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Technical report No. 1009

October 2007
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1 Introduction

Classical models of universal computations, such as Turing machines, RAMs, etc., are rigorously de-
fined mathematical structures in whose design there is no room for randomness. The situation is
slightly different when the computing systems represented by networks of processors (such as the In-
ternet, wireless networks, etc.) are considered: here, the network topology may result from a random
process. In order to “compute” bold assumptions about such networks have been usually made: at
least we require that all network nodes are connected by communication links, that prior to the start of
computation each network node possesses a unique “network address”, that there are communication
primitives supporting message exchange and, last but not least, that each network node does posses a
universal computing power. Such models have been the domain of the classical computational theory
of distributed systems. However, recent developments in micro-electro-mechanical systems, wireless
communications and digital electronics have brought yet a new challenge into the area of distributed
computing systems. Their new instances integrate sensing, data processing and wireless communi-
cation capabilities. Typical representatives of such systems are sensor, mobile, or ad-hoc wireless
networks (cf. [11]). At an extreme end, people consider exotic systems such as smart dust (cf. [14])
or amorphous computers (cf. [1], [2], [4]). In these systems the miniaturization is pushed to its limits
resulting, presumably, into processors of almost molecular size with the respective communication and
computing facilities adequately (and thus severely) restricted. These limitations call for the change
of the basic computational and communication model of distributed computing systems which must
subsequently be also reflected in the design of the corresponding algorithms.

It seems that so far the related research has mainly concentrated on the concrete hardware, software
and algorithmic issues neglecting almost completely the computational and complexity aspects in that
kind of computing (cf. [13]). Very often the designers of such algorithms have paid little attention to
the underlying computational model and, e.g., they have taken for granted the universal computing
power of all processors, synchronicity of time in all processors, the existence of unique node identifiers
and those of communication primitives allowing efficient message delivery.

In our paper we concentrate on a computational model of a wireless communication network where
such assumptions do not hold. This could be the case of e.g., the smart dust mentioned earlier. Our
model, called amorphous computer works under very week assumptions: basically, it is a random
graph which emerges by distributing the nodes randomly in the bounded planar area. The graph’s
nodes are processors represented by probabilistic finite state automata possessing no unique identifiers
(“addresses”). The graph’s edges exist only among the nodes within the bounded reach of each node’s
radio. Each node operates asynchronously, in either broadcasting or listening mode, hearing a message
only if it is sent exactly by one of the node’s neighbors. That is, there is no mechanism distinguishing
the case of a multiple broadcast from the case of no broadcast. This model has been introduced
recently by the authors in [12].

Due to its weak (and thus, general) underlying assumptions which correspond well to various
instances of amorphous computing as described in the literature, we believe that such a model presents
a fundamental model of amorphous computing (cf. [1], [2], or an overview in [4]). Within the theory of
computation a model of an amorphous computer, as given by our definition, represents an interesting
object of study by itself since it contains elements of randomness built–in into both the computer’s
“set–up process” and its operations. The fundamental question is, of course, whether such a model
does possess a universal computational power. The first steps towards this end have been taken in [12].
Here, under the above mentioned mild assumptions concerning the communication among the nodes
of an amorphous computer and under reasonable statistical assumptions on the underlying graph a
scalable randomized auto-configuration protocol enabling message delivery from a source node to all
other nodes has been designed. For networks whose underlying communication graph has N nodes,
diameter D and node degree Q, the complexity of this protocol is O(DQ log(N/ε)) with probability
ε > 0 of failure.

For the synchronous case, the problem of message delivery similar to the one mentioned above
has been studied in the seminal paper by Ben-Yehuda, Goldreich and Itai in 1993 [3]. Under the
same notation as above, the algorithm of Ben-Yehuda et al. runs in time O((D + log(N/ε)) log N).
This algorithm is faster than the former one, but the assumption of synchronicity (allowing that
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all nodes can start a required action simultaneously) is a crucial one for its correctness. However,
synchronization is exactly the feature excluded by the very definition of amorphous computing.

In the present paper, a further modification of the protocol from [12] is used in designing an algo-
rithm simulating a unit–cost RAM (for inputs of bounded size). This simulation shows that systems
of amorphous computers do possess a universal computing power. To the best of our knowledge this
is the first result of this kind.

