
Automatic Differentiation and its Program Realization

Hartman, J.
2007

Dostupný z http://www.nusl.cz/ntk/nusl-37948

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 09.04.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-37948
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Automatic differentiation and its program
realization

J.Hartman, L.Lukšan, J.Źıtko

Technical report No. 992

December 2007

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Automatic differentiation and its program
realization

J.Hartman, L.Lukšan, J.Źıtko 1

Technical report No. 992

December 2007

Abstrakt:

Automatic differentiation is an effective method for evaluating derivatives of function, which
is defined by a formula or a program. Program for evaluating of value of function is by au-
tomatic differentiation modified to program, which also evaluates values of derivatives.
Computed values are exact up to computer precision and their evaluation is very quick. In
this report, we describe a program realization of automatic differentiation. This implemen-
tation is prepared in the system UFO, but its principles can be applied in other systems.
We describe, how the operations are stored in the first part of the derivative computation
and how this records are effectively used in the second part of the computation.

Keywords:
Automatic Differentiation, Modeling Languages, Systems for Optimization.

1This work is a part of the research project MSM0021620839 supported by MSMT. It was also
supported by the Grant Agency of the Czech Academy of Sciences, project code IAA1030405, and the
institutional research plan No. AV0Z10300504. L.Lukšan is also from Technical University of Liberec,
Hálkova 6, 461 17 Liberec.

1 Introduction

When computing (not only) complicated technical problems, we face the problem of
how to quickly and repeatedly calculate the value of the derivative, the gradient or the
values of elements of the Hessian matrix. Automatic differentiation, created according
to these requests, is the method which computes the derivatives. The gained values
of the derivatives are accurate up to the machine precision and the evaluation of the
derivative is very fast. Moreover, it is possible to use the sparsity of the Jacobian or
Hessian matrix to compute the derivatives faster and more effectively.

The first papers in this area can be found in 1960’s, when the forward mode was de-
scribed by Wengert (1964). Further improvement were described later, for example, by
Kedem (1980) and Rall (1981). The basics of the reverse mode were independently dis-
covered by several mathematicians, for example, by Linnainmaa (1969), Spielpenning
(1980), Kim (1984) or others.

The development and usage of automatic differentiation is directly connected with
the properties and capability of programming languages, their compilers and computers
at all. Thanks to very quick development in this area and thanks to its properties,
the popularity of automatic differentiation is increasing. Its theoretical properties are
studied, as well as its extensions, methods of implementation, new algorithms but also
practical applications, e.g. [3], [4], [1], [2], [9].

Interactive system for functional optimization UFO (Universal Functional Opti-
mization) has been developed in the Institute of Computer Science of Academy of
Sciences of the Czech Republic. Large system has been created since 1989. It solves
many types of optimization problems and is available for wide sphere of users. Classes
of problems which can be solved by UFO system can be found in [8].

We have used the system UFO for implementation of techniques of automatic dif-
ferentiation. However, used principles can be easily transformed to other computer
systems. The aim of this article is to introduce the implementation of automatic dif-
ferentiation generally and in details.

Because of popularity and properties of automatic differentiation, the system UFO
has been extended. We described it in the technical report [6].

The paper is organized as follows. In the first part, we briefly mention the basic
properties of automatic differentiation and we describe algorithms for computing of
derivatives in the forward and reverse mode. The main principles of the implementation
are described in the second part. Finally, we demonstrate advantages and efficiency of
automatic differentiation on one of the testing programs from the UFO system.

2 Basic properties of automatic differentiation

In this section, the basic properties of automatic differentiation are briefly introduced.
More details can be found e.g. in [3], [5] or [7].

1

2.1 Code list

Let us assume, that the computer program, which we want to transform, computes the
value of the components of the vector function

f = [f1, f2, . . . , fm]T : D ⊂ Rn −→ Rm.

Each component of f is a composition of basic functions (e.g. adding, multiplication
etc.) and elementary functions (i.e. functions of the programming language, e.g. sinus
etc.).

The program computes step by step result values of the basic or elementary func-
tions and uses these values for evaluation of forthcoming basic or elementary operations.
Let us denote vi the value of ith elementary or basic function.

