
A Superpolynomial Lower Bound for a Class of Restricted Branching Programs

Žák, Stanislav
2007

Dostupný z http://www.nusl.cz/ntk/nusl-37765

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 03.09.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-37765
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A superpolynomial lower bound for
a class of restricted branching
programs

Stanislav Žák

Technical report No. 1012

November 2007

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 053 111, fax: +420 286 585 789,
e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

A superpolynomial lower bound for
a class of restricted branching
programs1

Stanislav Žák2

Technical report No. 1012

November 2007

Abstract:

We considerably improve the lower bound result (Jukna, Žák 2000) concerning read-once branching pro-
grams. We prove a superpolynomial lower bound for a considerably larger class of branching programs. The
new lower bound technique is based on a tight observation concerning separation of positive and negative
input strings.

Keywords:
branching programs, lower bound techniques

1Research partially supported by the “Information Society” project 1ET100300517 and the Institutional Research
Plan AV0Z10300504.

2Institute of Computer Science, Academy of Sciences of the Czech Republic, P.O. Box 5, 18207 Prague 8, Czech
Republic, stan@cs.cas.cz

1 Introduction

By a branching program (b.p.) P (over binary inputs of length n) we mean a finite, oriented, acyclic
graph with one source (in-degree = 0) where all nodes have out-degree = 2 (so-called branching nodes)
or out-degree = 0 (so-called sinks). The branching nodes are labelled by variables xi, i = 1, ..., n, one
out-going edge is labelled by 0 and the other by 1, the sinks are labelled by 0 or by 1.
For an input a = a1...an ∈ {0, 1}n by comp(a) we mean the sequence of nodes starting at the source
of P and ending in a sink. In each node with label xi the next node is pointed by the edge with label
ai.
A special case of b.p. with in-degree = 1 in each node (with exception of the source) is called decision
tree.
If a node v ∈ comp(a) we say that a reaches v. If a and b reach v and immediately below v they reach
different nodes we say that comp(a) and comp(b) diverge in v (or shortly a and b diverge at v).
P computes function fP which on each a ∈ {0, 1}n outputs the label of the sink reached by a.
We say that P computes in time t(n) if each its computation is of the length at most t(n).
The well-known restriction of b.p.’s are so-called read-once branching programs in which along each
computation each variable is tested at most once. Read-once b.p.’s compute in time n, of course.
If comp(a) has a common part with a path in P we say that a follows this path.
By a distribution we mean any mapping D of {0, 1}n to the set of nodes of P with the property that
for each a D(a) is a node of comp(a) (D(a) ∈ comp(a)). The class of the distribution at node v is the
set of all a‘s mapped to v.
Let v be a node of P and let A be a set of some (not necessarily all) inputs reaching v. We say that
T is a tree developed in v according to P with respect to A iff the branches of T simply follow (only)
the paths of P starting at v and followed by inputs from A till the sinks (in T no joining of paths is
allowed, of course). Moreover each edge pointing to a node with out-degree = 1 in T is repointed to
its successor. Hence in T each node has out-degree = 2 with exception of its leaves.
By the size of P we mean the number of its nodes. By the complexity of a Boolean function f we
mean the size of the minimal b.p. computing f .
It is a well-known fact that superpolynomial lower bound on the size of b.p.‘s implies superlogarithmic
lower bound for space complexity of Turing machines.
There is a long history of proving superpolynomial lower bounds for restricted b.p.‘s, especially for
read-once b.p.‘s (see Wegener 2000). The strike was done by Ajtai (1999) with proof of superpolyno-
mial lower bound for b.p.‘s computing in time n.log n. We are searching for superpolynomial lower
bound for less restricted b.p.‘s computing in time n.(log n)2. In this text we present a technique based
on a new principle as follows.
Let us have a b.p. P which computes a function f . Let a = a1...an, b = b1...bn, x = x1...xn be three
inputs. Let for all i = 1...n xi = ai or xi = bi and f(a) = f(b) 6= f(x).
We see that there is at least one node in P reached by all three a, b, x - e.g. the source of P . On the
other hand f(a), f(b) differ from f(x) - therefore in P there is a non-sink node v which is the last
node in P reached by all three a, b, x.
Let us consider the situation in v. In v (according to definition of v) a, b, x must diverge. Let the i-th
variable be tested in v. It must be ai 6= bi otherwise ai = bi = xi and no divergence is possible.
Wlog we may assume that a follows 0-edge outgoing from v, b follows 1-edge and x follows 1-edge ,
too. Since v is ”last”, the computational paths starting in v and given by a and b must not meet until
the moment when b, x diverge. This is our new principle.
For its application it remains to imagine that in one node many inputs with rich mutual relations
can be distributed with the effects that many paths till some significant depths must not have any
common nodes. As a consequence we can obtain lower bounds.
Motivation for the presented research is the great challenge to prove superpolynomial lower bound for
branching programs computing in time more than n.log n (cf. Ajtai 1999). We have created a new
lower bound technique based on the principle stated above. The first application of this technique
gives a lower bound for a class of restricted branching programs computing in time n.(log n)2 probably
incomparable with that of Ajtai and , moreover, containing the class of polynomially sized read-once
branching programs. From the last fact it follows that the presented result is a considerable improve-