A formal model of the amorphous computer is described in Section 2. In Section 3, for the sake of
completeness, the asynchronous communication protocol from [12] is briefly presented followed by a
new version of the broadcasting algorithm. Some useful properties of random graphs pertinent to our
application are mentioned in Section 4. The main result of the paper, i.e., an algorithm simulating a
unit-cost RAM with a bounded-size input on our model of the amorphous computer, and its complexity
analysis, is given in Section 5. Section 6 is devoted to conclusions.

2 Model

In order to be able to prove universality of any model of computation we have to define this model
quite rigorously: only then we can design plausible algorithms for it. To that end we give the definition
of an amorphous computer as introduced in [12].

Definition 1 An amorphous computer is a sextuple A = (N,S, P,A, r, T ) where

1. N is the number of processors (also called nodes) in the underlying network. Each node is
created by a RAM enhanced by a module for wireless sending and receiving. All nodes are
identical, controlled by the same program, except of a single distinguished node called the base
station. In addition to the standard node facilities (see below) this node is capable to send and
receive data to/from a remote operator and is used to enter the data into the AC and to send
the results of AC data processing to the operator.

2. Each RAM has a fixed number of registers. Each register has length s bits and can contain one
of S = 2s different values. Every RAM is equipped by a special read-only register called rand, a
special read-only register rin and a special write-only register rout. On each read, register rand
delivers a new random number. The registers in all nodes are initialized by the same starting
values.

3. P is a random process assigning to each node a position with continuous uniform distribution
over a planar area A, independently for each node.

4. r gives the radius of a communication neighborhood. Any two nodes at distance at most r > 0
are called neighbors. All neighbors of a node form the node’s neighborhood.

5. T > 0 is transmission time of a message within a neighborhood of any node.

6. (Asynchronicity:) In each RAM any instruction takes one unit of time. The actions (computa-
tions, communication) of all processors are not synchronized.

7. The nodes communicate according to the following rules:

• all nodes broadcast on the same channel;

• if a node writes a value representing a message to rout, this message is broadcasted to its
communication neighborhood;

• if none of the given node’s neighbors is broadcasting a message, then the given node register
rin contains an empty message λ;

• if exactly one of a given node’s neighbors is broadcasting a message m, then after time T
register rin in the given node contains m;
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• if two or more of the node’s neighbors are broadcasting a message and the time intervals of
broadcasting these message transfers overlap, then there is a so–called collision and the rin
register of the receiving node contains empty message λ;

• the nodes have no means to detect a collision, i.e., to distinguish the case of no-broadcast
from the case of a multiple broadcast.

Note that since the register size of each RAM is finite, each RAM inclusively its random number
generator can be seen as a probabilistic finite automaton of size O(S) (because each RAM has but
a constant number of registers). However, we have chosen to see each automaton as a “little RAM”
since such a view will support the result we are after (i.e., a simulation of a unit-cost RAM) and
corresponds more to practice.

An AC operates as follows. The input data enter the AC via its base station. From there, the
data (which might also represent a program for the processors) spread to all nodes accessible via
broadcasting. In a “real” AC additional data might also enter into individual processors via their
sensors which, however, are not captured in our model since they do not influent the universality
result. Then the data processing within processors and data exchange among processors begins. The
results are delivered to the operator again via the base station.

In practice, nobody would probably try to simulate a universal computation by an AC. Neverthe-
less, a proof that this is in principle possible hints to the flexibility of the proposed model and shows
that whatever computational problem will be encountered in practice, it would be solvable on our
model. In this sense, the proof of universality presents a “killer application” for the underlying model.

3 Asynchronous Communication Protocol

In order to enable communication among all (or at least: a majority of) available processors the
underlying communication graph of our AC must have certain desirable properties. The properties
which are of importance in this case are: graph connectivity, graph diameter and the maximal degree
of its nodes. Obviously, a good connectivity is a necessary condition in order to be able to harness
a majority of all processors. Graph diameter bounds the length of the longest communication path.
Finally, the node degree (i.e., the neighborhood size of a node) determines the collision probability on
the communication channel.

An instance of an amorphous computer A whose underlying computational graph has a maximal
connected component of size N containing the base station is called a well–formed instance of A of
size N.

