ(x).

Set D(θ) = [Djk(θ)]j,k=1,...,m. Let Det D(θ) ̸= 0. Then θ̂ = (θ̂n) exists, is strongly consistent and
asymptotically normal with the asymptotic variance-covariance matrix

B(θ̂n) = D−1(θ0)Q(D−1(θ0))
′ (3.2)

where Q =
∫
X Πθ0(x)Πθ0(x)

′ dFθ0(x).

In the case of the member of the family with bounded Johnson score the Johnson score moment
estimates are robust (B-robust in the sense of Hampel et al. (1986), whereas the maximum likelihood
estimates are often sensitive to outliers.

4 ESTIMATES OF THE JOHNSON MEAN AND JOHN-
SON VARIANCE

In this report we study estimates of Johnson mean and Johnson variance of two-parameter distribu-
tions. The estimates of x∗ and ω2

∗ can be constructed from either the maximum likelihood estimate

or the Johnson moment estimate θ̂ of vector θ by setting x̂∗ = x∗(θ̂) and ω̂∗ = ω(θ̂). However, we
showed (Fabián, 2008) that in some particular cases x∗ can be estimated directly from the first or
first two equations of the system (3.1)

n∑
i=1

T (xi; θ) = 0 (4.1)

1

n

n∑
i=1

T 2(xi; θ) = ET 2. (4.2)
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In some particular cases, the equation (4.1) can be written in a form

n∑
i=1

T (xi;x∗) = 0. (4.3)

Let us denote by

ω2 =
ET 2

(ET ′
x∗
)2

(4.4)

with derivative according to the virtual parameter x∗. Let AN means, as usually, ’asymptotically
normal’. By Proposition 2, Fabián (2008), the estimate of x̂∗ of x∗ from (4.3) is AN(x∗, ω

2).

5 RELATED PARAMETRIC FAMILIES

In this section we give an overview of related parametric families, consisting of the prototype G with
support R and all transformed families F = Gη−1 on arbitrary interval supports (a, b). The densities
and Johnson scores of the families are given in general forms λf(u) and T (u), where λ and u are
specific particular supports. By the use of the proper λ and u, described in every subsection, one can
easily obtain the explicit formulas for the concrete family with arbitrary support.

5.1 Related families with the prototype with location parameter

The explicit expressions for distributions with supports R, (a,∞) and (a, b) can be obtained from the
general forms described in this subsection by setting

u =


ec(y−µ) if X = R(
x−a
τ−a

)c

if X = (a,∞)(
(z−a)(b−ν)
(ν−a)(b−z)

)c

if X = (a, b)

and

λ =


c if X = R
c

x−a if X = (a,∞)
c(b−a)

(z−a)(b−z) if X = (a, b)
(5.1)

where µ is the location parameter and
c = 1/σ

is the reciprocal scale. From now on we will consider for simplicity the partial supports R, (0,∞) and
(0, 1) only. The Johnson mean equals to the Johnson parameter

η−1(µ) =

{
τ = eµ if X = (0,∞)

ν = eµ

1+eµ if X = (0, 1)
(5.2)

and the Fisher information of distributions is I∗ = [η′(x∗)]
2ET 2 where ET 2 = c2δ. The Johnson

variance is

ω2
∗ =


1

δc2 if X = R
1

δc2 τ
2 if X = (0,∞)

1
δc2

ν2

(1−ν)2 if X = (0, 1)

Normal family

f(x) =
λ√
2π

e−
1
2 log2 u T (x) = c log u

The distributions of the triplet with supports X = R, (0,∞) and (0, 1) are the normal, lognormal
and Johnson UB distributions. δ = 1. Johnson mean and Johnson variance of the normal distribution
are identical with the usual mean and variance.
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Gumbel family
f(u) = λue−u T (u) = c(u− 1)

This is a non-symmetric family skewed to the right with unbounded Johnson scores in the right part
and bounded in the left part of the support. The members with supports X = R and (0,∞) are the
Gumbel and Weibull distributions, the latter with special forms Rayleigh and Maxwell distributions.
The member on (0, 1) has no name. δ = 1.

