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Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.
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Abstract:

Shannon entropy has been proved to be a very useful and powerful tool when quantifying and processing
the total amount of randomness contained in a probability distribution. Hence, the effort to suggest
and analyze a similar notion for real-valued and lattice-valued possibilistic distributions seems to be quite
legitimate and worth being pursued. In this paper we investigate real-valued possibilistic distributions
the values π(ω) of which and their complements 1 − π(ω) are processed as elements of the complete
lattice 〈[0, 1],≤〉, so that only the operations and relations primary or definable within the framework of
complete lattices may be applied. Having proposed an entropy function suitable for this case, the main
result obtained below reads that the entropy value of possibilistically independent products of a system
of particular real-valued possibilistic distributions is defined by the supremum of entropy values ascribed
to particular possibilistic distributions no matter how large the number of distributions in the system of
distributions under consideration may be.
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1 Introduction, Motivation, Preliminaries

Fuzzy sets or, more correctly, real-valued normalized fuzzy subsets of a nonempty space, were conceived
by L. A. Zadeh in [10] in a way which can be mathematically formalized by mappings π : Ω → [0, 1]
such that

∨
ω∈Ω π(ω) = 1, here and below we write

∨
,∨(

∧
,∧, resp.) for the supremum and infimum

operations induced in [0, 1] by the standard linear ordering of real numbers. The total amount of
uncertainty (in the sense of fuzziness or vagueness) related to the fuzzy subset π of Ω and contained in
a crisp subset A of Ω was defined, again by L. A. Zadeh, in [11] as the real number Π(A) =

∨
ω∈Ω π(ω).

Due to the elementary properties of real numbers this value is defined for each ∅ 6= A ⊂ Ω and belongs
to [0, 1], by convention we set Π(∅) = 0. The total mapping Π : P(Ω) → [0, 1] is called the (normalized
real-valued) possibility (or possibilistic) measure induced by π and π itself is called, in this context,
(normalized real-valued) possibilistic distribution on Ω.

In spite of the operations of addition, series taking and standard integration, playing the main
role when processing probability measures, rather the operations of supremum and infimum are the
most often occurring ones when processing possibilistic distributions and possibilistic measures by
mathematical tools. Because of the well-known fact that supremum and infimum operations can be
defined, at least as partial operations, also in some rather general non-numerical structures, e.g., in
partially ordered sets (posets), the idea to consider fuzzy sets with non-numerical degrees of fuzziness
(degrees of membership) ascribed to elements of the space Ω emerged naturally and rather soon, being
mathematically formalized and analyzed, for the first time, by J. A. Goguen in [5]. In order to simplify
the mathematical formalization and processing, J. A. Goguen introduced lattice-valued fuzzy subsets
of Ω, defined by mappings π∗ : Ω → T such that

∨T
ω∈Ω π∗(ω) = 1T . Here T = 〈T,≤T 〉 denotes a

complete lattice, i.e., a partially ordered set T = 〈T,≤T 〉 such that the supremum and infimum values∨∗
A and

∧∗
A are defined in T for each A ⊂ T (in particular, 1T =

∨T
T and ®T =

∨T ∅(= ∧
T T )).

The aim of this simplification is to eliminate the necessity to prove the definition of
∨T

A and/or
∧T

A,
if it is the case, or to suppose explicitly the existence of these values otherwise. As in the case of
real-valued fuzzy sets, T -(valued) fuzzy subset π∗ of Ω can be taken as (and called by) T -(valued)
possibilistic distribution on Ω which defines, setting Π∗(A) =

∨T {π∗(ω) : ω ∈ A} for each A ⊂ Ω,
T –(valued) possibilistic measure Π∗ on P(Ω).

A more detailed discussion concerning ontological and gnoseological problems related to non-
numerically valued fuzzy sets can be found in [5, 2], or elsewhere, [2] can be recommended as an
excellent survey of mathematical theory and deep results dealing with lattice-valued fuzzy sets and
possibilistic measures induced by them.

