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Abstract:

The report deals with the mathematical and numerical analysis of a loaded human tibia filled by the marrow
tissue. The stress distribution in the marrow is focused. Two different rheological approaches were chosen.
The elastic and viscoplastic models are formulated and shortly discussed. The numerical results refer to
the elastic case with Coulomb’s law of friction. This text is the research report under the Project No.
FT-TA/087 of the Ministry of Industry and Trade of the Czech Republic.
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1 Introduction

This part of grant deals with the modelling of loaded human tibia. Particularly, we are interested in
the stress propagation in the marrow tissue when certain mechanical loading is applied to tibia. The
motivation for this research comes from the area of development of artifical devices. Such devices are
designed for replacing disturbed parts of human skeleton. This contribution might help in future to
estimate the influence of an artificial device, e.g. artificial knee joint, on the marrow.

Firstly, the mathematical formulations are provided. We consider the elastic and the viscoplastic
approaches. The analysis of the viscoplastic case is presented to obtain some kind of solution existence
result. Eventually, the numerical results of the elastic case are provided.

2 The elastic problem definition

2.1 Classical formulation

Let Ω ⊂ Rd (d ∈ {2; 3}) be a bounded domain with Lipschitz boundary ∂Ω. Let ∂Ω = ΓD ∪ ΓL,
ΓD ∩ ΓL = ∅ and µd−1(ΓD) > 0. Let Ω = Ωk ∪ Ωl, Ωk ∩ Ωl = ∅. ΓC = ∂Ωk ∩ ∂Ωl denotes the area
where the contact condition between the bodies takes place. Unknown u : Ω → Rd represents the
displacement. Given vectors f : Ω → Rd and u0 : ΓD → Rd stand for the volume forces and the
Dirichlet boundary condition, respectively. Standard Hookean law applies, i.e. the symmetric stress
tensor T : Ω → Rd×d (T = {τij}d

i,j=1) is expressed by

T = T(u) = Cijkl ekl(u),

where e = 1
2 (∇u + (∇u)T ) and C is the elastic coefficient tensor. Furthermore, we specify boundary

condition P : ΓL → Rd representing the loading forces. An unit outward normal vector is indicated by
n. uj

n stands for normal component of u on ΓC belonging to Ωj . Fkl
c are the coefficients of friction, τt

the tangential stress force and u
j
t the tangential displacement on ΓC belonging to Ωj . We’re interested

in the following problem.

Problem 2.1 Find u ∈ (C2(Ω))d such that

− div T = f in Ω, (1)

u = u0 on ΓD, (2)

Tn = P on ΓL, (3)

uk
n − ul

n = 0 on ΓC , (4)

|τt| ≤ Fkl
c |τn| on ΓC , (5)

|τt| < Fkl
c |τn| ⇒ u

k
t − u

l
t = 0 on ΓC , (6)

|τt| = Fkl
c |τn| ⇒ ∃λ ≥ 0, u

k
t − u

l
t = −λτt on ΓC . (7)

2.2 Variational formulation

Let us introduce W = [H1(Ω)]d, ‖v‖W = (
∑

i≤d ‖vi‖2
1,Ω)

1

2 and the sets of virtual and admissible

displacements V0 = {v ∈ W | v = 0 on ΓD}, V = u0 + V0, K = {v ∈ V | vk
n − vl

n = 0 on ΓC}.
Assume that uk

0n − ul
0n = 0 on ΓC . Let Cijkl ∈ L∞(Ω), Fi ∈ L2(Ω), Pi ∈ L2(ΓL), u0 ∈ [H1(Ω)]d.

Then we have to solve the following variational problem:

Problem 2.2 Find a function u, u − u0 ∈ K, such that

a(u,v − u) + j(v) − j(u) ≥ L(v − u) ∀v ∈ K (8)

holds, where
a(u,v) =

∫

Ω Cijkleij(u)ekl(v) dx,

j(v) =
∫

ΓC
Fkl

c |τn| | v
k
t − v

k
t | dS,

L(v) =
∫

Ω Fivi dx −
∫

ΓL
Pivi dS.

