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Zdeněk Fabián

Technical report No. 1010

November 2007
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Abstract:

The author introduced for regular continuous distributions a scalar inference function, Johnson score S(x)
[Fabián 2006]. Function S2(x) has properties of an information function of a distribution and its mean
value can be interpreted as the Fisher information for a ’center’ of the distribution. In this report we discuss
the possible use of this information function in multivariate problems and time series analysis.
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1 Johnson score

It was shown in [2] and [3] that a continuous probability distribution F with interval support X ∈ R
can be characterized, besides the distribution function F (x) and density f(x), by its Johnson score,
defined as follows. Define mapping η : X → R by

η(x) =





x if (a, b) = R
log(x− a) if −∞ < a < b = ∞
log (x− a)

(b− x) if −∞ < a < b < ∞
− log(b− x) if −∞ = a < b < ∞,

(1.1)

(1.1) is the Johnson transformation [4] adapted for arbitrary interval support X = (a, b) ∈ R. Further,
define Johnson score of F with f continuously differentiable according to x ∈ X by

T (x) =
1

f(x)
d

dx

(
− 1

η′(x)
f(x)

)
. (1.2)

The philosophy behind this definition is the following. Any distribution F with interval support
X 6= R is viewed as a transformed ’prototype’ G with support R, that is, its distribution function is

F (x) = G(η(x)) (1.3)

where η is given by (1.1). Denoting by g the density of G, the density of F is

f(x) = g(η(x))η′(x), x ∈ X , (1.4)

where η′(x) = dη(x)/dx is the Jacobian of the transformation. Let us denote the score function of G
by Q,

Q(y) = −g′(y)
g(y)

. (1.5)

By setting y = η(x), we obtain from (1.2) and (1.4)

T (x) =
1

g(y)η′(x)
d

dy
(−g(y))

dy

dx
= Q(η(x)). (1.6)

The Johnson score of distribution F with ’partial support’ is the transformed score function of its
prototype.

It follows from (1.2) and (1.1) that the Johnson score of distributions supported by R is the score
function (1.5). Consider now a particular case of a distribution Ft(x) having prototype G(y−µ) with
location parameter µ ∈ R, the parameter t of which is given by

t = η−1(µ). (1.7)

Let us call the ’Johnson image’ t of the location of the prototype a Johnson parameter. Denote by
f(x; t) the density and T (x; t) the Johnson score of such Ft. It was proven (Theorem 1 in [1]) that

∂

∂t
log f(x; t) = η′(t)T (x; t), (1.8)

i.e., the Johnson score of a distribution with Johnson parameter is proportional to the likelihood
score ∂

∂t log f(x; t) for this parameter. In a general case, the density of the prototype does not need
to have the location parameter and the transformed distribution does not need to have the Johnson
parameter. For such distributions, the Johnson score is yet an unknown function.

A unique solution x∗ of equation
T (x) = 0 (1.9)

will be called a Johnson mean of distribution F. Due to (1.6), the solution of (1.9) is unique if the
prototype G of distribution F is unimodal and x∗ is the ’Johnson image’ of the mode of the prototype.
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Confining ourselves to these distributions, the Johnson mean characterizes the typical value of the
heavy-tailed distributions without mean, and is a value near the mean of the light-tailed distributions.

To make clear the role of the modified Johnson transformation (1.1), it is to say that, principally,
a use of any increasing injective mapping ξ : X → R leads, by using the procedure described above,
to a ’central point’ x∗ξ = ξ−1(mode of G) which exists (and can be used instead of the mean), and
to a corresponding ’ξ-score’ of distribution F with respect to x∗ξ . The Johnson transformation yields
the ’central points’ and ’ξ-scores’, which are for many currently used distributions mathematically
convenient. There are, however, other supporting reasons for choosing the mapping (1.1):

i/ (1.1) is the only transformation under which the prototype of the lognormal distribution is a
normal distribution,

ii/ the ’η-score’ of the uniform distribution is linear.
On the other hand, for distributions with support X = (−π/2, π/2) with densities expressed by

means of trigonometric functions, a more convenient transformation is ξ(x) = tan x.

2 Johnson information

Let X be random variable with distribution Ft where t is the Johnson parameter, with support X ,
density f and Johnson score T , and let x ∈ X be the observed value of X. We assert that the value
S2(x), where

S(x; t) = η′(t)T (x; t), (2.1)

expresses the information about the Johnson mean t, carried by x.
Reasons supporting this assumption are as follows. Let F be given by (1.3). The term η′(x)

in (1.4) is common to all distributions with support X . All the information contained in X is thus
condensed in term g(η(x)). The least informative point of distribution F is therefore the solution of
d
dxg(η(x)) = 0. By (1.2), this solution is x∗ since, by (1.4), g(η(x)) = 1

η′(x)f(x).
S2(x; t) is thus a non-negative function attaining its minimum in the least informative point of the

distribution. Distributions with densities quickly decaying to zero have unbounded Johnson scores
so that the value S2(x; t) for x far away from x∗ is high. Distributions with heavy-tailed densities
have bounded Johnson scores so that S2(x; t) has much less influence. Finally, by (2.1) and (1.8), for
distributions with Johnson parameter t,

ES2 =
∫

X

(
∂

∂t
log f(x; t)

)2

f(x; t) dx (2.2)

is the Fisher information for t.
We generalize (2.2) for arbitrary F , not necessarily having the Johnson parameter.

Definition 1 Let T be the Johnson score and x∗ the Johnson mean of distribution F with support
X . Set

S(x) = η′(x∗)T (x). (2.3)

The value
I∗ = ES2 =

∫

X
S2(x)f(x) dx, (2.4)

will be called a Johnson information.