Assuming that the nodes of an AC could participate in its computation there must exist an
algorithm of node–to–node communication used by the nodes to coordinate their actions. Such an
algorithm will consist of two levels. The lower level is given by a basic randomized broadcasting
protocol enabling each node to broadcast a message to its neighborhood. Making use of this protocol
we extend it, on the second level, to a broadcasting algorithm that can be used to broadcast a message
from a given node to all other network nodes.

Protocol Send: A node is to send a message m with a given probability ε > 0 of failure. The protocol
must work correctly under the assumption that all nodes are working concurrently, asynchronously,
using the same protocol and hence possibly interfering one with each other’s broadcast.

The idea is for each node to broadcast sporadically, minimizing thus a communication collision
probability in one node’s neighborhood. This is realized as follows. Each node has a timer measuring
timeslots (intervals) of length 2T (T is time to transfer a message between any two neighbors). During
its own timeslot, each node is allowed either listen, or to send a message at the very beginning of its
timeslot (and then listen till the end of this timeslot). At the start of each timeslot a node sends m
with probability p and this is repeated for k subsequent timeslots. The probability of sending m is
determined by the node’s random number generator. The values of p and k are given in the proof of
the following theorem.

Theorem 1 (Sending a message) Let A be a well–formed instance of an amorphous computer,
let the underlying computational graph have the maximal neighborhood size bounded by Q. Let 1 >
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ε > 0 be an priori given allowable probability of failure. Assume that all nodes send their messages
asynchronously according to the Protocol Send. Let X be a node sending message m and Y be any
of X’s neighbors. Then Protocol Send delivers m to Y in time O(Q log(1/ε)) with probability at least
1− ε.

Sketch of the proof: Thanks to our choice of the length of the timeslots, for each timeslot of a given
node X there is exactly one corresponding timeslot of some other node Y such that if both nodes
send asynchronously in their timeslots, only a single collision will occur. This is so because if X has
started its sending at the beginning of its timeslot, X’s and Y ’s sendings overlap if and only if Y had
started a sending in a timeslot that was shifted w.r.t. the beginning of X’s timeslot by less than T
time units in either time direction. The timeslots of length shorter than 2T could cause more than a
single broadcast collision between the arbitrary pairs of nodes, whereas longer timeslots would delay
the communication.

We will treat message sendings as independent random events. Message m is correctly received by
Y in one timeslot if X is transmitting m (the probability of such event is p) and none of Y ’s neighbors
is transmitting (the corresponding probability is (1−p)Q), giving the joint probability p(1−p)Q. The
value of p(1 − p)Q is maximized for p = 1/(Q + 1). The probability of a failure after k timeslots is
[1 − p(1 − p)Q]k = ε. Hence, k = log ε/log[1− p(1− p)Q]. The denominator in the latter expression
equals −∑∞

i=1[p(1 − p)Q]i/i ≤ −p(1 − p)Q = −1/(Q + 1)(1 + 1/Q)−Q ≤ −e−1/(Q + 1) leading to
k = O(Q log(1/ε)).

2

Note that the protocol can work for any value of ε. However if we want k to fit into one register
then k ≤ S must hold. This would impose a bound in the form ε ≥ [1− p(1− p)Q]S on the allowable
value of ε.

In order to send a message to any node of an AC we use the idea of flooding the network by that
message, i.e, broadcasting the message to all nodes of the network.

Algorithm Broadcast. This algorithm is used to deliver a message m from a node X in the network
to all remaining nodes which are not locked w.r.t. to m. A node is called locked w.r.t. a message z
if and only if except of z, the node transmits any other incoming message. To broadcast m to the
network, X sends m using Protocol Send with probability ε/N of failure. Upon receiving m, any node
sends m using Protocol Send with failure probability ε/N . The locking mechanism is implemented
straightforwardly: each node remembers the last sent message and ignores it if it is received again—it
“locks itself” w.r.t. that message.

Theorem 2 (Broadcasting) Let D be the diameter of the communication graph. Then, for any ε :
0 < ε ≤ 1, Algorithm Broadcast delivers m to each node that has not been locked w.r.t. m in time
O(DQ log(N/ε)) and with probability 1− ε. Afterwards, all nodes will be in a locked state w.r.t. m.