Extreme value family

f(u) = λ
1

u
e−1/u T (u) = c(1− 1/u)

This is a non-symmetric family of distributions skewed to the left with unbounded Johnson scores
in the left part and bounded in the right part of the support. The prototype of the family is symmetric
according to the axis x = 0 with the prototype of the Gumbel family. The members with supports
X = R and (0,∞) are the extreme value and Fréchet distributions, the member on (0, 1) has no name.
δ = 1.

Logistic family

f(u) =
u

(1 + u)2
T (u) = c

u− 1

u+ 1

Distributions of the logistic family have the heavy-tailed densities and bounded Johnson scores.
The members with supports X = R and (0,∞) are the logistic and log-logistic distributions, the
member on (0, 1) has no name. δ = 1/3.

Cauchy family

f(u) =
λ

π

1

1 + u2
T (u) = c

2u

1 + u2

Distributions of the Cauchy family have heavy-tailed densities and redescending Johnson scores.
The members with supports X = R and (0,∞) are the Cauchy and log-Cauchy distributions, the
member on (0, 1) has no name. δ = 1/2.

Hyperbolic family

f(u) =
λ

2K0(1)
e−

1
2 (u+1/u) T (u) =

c

2
(u− 1/u)

Distributions of the hyperbolic family have very light-tailed densities and unbounded Johnson
scores. From this extended family, only the hyperbolic distribution with support (0,∞) is used.
δ = 2K2(1)/K0(1)− 1 = K, say, where Kβ is the McDonald function.

5.2 Related families with prototypes without location

In this subsection we give an overview of general forms λf(u) and T (u) of densities and Johnson scores
of parametric families with prototypes given by parametric forms without location parameter. The
explicit expressions for the triplet of distributions with supports R, (0,∞) and (0, 1) can be obtained
from the general forms by setting

u =


ey if X = R
x if X = (0,∞)
z

1−z if X = (0, 1)

and

λ =


1 if X = R
1
x if X = (0,∞)
1

z(1−z) if X = (0, 1)

We give explicit expressions for the Johnson mean and Johnson variances of triplets of distributions.

Gamma family

f(u) =
γα

λΓ(α)
uαe−γu T (u) = γu− α
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This is a non-symmetric family skewed to the right with unbounded Johnson scores in the right
part and bounded in the left part of the support. The member with support X = (0,∞) is the
gamma distribution with a special form the chi-squared distribution, ET 2 = α. The Johnson mean
and Johnson variance of the triplet are

prototype gamma y∗ = log(α/γ) ω2
∗ = 1/α

gamma x∗ = α/γ ω2
∗ = α/γ2

gamma on (0, 1) z∗ = α/(α+ γ) ω2
∗ = α/(γ + α)2

Inverse gamma family

f(u) =
λγα

Γ(α)
u−αe−γ/u T (u) = α− γ/u

This is a non-symmetric family skewed to the right, heavy-tailed in the right part of the support.
The prototype of the family is symmetric according to the axis x = 0 with the prototype of the gamma
family. However, only the inverse gamma distribution with support (0,∞) is used. The Johnson mean
and Johnson variance are

prototype inv. gamma y∗ = log γ/α ω2
∗ = 1/α

inverse gamma x∗ = γ/α ω2
∗ = γ2/α3

inv. gamma on (0, 1) z∗ = γ/(γ + α) ω2
∗ = γ2/α(γ + α)2

Beta family

f(u) =
λ

B(p, q)

up

(u+ 1)p+q
T (u) =

qu− p

u+ 1

is a heavy-tailed family. Its prototype is known as the generalized logistic of the third kind (Balakr-
ishnan, Nevzorov, 2003) and distribution on (0,∞) as the beta-prime or the beta of the second kind.
By setting u and λ into above expressions we obtain the density of the beta distribution in the form
f(x) = B(p, q)−1zp−1(1− z)q−1 and a linear Johnson score T (x) = (p+ q)x−p. ET 2 = pq/(p+ q+1).
The Johnson mean and Johnson variance of distributions of the beta triplet are

prototype beta y∗ = log p/q ω2
∗ = p+q+1

pq

beta-prime x∗ = p/q ω2
∗ = p(p+q+1)

q3

beta z∗ = p
p+q ω2

∗ = p(p+q+1)
q(p+q)2

For p = q = 1 we have the it uniform distribution with z∗ = 1/2 and ω2
∗ = 3/4.