For distributions with Johnson parameter t, I∗ is the Fisher information for this parameter. In
the general case, I∗ is the mean information carried by a sample from F about its Johnson mean.

In Table 1 we present the densities and Johnson scores of some distributions together with their
Johnson means and Johnson information. The support of all distributions is X = (0,∞) except the
’prototype beta’ (the prototype of the beta-prime distribution) with support R.
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Table 1. Johnson score, Johnson mean and Johnson information of some distributions.

distribution f(x) T (x) x∗ I∗

prototype beta 1
B(p,q)

epx

(ex+1)p+q
qex−p
ex+1 log p/q pq

p+q+1

lognormal β√
2πx

e−
1
2 log2( x

t )β

β log(x/t)β t β2/t2

Weibull β
x (x

t )βe−( x
t )β

β[(x/t)β − 1] t β2/t2

gamma γα

xΓ(α)x
αe−γx γx− α α/γ γ2/α

inverse gamma γα

xΓ(α)x
−αe−γ/x α− γ/x γ/α α3/γ2

beta-prime 1
xB(p,q)

xp

(x+1)p+q
qx−p
x+1 p/q q3

p(p+q+1)

Fig. 1 shows the information functions of the exponential distribution (Weibull with β = 1),
and of the lognormal distribution with β = 1. They are both the distributions with the Johnson
parameter (here is t = 1). The third function is S2(x) of the beta-prime distribution, which is a
distribution without Johnson parameter. We set p = q = 1.5 so that the Johnson variance of all three
distributions is ω2 = 1. Observations near zero in the lognormal model and large observations in the
exponential model carry a large amount of information about the Johnson mean x∗ = 1.
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6
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8

x

S2 (x
)

Figure 1. Information functions of the lognormal (full line), exponential (dashed line) and
beta-prime (dotted line) distribution.

3 Linear regression with non-Gaussian residuals

Consider a couple (X,Y ) where X is non-random and let

Yi = α0 + α1Xi + εi, i = 1, ..., n (3.1)

where ε is a random variable with distribution Fε. We estimate coefficients α0 and α1 such as to
minimize the difference between the mean information of the sample and the theoretical Johnson
information for Fε. We obtain

ζ(ε) =
1
n

n∑

i=1

T 2
ε (εi)− ET 2

ε = min. (3.2)

where εi = yi − (α0 + α1xi) and Tε is the Johnson score of distribution Fε. Differentiating (3.2)
according the parameters α0, α1, one obtains a system of equations
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∂

∂α0
ζ(ε) =

n∑

i=1

T (εi)T ′(εi) = 0

∂

∂α1
ζ(ε) =

n∑

i=1

T (εi)T ′(εi)xi = 0.

Fig.2 shows points (xi, yi) distributed according (3.1) with ε distributed according the prototype
beta distribution. The dashed line is the regression line under the assumption of the normal distri-
bution, and full line under the correct assumption of the prototype beta. The latter is similar to the
result of robust regression (function robustfit, MATLAB) marked by the crosses.
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Figure 2. Linear regression with prototype beta residuals.

4 Johnson mutual information

Let T 2
X and T 2

Y be the information functions of random variables X and Y with densities fX and fY ,
respectively. The function SXSY apparently measures a degree of an association between X and Y .
Let us call it a Johnson mutual information. Having a sample (xi, yi), i = 1, ..., n taken from (X, Y ),
as an empirical measure of this association one could consider a sample Johnson mutual information

Î∗XY =

n∑
i=1

TX(xi)TY (yi)
√

n∑
i=1

T 2
X(xi)

n∑
i=1

T 2
Y (yi)

. (4.1)

We take (4.1) as a correlation coefficient of arbitrarily distributed random variables. Since the Johnson
score of the standard normal distribution is T (x) = x, in the case of normally distributed X and Y
Î∗XY is the usual correlation coefficient.

In the simulation experiment, samples (xi, yi), i = 1, ..., 16 were generated from (X, Y ), where
Y = 0.35X + 0.65Z and where X and Z were independent random variables with inverse gamma
distribution. The ’mutual information coefficient’ (4.1) was computed under five different assumptions
on the underlying marginal distributions:

fX , fY gamma Weibull lognormal beta-prime inv.gamma
Î∗XY 0.12 0.14 0.29 0.42 0.53

The generated samples (xi, yi), and (T (xi), T (yi)) where T is the Johnson score of the beta-prime
distribution are plotted in Fig.3. I∗ of the gamma distribution is the usual correlation coefficient; its
estimated value is influenced by the ’outlier’ at about (1,5.8) in the left subplot. The Johnson mutual
information of the beta-prime distribution does not “see” this point as outlying (right).
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Figure 3. Beta-prime distribution: (xi, yi) (left) and (T (xi), T (yi)) (right).

5 Johnson score of time series

An AR time series {xi} with errors possessing beta-prime distribution is plotted in the upper subplot
of Fig.4. Its spectral density estimate is in Fig.5 (dashed line). The Johnson score of {xi}, the time
series {T (xi)}, where T is the Johnson score of the beta-prime distribution, is plotted in the lower
subplot of Fig.4 and the corresponding spectral density estimate in Fig.5 (full line). This non-linear
transformation of the original time series apparently retains the frequency content but suppresses the
influence of the parts of the signal which spectral estimation methods “see” as outliers.
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Figure 4. Time series with beta-prime distribution (top) and its Johnson score (bottom).
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Figure 5. Spectral densities of the original time series (dashed line) and of its Johnson score (full
line).
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