1

ment of that one from (Jukna, Žák 2000) giving a lower bound for read-once branching programs.
The main success of this paper is traversing a long way starting by the formulation of a very simple
principle above and continuing by transformation of it to an effective lower bound giving a reasonable
result.

2 Multisyms

For appropriate n‘s we understand the binary inputs of length n as matrices m×k where m.k = n. We
say that such a matrix is a t-multisym if for each choice of t columns there is a row r monochromatic
on them (we say that r covers this choice of columns) . For the purposes of this text we shall use
only 2-multisyms, simply multisyms. This function was used to prove superpolynomial lower bound
for so-called read-once branching programs (see Jukna, Žák 2000).
We often use notation m = ε(n).log n and k = n

ε(n).log n . It is easy to see that for ε(n) ≥ 3 the number
of multisyms is at least 2n−1. Indeed the number of multisyms is at least

2n − (
k
2

)
.2m.2n−2m ≥

2n − n2.2n−m ≥
2n − 2n+2.log n−ε(n).log n ≥
2n − 2n−log n ≥ 2n−1.

By a canonical branching programs computing multisyms we mean any branching program P con-
sisting from a chain of subprograms (Pi,j) for i, j = 1...k, i 6= j. Each program Pi,j is responsible for
verifying the covering of the pair of columns (Ci, Cj). Each Pi,j has two sinks - simply to separate
the matrices with covered (C1, C2) from the others. The first sink of Pi,j is the source of the next
subprogram Pi′,j′ , the second sink of Pi,j is one of sinks of P . Such a Pi,j is a chain of microprograms
Mr for each row r. Mr is responsible for covering of (C1, C2) on row r. (Mr tests equality of two
bits.)
Let P be a branching program and let the input words be viewed as matrices. Let v be a node of P , a, b
be positive inputs, x be a negative one, C1, C2 be columns, all a, b, x reach v. By R(v, a, C1, C2, b, x)
we mean that
i) v is a node reached by all three a, b, x,
ii) in v a, b, x diverge, x follows a,
iii) the test in v is in C1, the test in which x leaves a for the first time (below v) is in C2,
iv) b never meets a before x leaving a.
Of course, this definition is inspired by multisyms, positive and negative inputs means inputs reaching
sinks with different labels.
We say that P is a reasonable branching program iff P satisfies the next restriction :
For at least 2n−2 inputs a’s and for all C1, C2 there is a node v of P such that
R1 there are b, x satisfying R(v, a, C1, C2, b, x) or R(v, a, C2, C1, b, x).
and
R2 if some b′ reaches v and testvb′ 6= testva (a and b′ diverge at v) then R(v, a, C1, C2, b

′, x).

