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Abstract

As experimental scientists strive to understand the inner workings of more and more complex systems, classi-
fication of the interactions between the components of such systems is gaining much importance. Many biological,
geophysical and atmospheric processes can be analyzed in the framework of nonlinear dynamical systems. An im-
portant subclass are oscillatory or quasi-oscillatory systems which can be coupled in various ways leading to a rich
spectrum of cooperative behavior. One of the most important types of such behaviors issynchronization. Many forms
of synchronization have been discovered to date, among them phase synchronization which occurrs in weakly coupled
oscillators. Up to now, instead of direct detection of phase synchronization, much work has been devoted to quan-
tifying phase dependence from bivariate time series of a pair of oscillatory processes. In this paper we introduce a
selection of available methods for quantification of phase dependence and describe the first detector of phase synchro-
nization from bivariate time series. The efficiency of the method is demonstrated on a model system and the method
is compared with existing approaches to analysis of synchronization.

1. Introduction

Increasingly, complex biological, biochemical, meteoro-
logical and geophysical systems have become the focus
of intensive experimental and theoretical research. Many
of these systems can be characterized as coupled ne-
tworks of nonlinear oscillators or quasi-oscillators. The
complexity of their behavior typically arises from non-
trivial interactions between more or less discrete compo-
nents. A higher level of understanding of the function of
the systems is facilitated by a more detailed analysis of
the various types of behaviors induced by the coupling
between their components.

There is a variety of ways that two oscillatory systems
can be directly or indirectly coupled. Certain types of
coupling between two systems lead (under favorable
conditions) to a specific type of cooperative behavior ter-
med “synchronization”. Synchronization has been first
described in the 17th century by Christian Huygens and
who observed the phenomenon of mutual adjustment
of motions of two pendulums hanging from a common
beam. Performing further experiments he found that this

is not a random effect but one that is brought about by
a connection between the two pendulum clocks — in
this case the very slight motion of the beam transferring
forces between the two clocks. He called this interaction
“sympathy” and published these (and other) findings in
the monograph Horologium Oscillatorium [7].

The term synchronization has since come to represent
a multitude of phenomena and much effort has been
spent differentiating between its various forms. The sim-
plest form is calledcomplete synchronizationand is
found in coupled identical systems when both systems
move along coincident trajectories after reaching a ste-
ady state [5].Generalized synchronizationrequires that
a smooth map exists between the trajectories of both os-
cillators [2]. More recently,phase synchronizationresul-
ting from weak coupling has been discovered as a form
of synchronization that occurrs even in oscillating sys-
tems exhibiting deterministic chaos [1, 20, 19].Phaseis
an observable which efficiently describes the motion of
an oscillatory system: it indicates the current position of
the dynamical system on its limit cycle. It is an incre-
asing variable which grows by a fixed amount (usually
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2π) for every completed cycle of the periodic motion.
Phase is generally not directly available and must be first
obtained from an observable of the system by a process
called “phase extraction”.

Experimentally, synchronization has been found for
example in the human cardiorespiratory system [4, 21],
in the Solar system [17], in meteorological systems [16]
or in neural signals [15, 22].

Synchronization can occur in pairs of oscillators with si-
milar natural frequencies which then lock at a 1:1 ratio.
It is also possible that a pair of systems sychronizes at di-
fferent ratios, for example a parent walking with a child
alongside may make one large step while the child ma-
kes two smaller steps, every second step of the child
aligning with the large step of the parent. Such a system
synchronizes at a ratio 2:1. In general, synchronization
at ratios different from 1:1 is calledhigher order syn-
chronizationand the ratio of frequencies at which the
systems synchronize is termed thelocking ratio.

In experimental practice, the only information available
about the investigated systems are the recorded time se-
ries. In this case it is necessary to apply methods deve-
loped in the context of non-linear time series analysis
and to infer if the systems synchronize or not. Unfor-
tunately without additional knowledge or the option to
interact with the given systems, it is not possible to de-
cide with certainty if two systems synchronize. At best,
either an index characterizing the strength of phase de-
pendence can be estimated or an inference regarding the
synchronization state can be made with a desired level
of significance.