Moreover, let us order the values vi by the following way:

v1−n, . . . , v0︸ ︷︷ ︸
x

, v1, v2, . . . , vl−m, vl−m+1, . . . , vl︸ ︷︷ ︸
y

,

where x = (x1, . . . xn) are input (independent) variables and y = (y1, . . . ym) = f(x)
are output (dependent) variables.

We say that j ≺ i if and only if the variable value vi depends directly on the variable
vj and we will write

vi = ϕi(vj)j≺i. (1)

Using above defined notation, the computer program can be expressed by the code
list at the picture 1.

vi−n = xi for i = 1, . . . , n

vi = ϕi(vj)j≺i for i = 1, . . . , l

ym−i = vl−i for i = m − 1, . . . , 0

Figure 1: Code list.

The input values x1, . . . , xn are assigned into the variables v1−n, . . . , v0 in the first
row. Then the components of f(x) are computed and finally the output variables
(y1, . . . , ym) = f(x) are assigned in the third row.

2.2 The first derivative computation - forward mode

The forward mode evaluates directional derivatives of all dependent variables. We assign
a new adjoint function to every basic or elemental function (1):

v̇i =
∑
j≺i

∂ϕi

∂vj

(vk)k≺i · v̇j . (2)

2

vi−n = xi

v̇i−n = ẋi

}
i = 1, . . . n

vi = ϕi(vk)k≺i

v̇i =
∑

j≺i
∂ϕi

∂vj
(vk)k≺i · v̇j

}
i = 1, . . . l

ym−i = vl−i

ẏm−i = v̇l−i

}
i = m − 1, . . . 0

Figure 2: Code list derived by forward mode.

which is a derivative of (1). The adjoint code list is at the picture 2.
We evaluate the derivative in the point x = (x1, x2, . . . , xn) in the direction ẋ. If ẋ = ei,
then the partial derivative with respect to the ith variable is computed.

The schema (2) can be expressed, in general, in the form of a matrix multiplication
(see e.g. [3])

f ′(x) = QmAlAl−1 · · ·A2A1P
T
n . (3)

The matrix Ai is the identity matrix except the ith row, where the element δϕi

δvj
lies in

the jth column for all j ≺ i.

2.3 The first derivative computation - reverse mode

By the reverse mode, we evaluate a linear combination of �fi. We want to compute
the derivatives in the form (see [3])

x̄ = ȳ · f ′(x). (4)

From the relations (3) and (4) we obtain a code list described at the picture 3. The
values v̄j can be interpreted by the formula

v̄j =
∑

i ; i�j

v̄i · ∂ϕi

∂vj
. (5)

2.4 The second (and higher) derivative computation

The program for evaluating of the second (or higher) derivatives can be derived by a
combination of the forward and reverse mode, see e.g. [3]. Firstly, we use the reverse
mode to obtain the gradient of the component of the function f . Then we apply the
forward mode and we get a schema for the second derivative evaluation in the form

ȳ · f ′′(x) · ẋ + ˙̄y · f ′(x), (6)

where ˙̄y is an input parameter, similar to ẋ or ȳ. Let us denote the expression (6) as ˙̄x.
If we want to compute only the second derivative of the form ȳ ·f ′′(x) · ẋ, it is necessary

3

vi−n = xi i = 1, . . . , n

vi = ϕi(vk)k≺i i = 1, . . . , l

ym−i = vl−i i = m − 1, . . . , 0

v̄l−i = ȳm−i i = 0, . . . , m − 1

v̄i = 0 i = l − m, . . . , 1 − n

for i = l, . . . , 1 do
for j ≺ i do

v̄j = v̄j + v̄i · ∂ϕi

∂vj
(vk)k≺i

end for
end for

x̄i = v̄i−n i = n, . . . , 1

Figure 3: Code list derived by reverse mode.

to assign ˙̄y = 0. The expression ȳ · f ′′(x) · ẋ can be interpreted as

ȳ · f ′′(x) · ẋ =
∂

∂α
ȳ · f ′(x + αẋ)

∣∣∣∣∣
α=0

∈ Rn.