Sketch of the proof: Starting from X, m spreads through the network in waves as a breadth-first
search algorithm of the communication graph starting in X would do it. Transmission between waves
takes time O(Q log(N/ε). Afterwards, the nodes of the previous wave enter a locked state. Obviously,
after repeating this process in parallel, asynchronously, at most D times, m will reach all nodes and
all nodes will be in a locked state w.r.t. m. The algorithm thus takes time O(DQ log(N/ε)). For one
node the failure probability is ε/N and for the whole network this probability will rise to ε.

2

Again as with the sending protocol, the achievable error ε is bounded if we want value k of the
Protocol Send to fit into one register. For the error probability of algorithm broadcast it holds that
ε ≥ N [1− p(1− p)Q]S .

Note that our broadcasting protocol can reliably handle only one message at a time transferred
through the network and that no same messages following one after the other can be processed by
the protocol, since after re-sending it the nodes get locked w.r.t. the first message and remain locked
until a different message arrives.
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4 Properties of random networks

Note that our definition of an AC makes no assumptions about the underlying communications graph
whereas the statements of both Theorems 1 and 2 have referred to the underlying communication
graphs. This has been so since only some graphs are “good” for our purposes while the others
cannot support any interesting computations. In the previous theorems the appropriateness of the
underlying graphs has been ensured in theorems’ assumptions. However, by the definition of an AC,
its communication network is shaped by process P as a result of the node placement (cf. Definition 1,
item 3), which means that the resulting network has a random structure. Now we will be interested
under what conditions a randomly emerging network will have the properties assumed in the previous
theorems. As we have seen, for the basic protocol to work we needed connected networks. Moreover,
in order to estimate the efficiency of the protocol we made use of the diameter and of the maximum
neighborhood size of the respective networks. Therefore we will focus onto the latter mentioned
properties of random networks.

For an amorphous computer A = (N,S, P,A, r, T ) its node density d is defined as d = Nπr2/a (a
denotes the size of area A). In the rest of the paper we assume that the nodes constituting a network
are distributed uniformly randomly (by process P ) over a square area A with a given density.
Connectivity A connected component of a graph comprises all nodes among which a multi-hop
communication is possible.

The existence of an edge between two nodes is a random event depending on the random positions
of the nodes. The probability of edge presence is higher with larger communication radius r and is
lower when the nodes are spread over a larger area A.

Node density d gives the average number of nodes in the communication area of one node. De-
pending on the node density we expect to observe different topology of the node connections graph.
For low densities, the majority of the nodes will be isolated with high probability. For medium den-
sities connected components of fixed average size (not depending on the total number of nodes) will
be formed with high probability.

Similar model to ours is studied by percolation theory (cf. [7]). In the so-called continuum percola-
tion model, circular disks are placed at random positions in an infinite plane. This would correspond
to our model of amorphous computer, where the radius of the disk would be r/2. The percolation the-
ory shows that there is a critical density of the disks above which there emerges an infinite connected
component. The critical density is computed numerically and its value is around 4.5 (see [6]). This
result tells us that we will not obtain any large component with density lower than this. However,
even this critical density does not guarantee reasonably large component in our amorphous computer.
We would like that there is only a little fraction of nodes that are not connected to the single large
component. For this we need density even higher than the percolation threshold.

In order to find out which node density ensures reasonably large connected component we made
experiments for several node counts. For each node count the experiment consisted of 400 runs. In
each run we created one random graph and observed the size of its largest component. Then we
estimated the component size such that it was not achieved only in 2 % of the experimental runs (i.e.,
we estimate the 2nd percentile). The results are shown in Fig. 1. We have verified that density d = 6
gets components of reasonable size, and all presented experiments are using this density.

The interpretation of the results is following. Let’s take the case N = 100. The obtained value
0.48 means that a random realization of a graph with N nodes will have a component with more
than 0.48N nodes with probability 98 %. As can be seen from our figure, for larger node counts the
fraction tends to rise.