2 Towards Lattice-Valued Entropy Function Induced by Pos-
sibilistic Distributions

In 1948, C. E. Shannon [8] introduced the notion of entropy as a quantity defining the total amount
of uncertainty (in the sense of randomness) contained in a probability distribution p(ω1), p(ω2), . . .
over a finite or countable space Ω = {ω1, ω2, . . . }; let us recall that this entropy, denoted by HS(p),
was defined by

HS(p) = −
∞∑

i=1

(log2(p(ωi)))p(ωi). (2.1)

The notion of Shannon entropy has been proved to play an important role in information theory
and statistical decision functions theory based on Kolmogorov axiomatic theory. In [7] we tried,
given a complete lattice T = 〈T,≤T 〉 and a nonempty space Ω, and taking a T -fuzzy subset of Ω
as a T -possiblistic distribution over Ω, to propose a T -valued entropy function ascribing to each
such distribution a value from T in a way as close as possible, under the conditions and constraints
introduced below, to the Shannon entropy function. The strict restrictive ontological conditions read
that only the values from the support set T of the complete lattice T in question and only the
operations and relations either primary in complete lattices or definable on the ground of the primary
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ones may be taken as formal tools when defining and processing the proposed T -valued entropy
function. Hence, no new and ontologically independent relations and operations (as it is, e.g., the
case of operation of complement leading from lattices to Boolean algebras) and no mappings of the
set T into real numbers or into other formalized structures will be taken into consideration. Let us
note that both the most often used mathematical structures for quantification, the already mentioned
structure 〈[0, 1],≤〉, as well as the power-set P(X) of a fixed nonempty set X partially ordered by the
relation of set inclusion, are obviously complete lattices.

Let T = 〈T,≤T 〉 be a complete lattice, let π be a T -possibilistic distribution on a nonempty space
Ω with Π denoting the corresponding possibilistic measure on P(Ω), let f be a mapping which takes
Ω into T . The value

∮
fdΠ =

T∨

t∈T

[t ∧T Π({ω ∈ Ω : f(ω) ≥T t})] (2.2)

is called the (Sugeno) integral of f over Ω with respect to Π on P(Ω) and with infimum operation ∧T
taken as the t-norm on T. As proved in [7], in our particular case the relation

∮
fdΠ =

T∨

ω∈Ω

(f(ω) ∧T π(ω)) (2.3)

holds.
Aiming to keep the basic methodological paradigma on which the Shannon entropy is based, we

defined in [7] a lattice-valued entropy function over the space of lattice-valued possibilistic distributions
as the expected value (in the sense of Sugeno integral) of a nonincreasing lattice-valued function of
the value π(ω) ascribed to ω ∈ Ω (nonincreasing in the sense of partial ordering relation ≤T ). In [7],
our attention was focused to the nonincreasing function g : Ω → T defined by

f(ω) = Π(Ω− {ω}) =
T∨

ω1∈Ω,ω1 6=ω

π(ω1). (2.4)

Indeed, if π(ω1) ≤T π(ω2) holds for ω1, ω2 ∈ Ω, then the inequality

f(ω1) = Π(Ω− {ω1}) = Π(Ω− {ω1, ω2}) ∨T π(ω2) ≥T
≥T Π(Ω− {ω1, ω2}) ∨T π(ω1) = Π(Ω− {ω2}) = f(ω2) (2.5)

easily follows. Hence, we defined T -(valued) entropy of a T -possibilistic distribution π over Ω by

H(π) =
∮

Π(Ω− {·})dΠ =
T∨

ω∈Ω

(Π(Ω− {ω}) ∧T π(ω)). (2.6)

Let us note that this definition meets the ontological restrictions introduced above: only the values
of π and only the operations of supremum and infimum w.r.to the partial ordering ≤T are used.

For our further reasoning, the most important results achieved in [7] and dealing with lattice-
valued entropy function H(π) over lattice-valued possibilistic distribution π over Ω are those focused
on coarsenings and products of T -possibilistic distributions in the particular case when the complete
lattice T in question is completely distributive. To recall this notion: T = 〈T,≤T 〉 is called completely
distributive, if the relation s∧T (

∨T
A) =

∨T
t∈A(s∧ t) holds for each s ∈ T and each ∅ 6= A ⊂ T. Let us

note that the inequality s∧T (
∨T

A) ≥T
∨T

t∈A(s∧T t) obviously holds in each poset T = 〈T,≤T 〉 for
each s ∈ T and A ⊂ T for which the suprema and infima occuring in the last inequality are defined.
An example of complete lattice which is not completely distributive can be found in [7], both the
complete lattices 〈[0, 1],≤〉 and 〈P(X),⊂〉 can be easily proved to be completely distributive.