The code list can be obtained by application of the forward mode to a code list
obtained by the reverse mode. The expression

v̄j = v̄j + v̄i · ∂ϕi

∂vj

(vk)k≺i

is transformed to

˙̄vj = ˙̄vj + ˙̄vi · ∂ϕi

∂vj

(vk)k≺i + v̄i · ∂ϕ̇i

∂vj

(vk)k≺i, (7)

where
∂ϕ̇i

∂vj

(vk)k≺i =
∑
l≺i

∂2ϕi

∂vj∂vl

(vk)k≺i · v̇l.

The code list for the evaluation of the second derivatives is at the picture 4. The
values of the second derivatives ȳ · f ′′(x) · ẋ are the components of the vector

˙̄x = (˙̄x1, . . . , ˙̄xm).

3 Automatic differentiation in the UFO system

In the previous section, we briefly reviewed basic principles of automatic differentiation.
In this part, we describe how to implement these techniques in a computer system

4

vi−n = xi

v̇i−n = ẋi

}
i = 1, . . . , n

vi = ϕi(vk)k≺i

v̇i =
∑

j≺i
∂ϕi

∂vj
(vk)k≺i · v̇j

}
i = 1, . . . l

ym−i = vl−i

ẏm−i = v̇l−i

}
i = m − 1, . . . 0

v̄l−i = ȳm−i

˙̄vl−i = 0

}
i = 0, . . . , m − 1

v̄i = 0
˙̄vi = 0

}
i = 1 − n, . . . , l − m

for j = l, . . . , 1 do
for j ≺ i

v̄j = v̄j + v̄i · ∂ϕi

∂vj
(vk)k≺i

˙̄vj = ˙̄vj + ˙̄vi · ∂ϕi

∂vj
(vk)k≺i + v̄i · ∂ϕ̇i

∂vj
(vk)k≺i

end for
end for

x̄i = v̄i−n

˙̄xi = ˙̄vi−n

}
i = n, . . . , 1

Figure 4: Code list derived by reverse and reverse mode for the second derivatives.

in general and also in particular in the UFO system. The implementation will be
demonstrated on a simple example. More details about the UFO system can be found
in the technical report [8].

3.1 A brief description of the UFO system

The UFO system can be used for solution of optimization problems and preparation of
optimization algorithms. The typical task is to find a local minimum of a function F .

Solution of the optimization problem consists of four steps:

1. Specification of the optimization problem and selection of the method. It is done
by the UFO control language and it is saved into a file.

2. This file is transformed by the UFO preprocessor. According to its commands,
the computer program in FORTRAN 77 is automatically generated which solves
the original optimization problem.

3. This program is compiled and linked with library subroutines.

4. The solution of the optimization problem is obtained after running the program.

5

Let us demonstrate the above formulated four stages on the following example.
We want to find a local minimum of the Rosenbrock function

F (x) = 100(x2
1 − x2)

2 + (x1 − 1)2.

Let x = (−1.2, 1.0) be the initial approximation. According to the first stage, the input
file for the UFO system is prepared:

$SET(INPUT)

X(1)=-1.2D0; X(2)=1.0DO

$ENDSET

$SET(FMODELF)

FF = 1.0D2*(X(1)**2-X(2))**2+(X(1)-1.0DO)**2

$ENDSET

$NF=2

$NOUT=1

$BATCH

$STANDARD

This file sets the initial approximation (INPUT) for the iterative method, object function
(FMODELF), number of its independent variables(NF) and the form of the output (NOUT).
The successful processing of this file yields the results:

FF= .2333078060D-15

X= .9999999847D+00 .9999999694D+00

TIME= 0:00:00.66

The local minimum was found at the point X and the value F (X) is stored in the
variable FF.

The formula for the object function is defined by the variable FMODELF. It is possible
to define, moreover, the variables GMODELF and HMODELF with formulae for Jacobi and
Hessian matrix respectively. In absence od these variables, the derivatives are evaluated
numerically by the divided differences. The instruction $BATCH suppresses the dialogue
mode and the statement $STANDARD creates the program that solves the optimization
problem.

Let us remark that the UFO preprocessor is based on the interpreter BEL (Batch
Editor Language), which was developed as a part of the UFO system. The BEL inter-
preter was modified during implementation of the automatic differentiation.