(9)

The analysis of the problem and the existence results can be found in [3].
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3 The viscoplastic problem definition and analysis

3.1 Classical formulation

Let Ω ⊂ Rd (d ∈ {2; 3}) be a bounded domain with Lipschitz boundary ∂Ω. Let ∂Ω = ΓD ∪ ΓL,
ΓD ∩ ΓL = ∅ and µd−1(ΓD) > 0. The unknown v : Ω → Rd denotes velocity. The given vector
f : Ω → Rd stands for the volume forces. The dependence of the symmetric stress tensor T : Ω → Rd×d

(T = {τij}d
i,j=1) on velocity v will be investigated later. Furthermore, we specify boundary condition

P : ΓL → Rd representing the loading forces. An unit outward normal vector is indicated by n. We’re
interested in the analysis of the following problem.

Problem 3.1 Find v ∈ (C2(Ω))d such that

div v = 0 in Ω, (10)

− divT = f in Ω, (11)

v = 0 on ΓD, (12)

Tn = P on ΓL. (13)

Any solution of Problem 3.1 is called a classical solution in this section. In order to couple the
equations (10) and (11) and to formulate the constitutive relations, we need to specify the dependence
of the stress tensor T on the velocity v in Problem 3.1.

Let’s assume that the stress tensor T can be decomposed into the spherical and the deviatoric
part, denoted by T

δ ,
T = −p I + T

δ . (14)

Here, p : Ω → R has the meaning of the pressure.
The rheology of the Bingham fluid is described by the relations1

|Tδ| ≤ g ⇒ D = 0, (15)

|Tδ| > g ⇒ D 6= 0 ∧ T
δ = g

D

|D|
+ ν D, (16)

where D := D(v) = 1
2 (∇v+(∇v)T ). The non-negative material constant g represents the threshold of

plasticity ([g] = m2 s−2) and the positive material constant ν the kinematic viscosity ([ν] = m2 s−1).
The case g = 0 results in an ordinary Newtonian fluid. If g → ∞, the material behaves like a rigid
body. Moreover, both implications (15) and (16) can be trivially extended to equivalences.

The deviator S
δ of a general tensor S is defined by S

δ
ij := Sij −

1
d
Skkδij . For the case |Tδ | > g,

using the incompressibility equation (10), this means that the deviator of T is equal to T
δ defined in

(16), so that the notation introduced in (14) is clarified.
To derive the inverse constitutive relation for the case |Tδ | > g we manage with (16).

D =
|D|

g + ν |D|
T

δ =
|D|

|Tδ |
T

δ . (17)

Again, from (16) and from (17) it follows

T
δ = g

T
δ

|Tδ |
+ ν D, (18)

D =
1

ν

(

1 −
g

|Tδ |

)

T
δ . (19)

1|S|2 := S · S, S ·T = SijTij , assuming Einstein summation convention throughout the document.
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3.2 Weak formulation

We now derive the weak formulation of Problem 3.1. Let’s define the space V by

V = {v ∈ (W1,2(Ω))d; v = 0 on ΓD, div v = 0 in Ω}.

Assume that v is a classical solution of Problem 3.1, f and P are seemly chosen to ensure the
existence of all integrals and w ∈ V. When we multiply equation (11) by w − v, integrate over Ω,
use Green’s theorem, incompressibility condition (10), symmetry of T and boundary conditions (12),
(13), we obtain

∫

Ω

T
δ ·D(w − v) dx =

∫

Ω

fi(wi − vi) dx

︸ ︷︷ ︸

=: (f ,w−v)

+

∫

ΓL

Pi(wi − vi) dS

︸ ︷︷ ︸

=: (P,w−v)

. (20)

Left hand side of (20) can be decomposed to
∫

Ω

T
δ ·D(w − v)dx =

∫

Ωr

T
δ ·D(w − v)dx +

∫

Ωf

T
δ · D(w − v)dx, (21)

where Ωr = Ω ∩ {|D| = 0}, Ωf = Ω ∩ {|D| > 0}. Applying (15), (16) gives
∫

Ωr

T
δ · D(w − v)dx ≤

∫

Ωr

|Tδ | |D(w)|dx ≤

∫

Ωr

g |D(w)|dx, (22)

∫

Ωf

T
δ ·D(w − v)dx =

∫

Ωf

g

|D|
D · D(w − v)dx +

∫

Ωf

ν D · D(w − v)dx, (23)

∫

Ωf

g

|D|
D · D(w − v)dx ≤

∫

Ωf

g |D(w)|dx −

∫

Ωf

g |D|dx. (24)

Putting the above equations and inequalities together, we have
∫

Ω

ν D ·D(w − v)dx + j(w) − j(v) ≥ (f ,w − v) + (P,w − v), (25)

where j(u) =
∫

Ω
g |D(u)|dx, for any u ∈ V. The weak formulation follows immediately.