Thus, whenever an AC with at least 100 connected nodes is needed, we should actually create
an AC with 100/0.48 = 210 nodes. The expected AC will then have a component containing 100
connected nodes with 98 % probability. The penalty of this scenario is that a constant factor of nodes
gets wasted which may only be acceptable for cheap devices. This is in contrast with, e.g., the ad-hoc
networks scenario using expensive devices, where full connectivity is sought and the node density must
rise above the connectivity threshold which is of order Ω(log N) (cf. [8]).
Diameter The diameter of a graph is the maximum length of a shortest path between any two vertices
of that graph.
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Analytically, the size of a random graph diameter has been derived, e.g., in [5]. It shows that the
diameter is about O(D/r), where D is the diameter of a circle circumscribing the area containing the
nodes. But we cannot directly apply this result to our AC. First, the result has been proved only for
the asymptotic case when number N of nodes goes to infinity. Second, the referred result holds only
when the node density is above the connectivity threshold (which is Ω(log N)). In our scenario, we
have used constant node density that is above the percolation threshold but below the connectivity
threshold.

In [10] an experiment was carried out measuring the diameter size while varying both the number
of nodes and the transmission range. However, we are interested in the behavior of the graph diameter
when the node density remains fixed. Therefore we performed 400 test runs with various numbers
of nodes with density d = 6 and measured the 98th percentile of a graph diameter. The results are
shown in Fig. 2.
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Our experiments show that the graph diameter follows the asymptotic expression derived in [5]
also below the connectivity threshold. When the node density d is fixed, then O(D/r) = O(

√
N/d).

In Fig. 2, the node count increases quadratically and it can be easily seen that the graph diameter
rises roughly linearly with

√
N . We see that an upper bound in the form diameter = 2.7

√
N holds.

We expect that at most in 2 % of random realizations the graph diameter will be larger than this
value.

Maximum neighborhood size can be estimated by applying the techniques known from the solu-
tions of the classical occupancy problem.

Theorem 3 Let A = (N, S, P, A, r, T ) be an AC with N nodes randomly uniformly dispersed by
process P with density d over a square area A, let Q = d8 log N/ log log Ne. Then for a sufficiently
large N, the probability that there are more than 12Q nodes in any communication neighborhood of a
node is less than 4/(dN).4

Proof: We start by exactly covering A of size a by H = h × h squares, with h ∈ N; the size of each
square is chosen so that its size is maximal, but not greater than the area πr2 of a communication
neighborhood. Then (h− 1)2πr2 < a ≤ h2πr2 and since a = Nπr2/d, we get N/H ≤ d and for h ≥ 4,
H/N < 2/d.

We estimate the probability p=k that in a randomly selected square there will be exactly k nodes
for k “not too small” (see in the sequel). Let us consider all sequences of length N over {1, 2, . . . ,H} of
node “throws” into H squares numbered by 1, 2, . . . H. There are HN of such sequences, each of them
being equally probable. Consider any i, 1 ≤ i ≤ H. There are (H − 1)N−k

(
N
k

)
sequences containing

exactly k occurrences of i. Then p=k =
(
N
k

) (H−1)N−k

HN =
(
N
k

)
1

Hk

(
1− 1

H

)N−k and the probability that

there are at least k nodes in a square is p≥k =
∑N

j=k p=j =
∑N

j=k

(
N
j

) (
1
H

)j (
1− 1

H

)N−j
. Using

4All logarithms are to the base 2.
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Stirling’s approximation
(
N
j

) ≤ (eN/j)j and upper-bounding the last factor in the last expression by

1 we get p≥k ≤
∑N

j=k

(
eN
jH

)j

≤ ∑N
j=k

(
ed
j

)j

≤ (
ed
k

)k ∑∞
j=0

(
ed
j

)j

≤ (
ed
k

)k ∑∞
j=0

(
ed
k

)j
. The latter

infinite series converges to 1/(1 − ed/k) providing ed < k. Consider k such that ed < k/2; then the
sum of the series is at most 2 and for k ≥ (ed)2, p≥k ≤ 2

(
ed
k

)k ≤ 2.2−1/2k log k.

For k = Q we get p≥k ≤ 2.2−
1
2

8 log N
log log N (3+log log N−log log log N) ≤ 2/N2 (taking into account that for

a sufficiently large N, 3 + log log N − log log log N ≥ 1
2 log log N). It follows that the probability that

in any of the H squares there will be at least Q nodes is 2H/N2 < 4/(dN).
Finally, note that for h ≥ 2 the size of a square is s > ((h− 1)/h)2πr2 ≥ 1/4πr2. Hence, the area

of a communication neighborhood is smaller than the area of four squares. After realizing that the
nodes from at most 12 squares can enter a circular neighborhood of area πr2 the claim of the theorem
follows. 2

From Theorems 1 and 2 it follows that for graphs with the maximum neighborhood size bounded
as in Theorem 3 the asymptotic time complexity of ProtocolSend is O(log N log(1/ε)/ log log N) and
that of AlgorithmBroadcast O(

√
N log N log(N/ε)/ log log N), with high probability.