3.2 Automatic differentiation in the UFO system

By the automatic differentiation, it is possible to evaluate the first or the second deriva-
tives of the functions defined by the variables FMODELF, FMODELA nebo FMODELC. Let
us introduce three new variables $IADF, $IADA and $IADC. They express whether and
what derivatives will be evaluated by the automatic differentiation.

6

• $IADF=0 (default value)
The derivatives of the function FF defined by the variable FMODELF are not eval-
uated by the automatic differentiation.

• $IADF=1
The first derivatives of the function FF defined by the variable FMODELF are eval-
uated by the reverse mode of the automatic differentiaion. The new variable
FGMODELF is created and it contains the formulae for the evaluation of the func-
tion FF and also its gradient GF. The variable FMODELF is deleted.

• $IADF=2
The second derivatives of the function FF defined by the variable FMODELF are
evaluated by the combination of the reverse and forward modes. The new variable
FGMODELF is created and it contains the formulae for the evaluation of the function
FF and also its gradient GF by the reverse mode. The new variable HMODELF is
also created and it contains the formulae for the evaluation of the function FF, its
gradient GF and Hessian matrix by the reverse and forward modes. Then, variable
FMODELF is deleted.

The variables $IADA and $IADC are used in the same way, but they change the functions
FA and FC defined by the variables FMODELA and FMODELC. New variables FGMODELA or
HMODELA and FGMODELC or HMODELC are created.

There are a few limitations by application of the variables FMODELF, FMODELA and
FMODELC which can be found in [6]. These limitations are not restrictive and it is easy
to meet them.

3.3 The implementation of the automatic differentiation in the UFO system

3.3.1 The first derivative

When the first derivatives are evaluated, the reverse mode of the automatic differenti-
ation is used. The independent variables and all basic and elementary operations are
subsequently stored in arrays, including their values, arguments and the type of the
operation.

If $IADF=1 or 2, the following arrays are used :

• REAL*8 V($NADARR) – the array where the values vi = ϕi(vj)j≺i are stored; see
the relation (1)

• REAL*8 VBAR($NADARR) – the array where the values v̄i =
∑

j�i v̄j · ∂ϕj

∂vi
are stored;

see the relation (5)

• INTEGER OPCODE($NADARR) – the array stores the type of the performed opera-
tion, e.g. addition corresponds to number 10, sin corresponds to number 60 etc.

7

• INTEGER ARG1($NADARR) – the array stores the pointers (array indexes) to the
first argument of the basic or elementary operation

• INTEGER ARG2($NADARR) – the array stores the pointers (array indexes) to the
second argument of the basic or elementary operation

For $IADF=2, there are two more arrays:

• REAL*8 VDOT($NADARR) – the array where the values
v̇i =

∑
j≺i

∂ϕi

∂vj
(vk)k≺i · v̇j are stored; see the relation (2)

• REAL*8 VBARDT($NADARR) – is the array which stores the values ˙̄vi, see the rela-
tion (7)

Each basic or elementary operation ϕi(vj)j≺i is replaced by a subprogram which
performs not only the operation ϕi(vj)j≺i, but records its call to the arrays V, VDOT,
OPCODE, ARG1, ARG2, and possibly to VDOT, VBARDT. For example, the operation multi-
plication or sin are replaced by the subprograms BMULTG, resp. SING which are listed
below.

!--- transformed operation multiplication ---
INTEGER FUNCTION BMULTG(IARG1, IARG2) !input parameters: indexes (order)

!to the arrays, which values are
!to be multiplied
!output variable: index (order)
!to the arrays for this operation

COMMON /AD_F1/ V, VBAR, OPCODE, ARG1, ARG2, INDARR
REAL*8 V($NADARR), VBAR($NADARR)
INTEGER OPCODE($NADARR), ARG1($NADARR), ARG2($NADARR)
INTEGER INDARR

INTEGER IARG1, IARG2
V(INDARR)=V(IARG1)*V(IARG2) !evaluation of the operation multiplication
VBAR(INDARR)=0.0D0 !the variable v_i with the bar is set to 0

!(we will add to it some values)
OPCODE(INDARR)=30 !store the code of this operation

!(30 = multiplication)
ARG1(INDARR)=IARG1 !store the pointer (index) to the 1st argument
ARG2(INDARR)=IARG2 !store the pointer (index) to the 2nd argument
BMULTG=INDARR !the index (order) of this operation
INDARR=INDARR+1 !shift the pointer to the arrays - preparation