Problem 3.2 Find v ∈ V such that (25) holds for all w ∈ V.

Any solution of Problem 3.2 is called a weak solution in this section. It is now obvious that any
classical solution is also a weak solution. To sketch the proof of the reverse implication, we limit
ourselves to the case Ωf = Ω. The variation of j defined by

j′(v,w) = lim
h→0

1

h
(j(v + hw) − j(v)) (26)

is equal to

j′(v,w) =

∫

Ωf

g
D · D(w)

|D|
dx. (27)

Setting w := v ± λw̄, λ > 0 in (25) and limit passage λ → 0+ gives
∫

Ω

ν D ·D(w)dx + j′(v,w) = (f ,w) + (P,w). (28)

When we now apply Green’s theorem, consider (27), (10) and boundary conditions (12) and (13),
(28) can be rewritten to

∫

Ω

(div T + f) ·w dx = 0. (29)

Using the representation theorem on Hilbert space V implies the equality (11) in V
?.
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3.3 Variational formulation

We’re now going to set up the variational formulation of Problem 3.2, prove the existence of a varia-
tional solution and show the equivalence of weak and variational solutions.

Let’s define functional J : V → R by

J(w) :=

∫

Ω

1

2
ν |D(w)|2 dx + j(w) − (f ,w) − (P,w). (30)

Problem 3.3 Find v ∈ V such that J(v) ≤ J(w) ∀w ∈ V.

Any solution of Problem 3.3 is called a variational solution in this section.
The existence of a variational solution can be proved by direct method. The functional J is weakly

coercive, i.e. J(w) → +∞ as ‖w‖ → ∞. Let’s take a (minimizing) sequence {wk}∞k=1 fulfilling
J(wk) → infw∈V J(w). Such a sequence has to be bounded thanks to the weak coercivity of J . Since
V is reflexive, there exists v ∈ V such that wk ⇀ v in V. J is also lower semicontinuous and convex
which implies J weakly lower semicontinuous (see [5]). The chain of (in)equalities

J(v) ≤ lim inf
k→∞

J(wk) = lim
k→∞

J(wk) = inf
w∈V

J(w) (31)

proves that the weak limit v ∈ V is the solution of Problem 3.3.
Setting H(w) =

∫

Ω
1
2 ν |D(w)|2 dx − (f ,w) − (P,w), I(w) = j(w) in Lemma 3.1 shows the

equivalence of weak and variational solution.

Lemma 3.1 Let V be a linear space, H : V → R be convex and differentiable2, I : V → R be convex
and J = H + I. Then for all v ∈ V it holds

J (v) ≤ J (w) ∀w ∈ V ⇔ (H′(v),w − v) + I(w) − I(v) ≥ 0 ∀w ∈ V.

Proof:

(i) H convex immediately implies (H′(v),w − v) ≤ H(w) −H(v), so that J (v) ≤ J (w).

(ii) The proof of the reverse implication uses the convexity of I.

(H′(v),w − v) + I(w) − I(v) =

= lim
t→0+

1

t
(H(v + t(w − v)) −H(v) + t(I(w) − I(v))) ≥

≥ lim
t→0+

1

t
(H(v + t(w − v)) −H(v) + I(v + t(w − v)) − I(v)) =

= lim
t→0+

1

t
(J (v + t(w − v)) −J (v)) ≥ 0.

�

The analysis of the problem can be found in [3].

4 Numerical results

The obtained results are based on the bilateral contact problem with or without friction in elasticity
and the finite element method. The model problem is formulated as primary contact problem (i.e.
in displacements), where the geometry of the weight-bearing tibia is based on its cross-section in the
sagittal plane (see Fig.1). The investigated tibial area in the sagittal plane occupies the region, we
denote it by Ω as above in Section 2.1 and its boundary by ∂Ω = ΓD ∪ ΓL ∪ ΓC . The boundary
∂Ω is created by the part ΓD, where the tibia is fixed (in the figure demonstrated by the red line),

2i.e. there exists limt→0+
1

t
(H(v + tw) − H(v)) for all v,w ∈ V.
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by the part 1ΓL, where the loads are prescribed (which in the figure are demonstrated by the green
arrows) and by 2ΓL, where the surface of tibia is unloaded, and by the part, we denote it by ΓC ,

the contact surface between the bone and the marrow. On the boundary ΓC the bilateral contact
boundary conditions are prescribed.