The next section demonstrates that R1, R2 are taken from life.
The restriction ”reasonable b.p.” may seem be very special since it is formulated in close connection
to multisyms and therefore it can be reasonably used only for b.p.’s computing this function. On
the other hand multisyms seem to be a very appropriate candidate for a function superpolynomially
difficult for general b.p.’s computing in time n.(log n)2. We plan in the next development of our ideas
to remove our assumption with both R1, R2. Hence our approach to start with R1, R2 is legitimate.

3 Reasonability of R1, R2

In the next lemma we demonstrate that R1, R2 are satisfied by canonical branching programs.

Lemma 1 Each canonical branching program (computing multisyms) is reasonable.

2

Proof. Let P be a canonical branching program computing multisyms. Let us verify R1.
Let a be a multisym, let C1, C2 be a pair of columns. Let us take the subprogram P1,2 of P

corresponding to the pair C1, C2 and within it the microprogram Mr (responsible for a row r) in
which a leaves P1,2. Let v be the input node of Mr. We want to prove R(v, a, C1, C2, b, x) for some
b, x. Let x be a nonmultisym which at v follows a and which ends at sink of P1,2. (Such an x exists:
e.g. x such that outside of C1, C2 x equals 1, on both C1, C2 x has at least one 1, x does not cover
C1, C2, and on Mr at v x follows and then diverges a).

Let b be a multisym which at v follows the opposite edge.Clearly
R(v, a, C1, C2, b, x). R1 is verified.
R2 is satisfied clearly.Q.E.D. 2

Further we want to prove that also all polynomially sized read-once branching programs computing
multisyms are reasonable, i. e. that 2n−2 a’s and all C1, C2 satisfy our assumption with R1, R2.
This task is not trivial. We shall use the technique of so called windows which originated in year 1981
(Žák 1983). This technique is two-faced. One face is represented by a lemma which is in a strictly
classical combinatorial form on one hand, but which is relatively sterile from the point of intuition
and inspiracy on the other hand. The second face of our technique is represented by definitions and
lemma’s which may seem to be bizarre but they are still strictly mathematically correct on one hand,
and very closed to intuition concerning flows of information along computational paths, and very
inspirative in any case on the other hand. First let us present the first face of our technique - the
combinatorial lemma.

Lemma 2 Let us have r binary trees. Let S be the sum of (the numbers of) their leaves and l be the
average length of their branches. Then l ≥ log2 S − log2 r.

One possible proof can be found in (Jukna, Žák 2003). For r = 1 we obtain the well-known fact
that the average length of branches of any binary tree is at least the binary logarithm of their numbers.
The second face of our technique is motivated by an attempt to catch the information concerning the
contents of input bits remembered at different stages of computation. To each node of computation
comp(a) on an input a of length n we assign a word w of length n over ternary alphabet 0, 1, + (+
is called a cross) such that for all i, 1 ≤ i ≤ n wi = ai or wi = +. The number of noncrossed bits
in w is called the length of the window w. Intuitively, the noncrossed bits represent the remembered
information.

Definition 1 Let P be a branching program, v be its node. Let A be a set of some inputs of length n
reaching v. From v we develop a tree Tv,A according to P with respect to A. From level of sinks we
arbitrarily test appropriate bits in such a way that in each leaf of Tv,A there is exactly one input from A.

For each a ∈ A we define the window w(a, v, A) on a at v with respect to A in such a way that
w(a, v, A)i = + if and only if in Tv,A there is a test on bit i along the branch followed by a.

The window w(a, v,A) is said to be natural iff A is the set of all inputs reaching v.