Fisher-Snedecor family

f(u) =
λ(p/q)p

B(p, q)

up−1

(pqu+ 1)p+q
T (u) =

p(u− 1)

pu/q + 1

is a variant of the beta family. ET 2 = pq/(p + q + 1). Johnson means and Johnson variances of the
Fisher-Snedecor triplet are

prototype y∗ = 0 ω2
∗ = p+q+1

pq

Fisher-Snedecor x∗ = 1 ω2
∗ = (p+q+1)

pq

Fisher-Snedecor on (0, 1) z∗ = 1/2 ω2
∗ = 4 (p+q+1)

pq

Burr family

f(u) =
λkcuc

(uc + 1)k+1
T (u) = c

kuc − 1

uc + 1

heavy-tailed family with the used member on support (0,∞). ET 2 = k/(k + 2). Johnson means and
Johnson variances of the Burr triplet are

prototype Burr y∗ = c−1 log(1/k) ω2
∗ = k+2

c2k

Burr x∗ = (1/k)1/c ω2
∗ = k+2

c2k2/c+1

Burr on (0, 1) z∗ = 1
k1/c+1

ω2
∗ = k+2

c2k(k1/c+1)2

6



5.3 Other families

In this subsection we present some families with specific support without attempts to generalize them
to obtain the whole related family. The families are thus described by the full forms of the densities
and Johnson scores.

Pareto family has support (a,∞) and density

f(x) =
cac

xc+1
.

By (1.2),
T (x) = −1− (x− a)f ′(x)/f(x) = c(1− x∗/x)

where x∗ = a(c+1)/c is the Johnson mean. Since ET 2 = c/(c+2) and η′(x∗) = (log(x− a))′|x=x∗ =
1/(x∗ − a),

ω2
∗ =

a2(c+ 2)2

c2
1

c2
(c+ 2)2

c2
=

a2(c+ 2)

c3
.

American version of the Pareto family with support (0,∞) has densities and Johnson scores is

f(x) =
αλα

(x+ λ)α+1
T (x) =

αx− λ

x+ λ

with Johnson mean x∗ = λ/α. It in fact belongs to distributions described in previous subsection.
ET 2 = α/(α+ 2) so that by (4.4) ω2

∗ = λ2(α+ 2)/α3.

Log-gamma family with support X = (1,∞) is given by

f(x) =
cα

Γ(α)
(log x)α−1x−(c+1). (5.3)

In this case is better to use mapping η(x) : (1,∞) → R

η(x) = log(log x).

Since η′(x) = 1/(x log x), by (1.2)

T (x) =
1

f(x)

d

dx

(
−(log x)cx−α

)
= c log x− α

so that the ’loglog’ mean is x∗ = eα/c. As the ’second log-log moment’ ET 2 = E[c2 log2(x/x∗)] = α,
ω2 = x2

∗(log x∗)
2/ET 2 = α

c2 e
2α/c.

6 ESTIMATION EQUATIONS

In the present section we give explicit Johnson score equations for estimation of the parameters. Usu-
ally, they are to be solved, similarly as the maximum likelihood equations, by an iterative procedure.
However, in some cases are the Johnson mean and Johnson variance expressed in closed formulas.

The equations are given for one particular member of the related family. Parameters of other
members can be estimated after the transformation of the data to the considered case. For instance,
the data (y1, ..., yn) assumed to be taken from the logistic distribution is to transform to (x1, ..., xn)
where xj = exp(yj) and ŷ∗ = log x̂∗ where x̂∗ is the estimated Johnson mean of the log-logistic
distribution, and ω̂ = 1/ĉ.
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6.1 Distributions with prototype with location parameter