Discussion of numerical results

The numerical results are presented in Figs 1-9. The geometry of the weight-bearing tibia is given
in Fig.1. The magnitude of the loading is 2.0×106Pa. In Fig.1 the bone tissue is colored dark brown,
while the marrow is colored light brown. Table 1 summarizes the biomaterial constants used in the

Material Elastic modulus [Pa] Poisson’s ratio [1]
Bone tissue 1.71× 1010 0.25

Marrow 2.0× 106 0.49

Table 1: Material constants

computation. The articular cartilage is not assumed in the investigated model. Deformation of the
long bone, the tibia, is presented in Fig.2. Small bending of the tibia in its middle part is observed.
In Figs 3 and 4 the horizontal and vertical components of displacement vector are presented. The
horizontal component of displacement vector indicates the bending in the middle part of tibia, while
the vertical component of displacement vector indicates certain vertical displacement changes in the
marrow, namely in the middle part of tibia. Moreover, it indicates elementary shifts of the biomaterial
points of the marrow tissue on the contact surface between the bone tissue and the marrow, as well
as elementary shifts in the marrow tissue inside the tubular bone. Figs 5-7 represent distributions of
the horizontal, vertical and shear stresses. Numerical results show that greater changes of horizontal
stresses are observed in the areas near the points 2 and 3 and on both sides of the point 1 in the
epiphyses and smaller changes also in the bone tissue. The vertical stresses indicate changes in
pressures on the outside right part of bone tissue in the middle tibia and on the inside left part of the
middle tibia tissue, while changes in tensile stresses are observed in the inside right part of the bone
tissue and in the outside left part of the middle tibia tissue. Moreover, it also indicates the probability
of small changes in vertical stresses in the marrow area. Changes of shear stresses are observed in the
middle part of tibia and in the areas between the marrow and bone tissues in the epiphyses. Greater
changes of shear stresses can be also observed in the epiphyses of tibia. The elementary changes of
tangential stresses on the contact surface between the marrow and the bone tissues are also indicated.
The principal stresses in Fig.8 and Fig.9 show that the great value of loading is transported through
the bone tissue as the compression in the predominance on the right outer part of the compact bone
and through the layer of small thickness near the left inside wall of the bone, while the outer left part of
the bone tissue in the middle tibia is characterized by the tensile stresses. Moreover, the compression
is also observed in the spongy bone of both epiphyses. The principal stresses presented in Fig.8 show
that the great loading is transported through the right side of tubular tibia. On the contact boundary
between the bone and the marrow tissues small tangential shifts can be expected. All these observed
effects are consequences of bending in the middle part of tibia. Furthermore, we see that Figures 5-8
show that a great value of loading is transported through the bone tissue. In Fig.9 the distribution
of principle stresses in the medullar cavity filled by the yellow marrow is presented in details. We
see that the yellow marrow in the medullar cavity in its upper and lower parts are compressed, and
that the magnitude of stresses in both areas are 1000-times lower than in the corticalis of tubular
tibia, while the distribution of stress field in the yellow marrow in the middle part of tubular tibia in
the consequence of bending is characterized by greater area of tensions, the magnitude of which is of
about several orders lower than tensions or compressions in the bone tissue and of one order lower
than compressions in the marrow of the upper and lower parts of medullar cavity. In the figures the
blue arrows refer to tensile stresses while the red arrows refer to the pressures.
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5 Conclusion

From the above analyses of the weight-bearing tubular tibia we see that a great value of loading is
transported through the bone tissue, and moreover, that small bending of the tibia in its middle part
is observed. Numerical results indicate that the yellow marrow in the medullar cavity in its upper
and lower parts are compressed, and that the magnitude of stresses in both areas are 1000-times
lower than in the corticalis of tubular tibia, and moreover, that the distribution of stress field in the
yellow marrow in the middle part of tubular tibia, in the consequence of bending, is characterized by
a greater area of tensions with the magnitude which is of about several orders lower than tensions
or compressions in the bone tissue and of one order lower than compressions in the marrow of the
upper and lower parts of medullar cavity. Convincing biomechanical analyses can give the analyses of
the TKR (and or the artificial replacements of hip joint) models, which will analyse distributions of
stresses in areas near the tibial stem of the artificial knee joint.
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CR, Prague, 2006.

[3] Duvaut G. , Lions J.L.: Inequalities in Mechanics and Physics. Springer Vlg., Berlin, Heidelberg,
New York, 1976.
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