!for the next basic or elementary operation
END

!--- transformed operation sin ---
INTEGER FUNCTION SING(IARG1)

COMMON /AD_F1/ V, VBAR, OPCODE, ARG1, ARG2, INDARR
REAL*8 V($NADARR), VBAR($NADARR)
INTEGER OPCODE($NADARR), ARG1($NADARR), ARG2($NADARR)
INTEGER INDARR

INTEGER IARG1

8

V(INDARR)=SIN(V(IARG1))
VBAR(INDARR)=0.0D0
OPCODE(INDARR)=60 !store the code of this operation

!(60 = sin)
ARG1(INDARR)=IARG1 !sin has only one argument
SING=INDARR
INDARR=INDARR+1

END

All independent variables and basic and elementary operations are represented by
the order of the operation. This order is the same as the index in the arrays, where
information about it is stored.

The subroutine RVRSWP is called in the last stage of the derivative evaluation. It
goes through the arrays V, VDOT, OPCODE, ARG1, ARG2 backwards and evaluates the
derivatives (5), i.e.

v̄i =
∑
j�i

v̄j · ∂ϕj

∂vi

.

It can be reformulated to

v̄i = v̄i + v̄j · ∂ϕj

∂vi

(vk)k≺j pro i ≺ j j = l, . . . , 1.

The listing of the subroutine RVRSWP follows:

SUBROUTINE RVRSWP()
COMMON /AD_F1/ V, VBAR, OPCODE, ARG1, ARG2, INDARR
REAL*8 V($NADARR), VBAR($NADARR)
INTEGER OPCODE($NADARR), ARG1($NADARR), ARG2($NADARR)
INTEGER INDARR

REAL*8 DERIV
INTEGER I
DO 999, I=INDARR-1, 1, -1 !the loop through operations backwards

!i.e. through arrays backwards
.
.
IF(OPCODE(I).EQ.30) THEN !operation multiplication
VBAR(ARG1(I))=VBAR(ARG1(I))+VBAR(I)*V(ARG2(I)) !addition to the

!variables v_. with bar
VBAR(ARG2(I))=VBAR(ARG2(I))+VBAR(I)*V(ARG1(I)) !addition to the

!variables v_. with bar
.
.
ELSEIF(OPCODE(I).EQ.60) THEN !operation sin
DERIV=COS(V(ARG1(I))) !temporary variable
VBAR(ARG1(I))=VBAR(ARG1(I))+VBAR(I)*DERIV !addition to the

!variables v_. with bar
.
.
ELSEIF(OPCODE(I).EQ.2) THEN !operation - the definition

!of the independent variable

9

CONTINUE
.
.
ENDIF

999 CONTINUE
END

The values of the derivatives are stored in the corresponding elements of the array
VBAR, after processing of RVRSWP.

Example We will demonstrate, how the values are stored in the arrays V, VBAR, OPCODE,
ARG1 a ARG2.

Let us define the function f(x1, x2) = x1x2 + 1. The program computes this value
by the statement

X(1) * X(2) + 1.

Automatic differentiation transforms this statement to

BPLUSG(BMULTG(IAD X(1),IAD X(2)),MKCNST(DBLE(1))),

where IAD X(1) and IAD X(2) are pointers to arrays (array indexes) where independent
values X(1) a X(2) are stored.

The main principles of data storing in the arrays V, VBAR, OPCODE, ARG1 and ARG2

are shown at the picture 5. The subroutine MKINDP and MKCNST store the value of the
independent variable x(i) and the value of a constant, respectively, into above declared
arrays.

3.3.2 The second derivatives

Firstly, the reverse mode is applied to get the program for the first derivatives. Sec-
ondly, the forward mode is applied to this program to get the second derivatives. The
subroutines BMULTH and SINH not only store the values, but also the first derivatives
(directional derivatives) are evaluated. The subroutines for the second derivatives are
listed in [6].