Note that the statistical properties of random networks do not depend much on the presence or
non-presence of small random subsets of nodes. This is vital when considering the failure resilience of
amorphous computers w.r.t. random node faults.

5 The universal computing power of an AC

In this section we show how to program the nodes of an amorphous computer so that it can actually
compute according to an arbitrary unit-cost RAM program. Prior to the start of the simulation we
must perform a setup procedure during which we initialize the amorphous computer. This initialization
procedure consists of two phase: address assignment phase, and input reading phase.

After the computer is set up, the computation can start and run in an unattended way. After
the termination of a computation, output data are obtained through the base station, using similar
mechanism as that for entering the input data.

Each phase—address assignment, input entering, and simulation—can be performed with a given
failure probability as decided by the operator. The failure probability of the complete simulation
algorithm will then be the sum of failure probabilities of the individual phases.

5.1 Address assignment

Initially, all nodes of the amorphous computer are identical. The purpose of the address assignment
phase is to break this symmetry and to assign different addresses to the different nodes. In the
first part of the respective algorithm, the symmetry gets broken with the help of a random number
generator: each node generates its own “random” address. In the second part of the algorithm, the
node addresses are transformed into a continuous range between one and the number of different
addresses generate in the previous part.

Assume that in order to perform the intended computation we need an address space of size M > 0.
Assume that any register can hold log M + O(1) bit numbers. The following randomized algorithm
makes use of N = 2M processors in order to generate at least M different addresses of the registers
with a high probability (the occurrence of registers with the same address does not harm).

The operator chooses the allowed error probability ε1 with which the algorithm can fail due to a
communication error. From this value the operator estimates the value k = k(ε) for ε = ε1/N

2, to
be used by the underlying Protocol Send. Before the algorithm starts, the base station broadcasts the
values of p, k and D to all nodes (cf. Theorem 1). The nodes will use parameter D to compute the
so-called flooding period. This is the maximum time in which a broadcasted message reaches all nodes
with an allowed failure probability. According to Theorem 1 and 2, flooding period has the length of
2TkD. After that time all nodes stop sending that message.
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Algorithm Generate Addresses

1. All processors randomly generate and store a binary string of length dlog(2M +1)e in a variable
called address;

2. The base station initializes two variables, round := 1 and max := 1;

3. Using Algorithm Broadcast, the base broadcasts pair (round, max) to all processors;

4. Upon receiving this message, each processor whose address = round waits for the length of one
flooding period. Then, using Algorithm Broadcast the node sends a confirmation — message “0”
— back to the base and resets its address to max;

5. If within the time of three flooding periods the base receives at least one confirmation, max is
increased by 1;

6. After the time of three flooding periods has elapsed, round is increased by 1.

7. If round < 2M then go to step 3;

8. If max ≥ M then HALT else go to step 1.

Clearly, variable max counts the number of processors with different addresses whose confirmation
has been delivered to the base station. In Step 4 waiting for one flooding period before sending a
confirmation for each node is necessary in order to ensure that no two different messages travel in
the network simultaneously (remember that the broadcasting protocol only works correctly under the
latter assumption). Waiting for three flooding periods in Step 5 and 6 is sufficient for a message sent
by the base station to reach the farthest node in the network, for this node to wait for the duration
of one flooding period and eventually for a confirmation sent by this node to return back to the base
station, with high probability. Finally, note that in order to reach the failure probability of algorithm
Generate Addresses to be less or equal ε1 the failure probability of a single invocation of Protocol
Send must have been set to ε1/N

2 since during a single run of the previous algorithm this protocol is
invoked O(N2) times in the worst case.

Algorithm Generate Addresses is repeated until at least M different addresses are generated. The
probability that this happens already after the first trial is high and tends to 1 with the increasing
M :

Lemma 5.1 Choosing 2M random numbers uniformly distributed in interval 1 to 2M , the probability
that only M or less different numbers were chosen is less than 1/

√
M + 1.