Fact 1 (Theorem 3.1 in [7]) Let T = 〈T,≤T 〉 be a completely distributive complete lattice, let Ω be a
nonempty space, let Ω∗ ⊂ P(Ω) be a nontrivial disjoint covering of Ω (i.e., decomposition of Ω), so that
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∅ 6= Ω1 6= Ω for each Ω1 ∈ Ω∗, Ω1∩Ω2 = ∅ for different Ω1, Ω2 ∈ Ω∗, and
⋃

Ω1∈Ω∗ Ω1 = Ω holds. Let π
be a T -possibilistic distribution on Ω, let π∗ : Ω∗ → T be defined by π∗(Ωi) = Π(Ωi) =

∨
ω∈Ωi

π(ω) for
each Ωi ∈ Ω∗. Then π∗ defines a T -possibilistic distribution on Ω∗ and the inequality H(π) ≥ H(π∗)
holds.

Fact 2 (Theorem 3.2 and its immediate corollary in [7]). Let T = 〈T,≤T 〉 be a completely distributive
complete lattice, for each i = 1, 2, . . . , n, let πi be a T -possibilistic distribution on a nonempty space
Ωi, let πn(ω1, ω2, . . . , ωn) =

∧T ,n
i=1 πi(ωi) for each 〈ω1, ω2, . . . , ωn〉 ∈ Ω1 ×Ω2×, · · · ×Ωn. Then πn is a

T -possibilistic distribution on Ω1 × Ω2 × · · · × Ωn and the relation H(πn) =
∨T ,n

i=1 H(πi) holds.

As illustrated by a counter-example in [7], Section 4, for infinite system of T -possibilistic distri-
butions πi on Ωi the assertion of Fact 2.2 need not hold, as in this case the relation π∗(ω1, ω2, . . . ) =∧T ,∞

i=1 πi(ωi) need not define a T -possibilistic distribution on the Cartesian product X∞
i=1Ωi of par-

ticular spaces Ωi (like as it is the case with stochastically independent products of infinite systems of
probability distributions).

3 Lattice-Like Processed Real-Valued Possibilistic Distribu-
tions Endowed by Arithmetical Operation of Complement

Let us return, in this section, to normalized real-valued possibilistic distributions, but keeping in mind,
up to one modification to be specified below, the constraints imposed above according to which only
the lattice-based relations and constructions dealing with real numbers from [0, 1] may be applied.
The modification reads as follows: the lattice relations and operations may be applied not only to
the values taken by the possibilistic distribution π in question, i.e., to the real numbers from the set
{π(ω) : ω ∈ Ω} ⊂ [0, 1], but also to the values 1−π(ω), hence, to the values in {π(ω), 1−π(ω) : ω ∈ Ω}.
Under this modification, the value

H∗(π) =
∨

ω∈Ω

[(1− π(ω)) ∧ π(ω)] (3.1)

is defined in a way meeting our conditions. As H∗(π) is expected value (in the sense of Sugeno
integral) of non-increasing function 1 − π(ω) of π(ω), it may be of interest to consider the function
H∗ as a real-valued, but in a lattice-like way defined and processed, entropy function over real-valued
possibilistic distributions on Ω and to analyze, in more detail, its properties.

Before going on with fulfilling this task let us note that in the case of a probability distribution
p : Ω → [0, 1] over a finite or countable space Ω the function H∗ defined by

H∗(p) =
∑

ω∈Ω

((1− p(ω))p(ω))

(
= 1−

∑

ω∈Ω

(p(ω))2
)