It is clear that the simple thing holds: ”The larger A, the larger number of branches in the tree, the
larger number of crosses, the shorter windows”.
Let us take into account the situation described in the definition and let us imagine two dummy nodes
at the middle of both edges out-going v. For each a ∈ A in the window at the dummy node exactly
one cross on the bit tested at v is removed in comparison with the window at v. This property (one
test - one cross is removed) corresponds very well to the intuition that the test at a node is in fact
acquisition of the information about the content of the tested bit. In the history (1981) of this matter
the requisition of this property lead to our definition of windows (Žák 1983, Žák 1997).
Another confirmation of our intuition is given by a small theorem in (Žák 1997) saying that for each
(general) branching programs computing symmetric words it holds that during the computation on
such a word each pair of symmetric positions must be non-crossed at least in one window. In other

3

words branching programs computing symmetric words must compute in a human-like way. In the
history the analysis of this phenomenon lead to the definition of multisyms.
For the theory of windows the following theorem (Žák 1997) is very important.

Theorem 1 Let P be a branching program and A be set of inputs distributed in (the set of nodes of
) P . Let A1, ... Ar be all classes of this distribution. Then

log2 (size of P) ≥ log2 r ≥ log2 |A| − n + avelw
where avelw is the average length of windows of inputs from A according to Ai’s, i = 1, ... r.

Proof. We use our tree lemma above. Let us take into account the trees developed according to
Ai’s. Let S be the number of their leaves and l be the average length of their branches. According
to lemma we have l ≥ log2 S − log2 r. We see that S = |A| and that l = n − avelw. Hence we have
n− avelw ≥ log2 |A| − log2 r. Q.E.D.

2

This theorem confirms our intuition that remembering many information about many inputs re-
quires a large memory, i. e. a large branching program. Moreover this theorem gives a method of
proving large lower bounds. For proving a lower bound for a Boolean function it suffices to prove that
this function requires large windows on many inputs.

Theorem 2 Let P be a branching program, A be a set of inputs of length n and z be a number.
Then there is a set Az ⊆ A of cardinality at least (1− 1

z).|A| such that for each a ∈ Az all natural
windows on a along comp(a) are of length at most z.(log2 (size of P)− log2 |A|+ n).

Proof. We distribute each a ∈ A to the node of its (first) maximal natural window. Let r be the
number of classes of this distribution. We see that for each a ∈ A the window according to this
distribution is not shorter than the maximal natural window on a and therefore it is not shorter than
any natural window along whole comp(a).
What concerns of windows according to our distribution the previous theorem says that

avelw ≤ log2 (size of P)− log2 |A|+ n.

Further at least (1− 1
z).|A| of inputs from A have windows according to our distribution of length

at most z.avelw. hence - as stated above - (1 − 1
z).|A| of inputs from A have each their natural

windows (along the whole computations) of length at most z.avelw. Q.E.D.

2

Theorem 3 Let P be a read-once branching program computing multisyms with (log log n)2 ≤ ε(n) ≤
log n. Let size(P) ≤ nq.

Then there is a subset S of (the set of all) multisyms such that
a) |S| ≥ 2n−2 ,
b) For each a ∈ S and for each pair of columns C1, C2 there is a node v such that R1,R2 hold.

Proof. By α(n)-strong multisyms we mean multisyms with α(n).log n (covering) monochromatic
rows for each pair of columns. For α(n) ≤

√
ε(n) the number of α(n)-strong multisyms is at least

2n−1. This follows from the fact that the number of strings which are not α(n)-strong multisyms is
at most(

k
2

)
.2m.α(n).log n.

(
m

α(n).log n

)
.2n−2m ≤ n3.2n−m.mα(n).log n

≤ 2n−ε(n).log n+3+α(n).log n.log (ε(n).log n) ≤ 2n−1.
According to the previous theorem there are at least 2n−2 of α(n)-strong multisyms such that each
their natural window in P is of length at most 2.(q.log n + 1). Let S be the set of such multisyms.
For any multisym a and for each pair of columns C1, C2 we define a pair of nodes va,C1,C2 , wa,C1,C2 in comp(a)
(in brief v, w) as follows: Let r be the first row monochromatic on C1, C2 such that both its bits (on
C1, C2) are both tested along comp(a). va,C1,C2 is the node of the first (in comp(a)) test in question,

4

wa,C1,C2 is the node of the second one.