Proof: There are (2M)2M sequences of length 2M over {1, 2, . . . , M}. Among them, there are M2M

sequences “made of” at most M different numbers which can be selected in
(
2M
M

)
different ways.

Hence the probability that a sequence contains M or less different numbers is
(
2M
M

)
M2M/(2M)2M .

By induction, one can prove that
(
2M
M

)
< 22M/

√
M + 1. The claim of the theorem follows. 2

Theorem 4 In a well-formed instance of an amorphous computer of size N = 2M algorithm Gener-
ate Addresses generates M different addresses with probability 1 − 1/

√
M + 1 − ε1 in time O(NDQ

log(N2/ε1)).

5.2 Input entering and register initialization

The operator chooses allowed error probability ε2 for communication failure in the process of input
entering and computes value k = k(ε) for ε = ε2/(MN), to be subsequently used by the underlying
Protocol Send. Before the algorithm starts, the base station broadcasts the values of p, k and D to
all nodes.

To make the subsequent simulation completely independent from the interaction of the AC with
its operator, we will request that the input data of size n will be initially stored in the first n nodes of
our AC. Originally, the input data are available to the base station which obtains them in a sequential
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manner from the operator and broadcasts it, one by one, to the respective registers. For each address
i in the range 1...M the base station broadcasts a message of the form (STORE, i, xi), where xi is
the initial value of register i. The base station waits for one flooding period after each broadcasted
message.

In principle, this above described input entering scenario allows entering of data also during an
interactive computation (which might be a more natural way of utilizing an AC than its use as a
universal computer) through the sensors of individual nodes.

5.3 Simulation

We show the universal computing power of on AC by letting it simulate a unit–cost RAM. We will
assume that the entire RAM program as well as two RAM accumulators are stored in the base station.
In addition to the input data, the contents of the RAM registers will be also held in the individual
AC processors.

The RAM program will consist of the usual kind of instructions. For simplicity we will assume
that all instructions requiring two operands (indirect addressing, arithmetical operations) are realized
in the following way. The first operand is assumed to be in the first accumulator. The second operand
(if any) is to be delivered into the second accumulator. An instruction moving the register contents
between a register and the accumulator is realized as follows. The base station broadcasts the current
instruction holding the address of the register to which the instruction is pertinent to all nodes of
the AC. The instruction is realized in the requested register (processor) which then sends back the
confirmation along with the current contents of that register.

In order to perform a simulation the operator chooses an allowed communication failure probability
ε3. From this the operator computes value k = k(ε) for ε = ε3/(2T (n)N), to be used by the underlying
Protocol Send. Before the algorithm starts, the base station broadcasts the values of p, k and D to
all nodes.

Then the simulation proceeds in rounds. In each round, the base station issues the instruction to be
realized. The network is “flooded” by this instruction using Algorithm Broadcast. Upon arriving into
any processor holding the respective register the instruction is realized. Subsequently, after waiting
for one flooding period, a confirmation is broadcasted back to the base station, again by using the
broadcast algorithm.

Algorithm Broadcast allows only one message at a time to be travelling over the network. As in
the algorithm for addresses generation, the purpose of the flooding period is to allow all nodes to
enter the locked state. Before replying to the base station’s instruction message a node waits for one
flooding period. On the other hand, the base station may send next instruction message only after
delay of three flooding periods allowing enough time for the message to spread to the farthest node,
a node’s waiting for one flooding period and sufficient time for the reply to reach the base station.

In more detail, the simulation of the t-th instruction in the t-th round proceeds as follows.
Algorithm Simulate: Let εB be the probability of error of protocol Broadcast, εB = Nε in a single
roud of the simulation. At the beginning of the t–th round, we assume that the following invariant
holds: the probability that communication error occured up to this round is 2(t− 1)εB .