, (3.2)

syntactically copying H∗(π) defined by (3.1) just with supremum replaced by addition and with
infimum replaced by product, can be taken as an interesting normalized alternative to the Shannon
entropy function HT . Indeed, H∗(p) ∈ [0, 1] obviously holds, H∗(p) = 0 if and only if p(ω0) = 1 for
some ω0 ∈ Ω, and H∗(p) takes its maximum value 1 − (1/n) on Ω = {ω1, ω2, . . . , ωn} if and only if
p(ωi) = 1/n for each i = 1, 2, . . . , n, like as it is the case with Shannon entropy function. Supposing
that, for both j = 1, 2, pj is a probability distribution on a nonepmty finite or countable space Ωj and
setting p12(ω1, ω2) = p1(ω1)p2(ω2) for every 〈ω1, ω2〉 ∈ Ω1 × Ω2 the relation

H∗(p12) = 1− ((1−H∗(p1))(1−H∗(p2))) (3.3)

for the corresponding H∗-entropy values can be easily proved. Indeed, due to (3.2),
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1− ((1−H∗(p1))(1−H∗(p2))) = 1−
( ∑

ω1∈Ω1

(p1(ω1))2
)( ∑

ω2∈Ω2

(p2(ω2))2
)

=

= 1−
∑

〈ω1,ω2〉∈Ω1×Ω2

(p1(ω1)p2(ω2))2 =

= 1−
∑

〈ω1,ω2〉∈Ω1×Ω2

(p12(ω1, ω2))2 = H∗(p12). (3.4)

The assertion can be proved by induction to each finite system p1, p2, . . . , pn of probability distribution,
each defined on a nonempty finite or countably space Ωi, i = 1, 2, . . . , n.

The relation (3.3) can be taken as a normalized (“relativistic-like”) addition rule for H∗-entropy
of statistically independent product of probability distributions p1, p2 obeying the demand that the
“sum” of H∗(p1) and H∗(p2) should be in [0, 1] (remember the way in which speeds are combined
together in relativity theory).

Before focusing our attention, again, to the lattice-like processed real-valued possibilistic distribu-
tions taking their values in the complete lattice T0 =〈[0, 1],≤〉 enriched by the arithmetical complement
operation 1−π(ω) and to the possibilistically independent products of such distributions, the following
rather simple arithmetic assertions will be of use.

Lemma 3.1 T0 = 〈[0, 1],≤〉 defines a completely distributive complete lattice.

Proof. For each A ⊂ [0, 1],
∨

A and
∧

A are obviously defined and the inequality s∧(∨A) ≥ ∨
t∈A(s∧

t) holds for each s ∈ [0, 1]. If s ≥ ∨
A is the case, then s ∧ (

∨
A) =

∨
A, s ∧ t = t for each t ∈ A, so

that
∨

t∈A(s ∧ t) =
∨

A. If s <
∨

A holds, then there exists t0 ∈ A such that s < t0 is valid, hence,
the relation s ∧ t0 = s =

∨
t∈A(s ∧ t) = s ∧ (

∨
A) easily follows and the assertion is proved. 2

Lemma 3.2 For each ∅ 6= I ⊂ [0, 1] the inequality
∧

I ∧
(
1−

∧
I
)
≤

∨

x∈I

(x ∧ (1− x)) (3.5)

holds.

Proof. As 1−∧
I =

∨
s∈I(1− x) holds, (3.5) reduces to

(∧

x∈I

x

)
∧

(∨

x∈I

(1− x)

)
≤

∨

x∈I

(x ∧ (1− x)). (3.6)

Applying Lemma 1 to s =
∧

x∈I x and A = {1− x : x ∈ I} we obtain that the inequality

(∧

x∈I

x

)
∧

(∨

x∈I

(1− x)

)
=

∨

x∈I

((∧

x∈I

x

)
∧ (1− x)

)
≤

≤
∨

x∈I

(x ∧ (1− x)) (3.7)

holds. The assertion is proved. 2

Lemma 3.3 For each x, y ∈ [0, 1] such that |x− y| ≤ ε holds, the inequality

K(x, y) = |((1− x) ∧ x)− ((1− y) ∧ y)| ≤ ε (3.8)

holds as well.
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Proof. If x, y ≤ 1/2 (x, y ≥ 1/2, resp.) is the case, then K(x, y) = |x − y| (K(x, y) = |(1 − x) −
(1 − y)| = |y − x| = |x − y|, resp.) follows, so that K(x, y) ≤ ε holds. Otherwise we may suppose,
without any loss of generality, that x < 1/2 and y > 1/2 is the case, hence, as |x − y| ≤ ε holds,
the membership relations x ∈ (1/2 − ε, ε) and y ∈ (1/2, 1/2 + ε) follow. In this case, however,
(1− x) ∧ x = x, (1− y) ∧ y = 1− y ∈ (1/2− ε, 1/2) holds, so that K(x, y) = |x ∧ (1− y)| ≤ ε results
and the assertion is proved. 2