Lemma 3 Let a ∈ S, let C1, C2 be columns.
Then there is no input c such that
a) c meets a at the moment when comp(a) still has not covered C1, C2 and still has touched (by

any test) at most 2.(q.log n + 1) pairs covering C1, C2 in a.
b) there is a bit i, i ∈ C1 ∪ C2, a(i) 6= c(i), a(i) tested by comp(a) before meeting comp(a) and

comp(c).

Proof. By contradiction. Suppose such an c exists. We construct c′ as a prolongation of c (it means
we define values of the bits not tested by comp(c) before meeting with comp(a)). Outside of C1, C2

we give the same values which are in a. Hence c′ and a cannot diverge by tests outside C1, C2.

Fact 1. On C1, C2 there is no bit tested by comp(c) but not tested by comp(a) before their meeting.
By contradiction. Let i1 be such a bit and let i′1 be a bit associated with it on the same row on C1, C2.
We construct a′, a′′ two prolongations of a. Outside of C1, C2 they equal a. On C1, C2 on pairs of
bits on the same rows with exception of i1, i

′
1 we give values 01, 10 so that each pair C,C1 and C, C2

is covered. In i1 we give different values for a′, a′′, in i′1 we give the same value for both a′, a′′. a′, a′′

differ only on i1 - therefore they will not diverge because on i1 they must not test since i1 was tested
by c. They reach the same sink. On the other hand -due to the arrangement on i1, i

′
1- one of them is

multisym and the other not. A contradiction.
On 6.log n pairs of bits on rows on C1, C2 we may give values 10, 01 in such a way that both a and
c′ cover each C,C1 and C, C2 for each c 6= C1, C2.
Fact 2. c′ covers all pairs C, C ′ for C,C ′ 6= C1, C2.
By contradiction. On C1, C2 on the remaining pairs of bits we give values 00. a, c′ reach the same
sink but only exactly one is multisym. A contradiction.
Fact 3. c covers C1, C2.
By contradiction. Let c not cover C1, C2. On the remaining bits of C1, C2 with exception of j
associated with i we construct a common prolongation in such a way that the resulting c′ does not
cover C1, C2. To j we give the value a(i). a′, c′ reach the same sink but only exactly one of them is
multisym. A contradiction.
We see that c′ covers all pairs of columns. On the other hand on C1, C2 there is a common prolongation
a′ of a such that a′, c′ reach the same sink with arrangement on bits i, j such that a′ is not multisym.
A contradiction. Proof of lemma is closed.

2

Lemma 4 The number of pairs covering C1, C2 (in a) touched by (tests of) comp(a) between v and
w is at most 2.(q.log n + 1).

Proof. By contradiction. Let this number be larger. Then beginning at v many of bits from the
pairs in question are tested by comp(a) and therefore many bits are introducing natural windows on
a between v and w. But a ∈ S, therefore each its natural window is of length at most 2.(q.log n+ 1).
Hence soon after v a c must meet a and close some bit in the window on a. But this impossible
according to the previous lemma. A contradiction. Q.E.D.

Let us verify that R1 holds. For a ∈ S an α(n)-multisym and for any pair of C1, C2 we have
defined the nodes va,C1,C2 , wa,C1,C2 ∈ comp(a) in brief v, w. Let us define b, x as follows. Outside of
C1, C2 a = b = x. b differs a only on the bit tested at v. b is a multisym. x equals a on all bits tested
by comp(a) before w, on the bit tested at w x differs a and on the remaining bits x is defined in such
a way that to be nonmultisym arbitrarily. Now it suffices to prove that b never meets a before w nor
in w. But this follows from the previous lemmas.
The same for R2.
2

2

5

4 Combinatorics

Lemma 5 Let T be a sequence of places, let |T | be its length. Let k be a natural number.
Let

(
k
2

)
pebbles be distributed on places of T , at most k − 1 pebbles on one place.