4 Example

The following example demonstrates advantages of the automatic differentiation. Let
us denote x ∈ RN and define the function F : RN → R

F (x) =
N∑

i=1

(N + i − Pi)
2 , (8)

10

the order of the 1 2 3 4 5 . . .
performed operation
performed operation definition of definition of x1x2 definition x1x2 + 1 . . .

independent independent of constant . . .
variable variable 1 . . .
X(1) X(2) . . .

subroutine which MKINDP MKINDP BMULTG MKCNST BPLUSG . . .
created the record (X(1)) (X(2)) (.,.) (DBLE(1)) (.,.) . . .
in the arrays
array index 1 2 3 4 5 . . .

array V value value value value value . . .
x1 x2 x1 · x2 1 x1 · x2 + 1 . . .

array VBAR 0 0 0 0 0 . . .

array OPCODE 2 2 30 1 10 . . .

array ARG1 0 0 1 0 3 . . .

array ARG2 0 0 2 0 4 . . .

Figure 5: The main principles of the data storing in the arrays

where

Pi =
N∑

j=1

(
5 (1 + mod(i, 5) + mod(j, 5)) sin(xj) +

i + j

10
cos(xj)

)
,

where mod(a, b) is a remainder for the division of a by b. We want to calculate a local
minimum of the function F . Let x0 = (1, 1/2, . . . , 1/N) be an initial approximation.
The input file for the UFO system is at the picture 6. Let us describe this file briefly.

The derivatives of the function defined by the variable FMODELA are to be evaluated
by the automatic differentiation. Thus the command $IADA=1 on line number 21 is
stated. The number of the independent variables X(*) is defined by the variable $NF

on the line 18, the type of the optimization problem is defined by the variables MODEL
and $NA on lines number 17 and 19. See also [8]. The evaluation of

(N + i − Pi)
2 (9)

(see the relation 8) is defined by the term FA in the variable FMODELA on lines 8 – 16.
The initial approximation x0 is in the variable INPUT on lines 3 – 7.

The input file (picture 6) is transformed by the UFO system to a program, which
computes a local minimum of a function F . The first step of the input file processing is
the deletion of the variable FMODELA and the creation of the variable FGMODELA, because
the value of $IADA was set to 1. The value of the variable FGMODELA is shown at the
picture 7.

Let us describe this transformed variable FGMODELF briefly. The variables X(.) are
denoted as the independent variables on lines 2 – 4. The statement on the line 13 at

11

! declaration of temporary variables
INTEGER IAD_W($$NF+1) !01
REAL*8 W($$NF+1) !02
! initial settings:

$SET(INPUT) !03
DO 80 I=1, $$NF !04
X(I)=1.0D0/I !05

80 CONTINUE !06
$ENDSET !07
! elements of a sum of the objective function:

$SET(FMODELA) !08
W(1)=0.0D0 !09
DO 81 I=1, $$NF !10
A=5.0D 0*(1.0D 0+MOD(I,5)+MOD(KA,5)) !11
B=DBLE(I+KA)/1.0D1 !12
W(I+1)=W(I)+A*SIN(X(I))+B*COS(X(I)) !13

81 CONTINUE !14
FA=(DBLE($$NF+KA)-W($$NF+1))**2 !15

$ENDSET !16
! type of the optimization problem:

$MODEL=’AF’ !17
! number of independent variables:

$NF=50 !18
$NA=50 !19
$NOUT=1 !20
! automatic differentiation for FMODELFA:

$IADA=1 !21
$BATCH !22
$STANDARD !23

Figure 6: Input file for the UFO system for the example with automatic differentiation.

the picture 6 is transformed to lines 9 and 10 at the picture 7. Moreover, the statement
on the line 15 at the picture 6 is transformed to lines 12 and 13 at the picture 7.

The parameters of the subroutines BPLUSG, BMULTG etc. are array indexes and are
created as a composition of the string IAD and the original variable name, e.g. IAD W.
The computed value of FA is assigned on line 14. The statement on line 15 corresponds
to the fourth line in the picture 3, i.e.

v̄l = 1.

The subroutine RVRSWP() goes backwards through the arrays. After its execution, the
computed values of the derivatives are written into variables GA on the lines 17 – 19.

There are no changes on the lines 10 – 12 at the picture 6, i.e. the lines 6 – 8 at the
picture 7, because they do not depend on the independent variables X(.). The initial
setting of the array index counter is on the line 1 at the picture 7.