4 Possibilistically Independent Products of Lattice-Like Pro-
cessed Real-Valued Possibilistic Distributions

Definition 4.1 Let T = 〈T,≤〉 be a complete lattice, let {Ωi : i ∈ I} be a system of nonempty sets,
let ΩI = Xi∈IΩi be the Cartesian product of sets Ωi, hence, ΩI denotes the set of all mappings ωI

which take I into
⋃

i∈I Ωi in such a way that ωI(i) ∈ Ωi holds for each i ∈ I. Set, for each ωI ∈ ΩI ,

πI(ωI) =
∧

i∈I

πi(ωI(i)). (4.1)

As T is complete lattice, the value πI(ωI) is defined for each ωI ∈ ΩI . The mapping πI : ΩI → T,
also denoted by Xi∈I is called the possibilistically independent product of T -possibilistic distributions
πi for i ranging over I.

Lemma 4.1 Let the notations and conditions of Definition 4.1 hold for T = T0 = 〈[0, 1],≤〉. Then
the mapping πI : ΩI → [0, 1] defined by (4.1) defines a real-valued possibilistic distribution on ΩI .

Proof. As
∨

ω∈Ω πi(ω) = 1 holds for each i ∈ I, there exists, for each ε > 0, and each i ∈ I, an
element ω0,i ∈ Ωi such that πi(ω0,i) > 1 − ε holds. For ωI

0 ∈ ΩI defined by ωI
0(i) = ω0,i for each

i ∈ I, (4.1) yields that the inequality πI(ωI
0) ≥ 1 − ε is valid, hence,

∨
ωI∈ΩI πI(ωI) = 1 follows and

the assertion is proved. 2

Theorem 4.1 Let the conditions of Lemma 4.1 hold, let Ωi = Ω for each i ∈ I, let H∗(π) be defined
by (3.1) for each π = πi, i ∈ I, and π = πI . Then the relation

H∗(πI) =
∨

i∈I

H∗(πi) (4.2)

is valid.

Proof. As shown in the proof of Lemma 4.1, for each i0 ∈ I and each ε > 0 there exists ω(i0, ε) ∈ Ω
such that πi0(ω(i0, ε)) > 1− ε holds. Define, for each ω ∈ Ω, the mapping ωI(i0, ε, ω) : I → Ω in this
way:

ωI [i0, ε, ω](i0) = ω, (4.3)

ωI [i0, ε, ω](j) = ω(j, ε) for each j ∈ I, j 6= i0. (4.4)

Consequently,

πI(ωI(i0, ε, ω)) =
∧

j∈I

πj(ωI [i0, ε, ω](j)) =

= πi0(ω) ∧

 ∧

j∈I,j 6=i0

πj(ω(j, ε))


 . (4.5)

Hence, if πi0(ω) ≤ 1− ε holds, then πI(ωI [i0, ε, ω]) = πi0(ω) follows, as πj(ω(j, ε)) > 1− ε is valid for
each j ∈ I, j 6= i0, due to the choice of ω(j, ε). If πi0(ω) > 1− ε is the case, i.e., if πi0(ω) ∈ (1− ε, 1]
holds, then (4.5) yields that also

5



πI(ωI [i0, ε, ω]) ≥ 1− ε, i.e., πI(ωI [i0, ε, ω]) ∈ [1− ε, 1] (4.6)

holds. So, in both the cases the inequality

|πI(ωI [i0, ε, ω])− πi0(ω)| ≤ ε (4.7)

is valid. Due to Lemma 3.3, also the inequality

K(πI(ωI [i0, ε, ω]), πi0(ω)) =
= ([πi(ωI [i0, ε, ω]) ∧ (1− πI(ωI [i0, ε, ω]))]−

−[πi0(ω) ∧ (1− πi0(ω))]) ≤ ε (4.8)

is valid. Hence, for each i ∈ I and ω ∈ Ω, the value πi(ω) ∧ (1 − πi(ω)) can be approximated, up to
an arbitrary small difference ε > 0, by the value πI(ωI)∧ (1− πI(ωI)) for some ωI ∈ ΩI . So, we may
conclude that the inequality