Let u, α be numbers, u <
(k
2)
|T | and u < k − 1.

Then in T there is a subsequence S of α places such that
(i) on each of them more than u pebbles are distributed,
(ii) between each two places neighboring in S there is at most d = α. |T |−o

o−1 nodes in T where

o = (k
2)−|T |.u
k−1−u .

Proof. By a marked place we mean any place with at least u + 1 pebbles. In T there is at least

o = (k
2)−|T |.u
k−1−u marked places. The average distance between marked places is at most p; p = |T |−o

o−1 .

The number of intervals of length at least α.p + 1 of non-marked places is at most |T |−o
α.p+1 =

|T |−o

α.
|T |−o
o−1 +1

< o
α .

Hence there are at most o
α subsequences of marked places in which each two neighbors have distance

at most α.p and moreover there is at least one such subsequence which contains at least α nodes. 2

2

Corollary 1 For k = n
ε(n). log n , ε(n) ≤ log n, T (n) = n.(log n)2, α = (log n)2 and u =

√
(n)

(log n)2 , d(n)
is at most 6.(log n)6.

Proof. d(n) = α(n).T (n)−o
o−1 =

α(n).T (n)
o−1 − α(n).o

o−1 ≤
n.(log n)4

o−1 (since o > 1)

= n.(log n)4

(k
2)−T (n).u

k−1−u −1

≤
n.(log n)4.(k−1−u)

(k
2)−T (n).u−k+1+u

≤
n.(log n)4.k

1
2 .(k

2)
≤ 6.(log n)6. 2

2

5 Lower bound

Definition 2 Let B be a full binary decision tree. Let M be a set of inputs, M ⊆ {0, 1}n. Let T be
a subtree of B. Let LT be a number of all leaves of T and LM,B

T be the number of leaves of T reached

(in B) by inputs from M . By (M,B)-ratio of T pM,B
T we mean the number LM,B

T

LT
.

Theorem 4 The polynomially sized reasonable branching programs cannot compute multisyms with
(loglog n)2 ≤ ε(n) ≤ log n in time n.(log n)2.

Proof. By contradiction. Let P be a reasonable branching program computing multisyms in time
n.(log n)2 and with |P | ≤ nq for some q. Since P is reasonable there is a set A of multisyms of
cardinality at least 2n−2 with the corresponding properties.
For each multisym a ∈ A we understand the nodes of comp(a) as a sequence of places. Let v ∈ comp(a)
be a node (place) and let C1 be the column of the variable tested in v. The number of pebbles on v
is given by the number of columns C such that R(v, a, C1, C, b, x) for some b‘s, x‘s. Hence on each v
there is at most k − 1 pebbles where k is the number of columns in the matrices (multisyms).
From R1 it follows that on comp(a) there must be at least

(
k
2

)
pebbles. Therefore according to Lemma

5, for each a , in comp(a) there is a relatively long ((log n)2) subsequence Sa of nodes with relatively

many (
√

(n)

(log n)2) pebbles and with the distances between their nodes relatively small (at most 6.(log n)6