In order to realize an instruction requiring a load from register i, or a store of value contents into
register i, the base station broadcasts a triple of the form (i, instr, contents), where instr is either
LOAD or STORE. In the former case, contents is empty, whereas in the latter case contents holds
the value to be stored in the i-th register. Upon arriving at any processor which is not in a locked state,
the processor starts re-sending of the triple using Protocol Send. Moreover, upon arriving at a register
whose address = i, after elapsing of one flooding period a load instruction makes the processor to
broadcast a confirmation pair of form (LOAD, reg[i]) where reg[i] is the contents of the i-th register.
A store instruction is realized by performing the assignment reg[i] := contents within the processor
and again, after elapsing of one flooding period, by broadcasting a confirmation pair of the form
(STORE, empty). The base station waits for three flooding periods within which it should receive a
confirmation of the t-th instruction realization. If during that time no confirmation is obtained, the
simulation ends with an error.
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By that time, the t-th instruction has been issued with probability of communication error εB .
With the same probability of error, the base station has obtained the respective confirmation. The
total probability of communication error up to now is 2(t − 1)εB + 2εB = 2tεB , hence the invariant
holds.

Note that the assumption on no two same instructions following one after another is fulfilled since
each transmitted instruction is followed by a confirmation.

2

As far as the reliability of our simulation algorithm is concerned, note that the algorithm consists
of T (n) rounds, where T (n) denotes the time complexity of the original RAM algorithm. If each round
fails with the probability 2εB , the entire simulation will fail with probability 2εBT (n). Thus, choosing
εB = ε3/(2T (n)) leads to a simulation algorithm with the probability of failure at most ε3.

Putting all the results together we see that in order to simulate for a given input of size n a unit cost
RAM of time complexity T (n) and space complexity S(n) with error probability at most ε3, we must
first “set up” a well-formed instance of an amorphous computer of size at least N ≥ max{2S(n), n}
processors (the size of the amorphous computer must be at least n in order to accommodate the input
data). We get the following result:

Theorem 5 (Simulation) Let R be a unit-cost RAM of time complexity T (n) and space complexity
S(n). Let A = (N, S, P, A, r, T ) be a well–formed instance of an amorphous computer of size N ≥
max{2S(n), n} with a communication graph of diameter D and with maximal neighborhood size Q.
Then for any input of size n : N ≥ max{2S(n), n} and any 0 < ε3 ≤ 1, any computation of R can be
simulated by A in time O(T (n)DQ log(2NT (n)/ε3)), with probability of failure at most ε3.

Proof: Each simulation round consists of sending the instruction message by the base station and
sending an answer by some node. Thus, communication in each round must be done with error
probability εB = ε3/(2T (n)). Thus, each round takes time O(DQ log(2NT (n)/ε3)). The whole
simulation takes time O(T (n)DQ log(2NT (n)/ε3)).

2

Requiring that k must fit into one register of size s the smallest error we can achieve is 2T (n)N [1−
p(1−p)Q]S . Thus, for larger N and T (n) we may need nodes with longer registers allowing computation
with higher-precision numbers. But in any practical realization of an amorphous computer this should
not be a significant limitation because the necessary register size rises very slowly, S = O(log(T (n)N)).

Note that the simulation algorithm can be changed so that the RAM program to be simulated need
not be contained within the base station. Rather, as a numbered ordered sequence of instructions the
program can be stored, instruction by instruction, in the nodes of amorphous computer, one program
instruction per node. In this form, prior to the start of simulation, the RAM program must be
broadcasted by the base unit to the network. Afterwards, during the simulation, the role of the base
station from the previous simulation is taken over by the registers containing the currently simulated
instruction.

6 Conclusion

We have shown a universal computing power of a formalized model of an amorphous computer. The
main departure point of the amorphous computing structures from other models of wireless networks or
distributed computing is the randomness of the underlying network topology, anonymity of processors
not possessing universal computing power and a principal lack of synchronicity combined with the
impossibility to detect broadcasting collisions. Unlike the majority of the known models which work
whenever appropriately programmed, this need not be the case with an amorphous computer since its
nodes can be dispersed in an unlucky manner that does not support the computer’s functionality. For
our model we have designed and analyzed an algorithm simulating a unit-cost RAM with bounded size
inputs. To the best of our knowledge, our simulation algorithm seems to be the first result showing
the universal computing power of a family of amorphous computers of the type we have considered.
This result is interesting from the viewpoint of the computability theory since it shows that universal
computing power can also emerge in randomly organized “amorphous”, non-uniform communication
structures consisting of anonymous building elements not possessing universal computing power.
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