H∗(πI) =
∨

ωI∈ΩI

((1− πI(ωI)) ∧ πI(ωI)) ≥

≥
∨

i∈I,ω∈Ω

((1− πi(ω)) ∧ πi(ω)) =
∨

i∈I

( ∨

ω∈Ω

((1− πi(ω)) ∧ πi(ω))

)
=

=
∨

i∈I

H∗(πi) (4.9)

is valid.
Let us prove the inverse inequality H∗(πI) ≤ ∨

i∈I H∗(πi), i.e., the inequality

∨

ωI∈ΩI

((1− πI(ωI)) ∧ πI(ωI)) ≤
∨

i∈I

( ∨

ω∈Ω

((1− πi(ω)) ∧ πi(ω))

)
. (4.10)

What obviously suffices is to prove this inequality for each ωI ∈ ΩI in particular, hence, to prove that
for each ωI ∈ ΩI the relation

πi(ωI) ∧ (1− πI(ωI)) =

(∧

i∈I

πi(ωI(i))

)
∧

(
1−

∧

i∈I

πi(ωI(i))

)
≤

≤
∨

i∈I

( ∨

ω∈Ω

(πi(ω) ∧ (1− πi(ω)))

)
(4.11)

holds. Due to Lemma 3.2 we obtain that

(∧

i∈I

πI(ωI(i))

)
∧ (1−

∧

i∈I

πI
i (ωI(i))) =

=

(∧

i∈I

πI(ωI(i))

)
∧

(∨

i∈I

(1− πi(ωI(i)))

)
≤

≤
∨

i∈I

[πI(ωI(i)) ∧ (1− πI(ωI(i)))] ≤

≤
∨

ω∈Ω

(∨

i∈I

(πi(ω) ∧ (1− πi(ω)))

)
=

=
∨

i∈I

( ∨

ω∈Ω

(πi(ω) ∧ (1− πi(ω)))

)
=

∨

i∈I

H∗(πi). (4.12)
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The inequality inverse to (4.9) as well as whole the assertion are proved. 2

It is perhaps worth being noted explicitly that the simplifying assumption of identical spaces
Ωi(= Ω) on which the particular possibilistic distributions πi, i ∈ I, are defined, can be accepted
without any loss of generality of the obtained results. Indeed, in general we could take Ω =

⋃
i∈I Ωi

and replace each πi by π0
i defined on Ω in such a way that π0

i (ω) = πi(ω), if Ω ∈ Ωi, π0
i (ω) = 0, if

ω ∈ Ω− Ωi, so arriving at the same results as in the case with identical Ωi’s.

5 Conclusions

Inspired by a very important property of Shannon entropy function consisting in the additivity of
entropy values when considering statistically independent products of particular probability, we tried
to define a similar entropy measure for possibilistic distributions, in particular, for the lattice-valued
ones. In [7] we show that this task can be more or less successfully solved when replacing the sum
of particular entropy values by their supremum (in the sense of the complete lattice in question) and
when considering just possibilistically independent products of finitely many lattice-valued possibilistic
distributions.

Seeking for some more conditions particular cases under which this result could be proved also
for possibilistically independent products of infinite number of particular possibilistic distributions
we obtained above that this could be achieved when considering real-valued possibilistic distributions
with possibility degrees processed just as elements of the complete lattice 〈[0, 1],≤〉 enriched by the
operation of standard arithmetic complement 1 − x. It remains as an open and perhaps interesting
problem whether the same result could be proved also without the arithmetical complement, when
replacing the value 1− π(ω) in the definition of entropy function by the value Π(Ω−{ω}). Also some
other conditions imposed on the complete lattice T in question and enabling to strenghen the general
results from [7] seem to be worth being sought for and analyzed in more detail.

The references [1, 4, 6] and [9] can serve in order to obtain a more detailed insight into the domains
the ideas, notions and results of which are applied or noted in this paper.
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