6

- see Corollary 1).
Let us distribute each multisym a ∈ A to the first node of Sa. Let v be the node with a maximal class
M of this distribution. Hence |M | ≥ 2n−2

nq .
From v we develop the syntactic tree B′ according to P (”syntactic” means that we take into account
also the branches which are not followed by any input e.g. in case of repeated tests on the same
variable) till the depth (log n)2.6.(log n)6 in P . Below this depth we continue the developing of the
tree ignoring the repeated tests. On each branch b at the node corresponding to the related sink of P
we add some subtree Sb which on each their branches tests all variables not tested below v till now.
We know that the length of branches (constructed till now) is at least n and that each such branch is
followed by at most one input (of length n). The branches (constructed till now) can be of different
length (due to the possible different number of repeated tests along different branches). To obtain a
full tree B′ of certain length we add some full tree Tb of appropriate length to each branch b shorter
that the longest one of branches constructed till now. As a result we obtain a full binary decision tree
B′ of depth n + δ. δ is at most (log n)2.6.(log n)6.
We modify B′ as follows. In the middle of each edge below v till the depth (log n)2.6.(log n)6 we insert
a new node with the same test as in the node from which the edge in question out-goes. On the dead
edge of this test we add a dummy full binary tree D of depth log((log n)2.6.(log n)6) + (log n)2 + δ.
Below the depth (log n)2.6.(log n)6 we add dummy subtrees of depth δ− l where l is level of B′ below
(log n)2.6.(log n)6. Maximal l for this operation is δ.
Let B be the resulting tree. The number of its leaves is at most

2n+δ +
+26.(log n)8 .2log((log n)2.6.(log n)6)+(log n)2+δ +
+

∑δ
l=0 2l.2δ−l ≤

≤ 2n+δ+1.
It follows that M-ratio of B
pM

B ≥ |M |
2n+δ+1 .

Lemma 6 There is a full binary decision tree T of depth (log n)2 + δ rooted in v such that
a) Each its branch (considered as a sequence of nodes) is a subsequence of a branch of B.
b) pM,B

T ≥ pM
B .

c) The nodes of T reached by inputs from M in depth (log n)2 are pairwise different in P .
d) The number of leaves of T reached by inputs from M is the same as the number of nodes of T

reached by inputs from M on level (log n)2.

Since P is small (≤ nq) from c)and d) it follows that the number of leaves of T reached by in-
puts from M is small (≤ nq) which implies that pM,B

T ≤ nq

2(log n)2+δ
. According to b) it follows that

nq

2(log n)2+δ
≥ pM,B

T ≥ pM
B ≥ |M |

2n+δ+1 . A contradiction. Q.E.D. 2

Proof of Lemma.
The main point of construction of the desired tree T is recursive use of procedure Proc.

In the first step of Proc we take into account the both subtrees of B rooted by the immediate successors
v0, v1 of v. If one of these subtrees is reached by no input from M we add it to the constructed tree
T ′. We know that in the other case in P the branches starting in v0 and in v1 and followed by inputs
from M don’t meet till the depth

√
n

(log n)2 . This follows from the restriction R2. (Cf. c) of Lemma.)
For i = 1, 2 below vi we distribute each input a from M to the node of B where a has the next
(second) node of its special subsequence Sa. First let us take into account the easy case when on each
branch there is at most one node of this distribution. Among the full subtrees with roots in the nodes
of the distribution we chose that one which has maximal M -ratio. We notice that this ratio is at least
the same or larger than the ratio of the tree rooted by corresponding vi. In T ′ there will be an edge
from v to the root of the chosen tree. On each tree chosen in the present iteration of Proc we apply
the next iteration.
The difficult case is when some nodes of this distribution are on the same branch of B. Let leaders
be nodes (of this distribution) which have no such nodes as predecessors.

7

We take into account a partition of the set of nodes of the distribution according to the equivalence
”to be below (or equal to) the same leader”.