The evaluation times for a local minimum search are compared in the table 1. In the
second and third column, there are times for the case that automatic differentiation and

12

INDARR=1 !01
! denoting of the independent variables:

DO 85 IADCOUNT=1,50 !02
IAD_X(IADCOUNT)=MKINDP(X(IADCOUNT)) !03

85 CONTINUE !04
! transformed evaluation of FA:

IAD_W(1)=MKCNST(DBLE(0.0D0)) !05
DO 81 I=1, 50 !06
A=5.0D 0*(1.0D 0+MOD(I,5)+MOD(KA,5)) !07
B=DBLE(I+KA)/1.0D1 !08
IAD_W(I+1)=BPLUSG(BPLUSG(IAD_W(I),BMULTG(MKCNST(DBLE(A)),SING(IAD_ !09
& X(I)))),BMULTG(MKCNST(DBLE(B)),COSG(IAD_X(I)))) !10

81 CONTINUE !11
IAD_FA=BEXPG(BMINUG(MKCNST(DBLE(DBLE(50+KA))),IAD_W(50+1)),MKCNST(!12
& DBLE(2))) !13
! computed value of FA:

FA=V(IAD_FA) !14
! weight assigning:

VBAR(IAD_FA)=1.0D0 !15
! go through the arrays backwards and compute the derivatives:

CALL RVRSWP() !16
! assigning of computed derivatives:

DO 86 IADCOUNT=1,50 !17
GA(IADCOUNT)=VBAR(IAD_X(IADCOUNT)) !18

86 CONTINUE !19

Figure 7: The value of the variable FGMODELF for the example with automatic differen-
tiation.

divided differences are used respectively, for various N . The table shows that automatic
differentiation yields faster convergence.

Number of independent variables automatic differentiation divided differences

N = 10 0.11 s 0.16 s
N = 20 0.49 s 0.94 s
N = 50 1.37 s 6.97 s
N = 100 3.36 s 44.93 s

Table 1: Comparison of evaluation time for a local minimum search.

Reference

[1] Computational differentiation – techniques, applications, and tools. (M. Berz, C. H.
Bischof, G. F. Corliss, A. Griewank, ed.), SIAM, Philadelphia, 1996.

13

[2] Automatic Differentiation: Applications, Theory, and Implementations. (H. M. Bucker,
G. F. Corliss, P. D. Hovland, U. Naumann, B. Norris, ed.), Springer, 2005.

[3] A. Griewank: Evaluation Derivatives: Principles and Techniques of Algorithmic Differ-
entiation. SIAM, Philadelphia, 2000.

[4] Automatic Differentiation of Algorithms: Theory, Implementation, and Application. (A.
Griewank and G. F. Corliss, ed.), SIAM, Philadelphia, 1992.

[5] J. Hartman: Realizace metod pro automatické derivováńı. Diploma Thesis. Faculty of
Mathematics and Physics, Charles University, Prague, 2001.

[6] J. Hartman and L. Lukšan: Automatické derivováńı v systému UFO. Technical Report
V-1002. ICS AS CR, Prague, 2007.

[7] J. Hartman and J. Źıtko: Principy automatického derivováńı. Výzkumná zpráva. De-
partment of Numerical Mathematics, Faculty of Mathematics and Physics, Charles Uni-
versity, Prague, 2006.

[8] L. Lukšan, M. Tůma, J. Hartman, J. Vlček, N. Ramešová, M. Šǐska and C. Matonoha:
UFO 2006 - Interactive system for universal functional optimization. Technical report
V-977. ICS AS CR, Prague, 2006.

[9] A. Verma: Structured Automatic Differentiation. Ph.D. thesis, Cornell University, 1988.

[10] A. Griewank and A. Walther Introduction to automatic differentiation. In PAMM 2:45
– 49 (2003).

[11] A. Walther, A. Griewank and O. Vogel ADOL-C: Automatic differentiation using oper-
ator overloading in C++. In PAMM 2:41 – 44 (2003).

[12] R. Griesse and A. Walther Evaluating Gradients in Optimal Control - Continuous Ad-
joints versus Automatic Differentiation. Journal of Optimization Theory and Applica-
tions, 122(1), pp. 63 – 86 (2004).

14