Normal distribution

µ̂ =
1

n

n∑
i=1

yi

σ̂2 =
1

n

n∑
i=1

(yi − µ̂)2

Weibull distribution

τ̂ c =
1

n

n∑
i=1

xc
i

τ̂2c =
1

2n

n∑
i=1

x2c
i

Fréchet distribution

1/τ̂ c =
1

n

n∑
i=1

1/xc
i

1/τ̂2c =
1

2n

n∑
i=1

1/x2c
i ,

Log-logistic distribution

n∑
i=1

(xi/τ)
c − 1

(xi/τ)c + 1
= 0

1

n

n∑
i=1

(
(xi/τ)

c − 1

(xi/τ)c + 1

)2

=
1

3

Cauchy distribution

n∑
i=1

yi − µ

1 + ((yi − µ)/σ)2
= 0

1

n

n∑
i=1

(
2(yi − µ)/σ)

(1 + (yi − µ)/σ)2)

)2

=
1

2

Hyperbolic distribution

τ2c =
n∑

i=1

xc
i/

n∑
i=1

1/xc
i

τ4c
n∑

i=1

1/x2c
i =

n∑
i=1

x2c
i + (δ + 2)

n∑
i=1

xc
i/

n∑
i=1

1/xc
i

where δ is given in Section 5.1.

6.2 Distributions with prototype without location parameter

Gamma distribution
n∑

i=1

(γxi − α) = 0

1

n

n∑
i=1

(γxi − α)2 = α
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from which x̂∗ = x̄ and ω̂2
∗ = 1

n

∑n
i=1 x

2
i − x̄2.

Inverse gamma distribution

n∑
i=1

(α− γ/xi) = 0

1

n

n∑
i=1

(α− γ/xi)
2 = α

from which 1/x̂∗ = 1
n

∑n
i=1 1/xi = x̄H so that x̂∗ is the harmonic mean. From the second equation

1/α = x̄2
H/x̄2H − 1 where 1/x̄2H = 1

n

n∑
i=1

1/x2
i . so that ω2

∗ = x̄2
H(x̄2

H/x̄2
2H − 1).

Beta distribution
n∑

i=1

[(p+ q)zi − p] = 0

1

n

n∑
i=1

[(p+ q)zi − p]2 =
pq

p+ q + 1

from which follow the explicit formulas z∗ = z̄ and, denoting by z2 = 1
n

∑n
i=1 z

2
i and ξ = (z2− z̄)/(z̄2−

z2), p = z̄ξ and q = (1− z̄)ξ.

Pareto distribution

x̂∗ = x̄H

from (4.1). For a fixed a, c = a/(x̂∗ − a).

Emerican version of the Pareto distribution

n∑
i=1

αxi − λ

xi + λ
= 0

1

n

n∑
i=1

(
αxi − λ

xi + λ

)2

=
α

α+ 2

Log-gamma distribution

n∑
i=1

log xi = α/c

1

n

n∑
i=1

(c log xi − α)2 = α

Denote by s1 = 1
n

∑n
i=1 log xi and s2 = 1

n

∑n
i=1 log

2 xi. From the first equation we obtain the sample
Johnson mean x̂∗ = es1 and from the second one 1/α̂ = s2/s

2
1−1 so that ω̂2

∗ = x2
∗α/c

2 = (s2−s21)e
2s1 .

7 EXAMPLE

In a simulation study, samples of length 100 were generated consecutively from distribution listed in
rows of the following table, each with values of θ giving x∗(θ) = 1 and ω2

∗(θ) = 1.2. Both x∗ and ω∗
were estimated under the assumption of either distribution listed in headlines of columns of the table.
In the table are summarized average values of the estimated Johnson means and the square root of
the Johnson variance over 5000 samples.
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x̂∗ gamma Weibull lognorm. beta-pr. inv. gamma
gamma 1.000 0.94 0.60 0.49 0.12
Weibull 1.06 1.005 0.64 0.53 0.15
lognormal 1.66 1.66 1.010 1.01 0.63
beta-prime 2.00 1.77 1.01 1.008 0.54
inv. gamma 84.4 4.71 1.70 2.13 1.022

ω̂∗
gamma 1.094 1.06 0.81 0.72 0.31
Weibull 1.17 1.108 0.83 0.75 0.39
lognormal 2.04 1.62 1.082 1.09 0.74
beta-prime 3.52 2.00 1.11 1.113 0.82
inv.gamma 187. 8.52 2.32 3.23 1.117
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