Let wi’s be a class of nodes (a class of the partition) where sets of multisyms Mi’s are distributed.
We construct the corresponding trees Ri’s rooted in wi’s. Each Ri contains all branches followed by
inputs from Mi. The sets of leaves of Ri’s are pairwise disjoint (since in each leaf is at most one input
- from the construction of B). In general the union of Ri’s do not cover the whole subtree rooted in
the leader of wi’s because in general there are branches not followed by any input from M . To each
Ri we potentially add some other branches to save the possibility to continue the construction of full
tree of depth (log n)2 + δ in case when the modified Ri is chosen as the tree with maximal M -ratio.
We proceed according to the following rules:
Let us take R one of Ri’s. In B let us follow its branches from its root to its leaves. Let u be a node
on some branch b such that only one outgoing edge is followed by inputs from Mi. In case when u
is in B in depth at least d = (log n)2.6.(log n)6 + δ we add the whole subtree of B rooted by the
out-going edge in question to R or we do nothing if u plays its role for another R which consumes this
subtree in question.
In case when u is in the depth at most d the most difficult case is such that the out-going edge in
question is followed by inputs from some other Mi’s.
We saturate the need of subtree in the direction of the out-going edge in question using the added
subtree rooted in the middle of this edge. The added subtree is large enough to yield subtrees of
desired depth (log n)2 + δ for at most 6.(log n)6 Ri’s in at most (log n)2 iterations of Proc.
From T ′ we construct the desired full binary tree T of depth (log n)2 + δ as follows:
From each node of T ′ in depth (log n)2 in T ′ we follow the branches in B. If the node in question
(on level (log n)2 and below) of T ′ is not reached in B by any input from M we simply add a subtree
of an appropriate depth to gain the desired depth (log n)2 + δ. (In case of back reconstruction of B
from T b) of Lemma is not corrupted.)
If a node has only one out-going edge followed by inputs from M we prolong the dead edge by an
subtree of appropriate depth to gain the desired depth (log n)2 +δ and we follow the edge with inputs
from M .
If in a node both outgoing edges are followed by inputs from M we consider two subtrees rooted in this
node. Each of these two subtrees contains the subtree rooted by one outgoing edge and the dummy
tree rooted by the middle of the opposite out-going edge.

We chose that one with maximal number of inputs from M . In both cases the back reconstruction
of B does not corrupt b) of Lemma.
(From construction of B it follows that the operation above is ensured till the depth (log n)2.6.(log n)6+
δ. This is sufficient for construction of T .)

The conditions a), b), c), d) of Lemma are satisfied.
It remains to verify that T is a full tree of depth (log n)2 + δ.
From the description of Proc it is easy to see that T is a full tree till the level (in T) at least (log n)2.
On this level the nodes not reached (in B) by any input from M have an appropriate prolongation
by a subtree till the desired depth (log n)2 + δ - this follows from the construction of B and from the
description of Proc. Q.E.D. 2

The proof above is the first application of the principle mentioned in Introduction. The result is
modest but reasonable. The challenge is to remove restrictions R1, R2 and in this way to achieve a
considerable improvement of Ajtai’s result (Ajtai 1999).

8

Bibliography

[1] M. Ajtai - A non-linear time lower bound for Boolean branching programs, Proc. of 40th IEEE
Ann. Symp. on Foundations of Computer Science, 1999, pp. 60-70

[2] S. Jukna, S. Žák - Some notes on the information flow in read-once branching programs, in
Proc. of 27th Ann. Conf. on Current trends in Theory and Practice of Informatics, LNCS 1963,
Springer, Berlin, 2000, pp. 356-364

[3] S. Jukna, S. Žák - On Uncertainty versus Size in Branching Programs, Theoretical Computer
Science, Vol. 290, 2003, pp. 1851-1867 (ISSN: 0304-3975)

[4] I. Wegener - Branching programs and binary decision diagrams, SIAM, 2000

[5] S. Žák - Information in Computation Structures, Acta Polytechnica, Vol. 20, 1983, No. 4, pp.47-
54,(ISSN:1210-2709)

[6] S. Žák - A subexponential lower bound for branching programs restricted with regard to some
semantic aspects, Electronic Colloqium on Computational Complexity, Report Series 1997, ECCC
TR97-50, Trier, 1997.

[7] S. Žák - A lower bound technique for restricted branching programs (version G), Institute of
Computer Science, Academy of Sciences, Prague, Technical report No. 991, March 2007

9