The rest of this paper is organized as follows: the next
section deals with two frequently used methods of com-
puting a “synchronization index” and describes the pro-
posed synchronization detector; the following section
details experiments testing the methods and comments
on the results and the paper closes with a brief discus-
sion and a conclusion.

2. Methods

In this section the sequence of steps required for pro-
cessing time series of the original observable to obtain
a result indicating the synchronization state is described.
First, phase must be extracted from the time series. The
phase is then used as input into the actual synchroni-
zation analysis methods which supply the final result:
either a computed index or a decision.

2.1. Phase Extraction

There are multiple ways of extracting phase, each of
which is suited to a particular situation. Instantaneous
phase can be obtained from using the Hilbert transform
[12] or the Wavelet transform [11]. If the time series of
the observable is too noisy to obtain a reliable instan-
taneous phase signal, the marked-events method may
yield better results [25]. In the following, the phase time
series (obtained by one of the methods above) of the
coupled systems will be denotedφ1 andφ2. It should
be noted that the extraction methods usually provide
a “wrapped” phase time series which is confined to the
interval〈0, 2π) but synchronization methods may work
with an “unwrapped” definition, where2π is added to
the phase after a cycle is completed to produce an in-
creasing phase. In the following experiments it will be
specified which methods work with which definition of
phase.

2.2. Synchronization indices

Because of the variety of synchronization phenomena,
different synchronization analysis methods have been
proposed, a comparison and overview of methods for
analyzing phase synchronization is in [10]. These me-
thods however usually estimate a “degree of synchro-
nization”, which should more aptly be called the “de-
gree of phase dependence” and their result is typically
a normalized synchronization index. It has however pro-
ven difficult to make a decision as to whether two sys-
tems are synchronized based on the values of such in-
dices. We propose a new approach to the problem of
detecting phase synchronization by constructing method
which provides a decision whether two systems are syn-
chronized with a pre-selected level of statistical signifi-
cance.

In this section we first describe two frequently used me-
thods in quantifying phase synchronization in systems
of coupled non-linear oscillators: mean phase coherence
and mutual information. In the rest of the section the
new phase synchronization detection method is introdu-
ced.

2.2.1 Mean Phase Coherence: The mean
phase coherence (MPC) [6] is defined as

R =
∣∣∣
1

N

N∑

j=1

ei∆φ(j)
∣∣∣ = 1− CV, (1)

where∆φ(j) = nφ1(j) − mφ2(j) is the difference of
the “unwrapped” phases scaled by the locking ratiom:n
andCV denotes the circular variance [13], a well-known
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measure of point spread in circular statistics.

The ratiom:n should be set to the expected phase syn-
chronization ratio. The function

∆φ(j) = nφ1(j)−mφ2(j)

is important and describes the evolution of the difference
of the scaled phases. If the systems are synchronized,
this function should be constant (assuming there is no
noise induced into the system). The mean of the deri-
vative of the continuous version of the function∆φ(j)
denotes the scaled relative phase velocity of the two sys-
tems. If the systems are synchronized, this should be
exactly0 indicating thatm cycles of the second systems
correspond ton cycles of the first system.

The resultR is a synchronization index with values in
the interval〈0, 1〉. The value of0 indicates independent
phases while1 indicates completely synchronous mo-
tion.

The MPC quantifies the “spread” of the phase differen-
ces. If all of phase differences are tightly coupled toge-
ther for a given time series, the value of MPC will be
high. If, on the other hand, the phase differences exhi-
bit high fluctuations, the value of MPC will be low. This
can be seen from the relationship between MPC and the
circular variance CV [13].,

2.2.2 Mutual Information: Mutual infor-
mation [24] characterizes the statistical dependence of
random variables. The phase time series are interpreted
as realizations of an ergodic stochastic process. Under
this assumption, the probability density function (PDF)
of the variables can be estimated from a single reali-
zation. UsingΦ1,Φ2 to denote the stochastic processes
we can write

I(Φ1; Φ2) =

∫∫
p(Φ1,Φ2) log

p(Φ1,Φ2)

p(Φ1)p(Φ2)

= H(Φ1) +H(Φ2)−H(Φ1,Φ2).
(2)

If the two systems are uncoupled and behave indepen-
dently, the mutual information (MI) of the two variables
should be close to0. In practice, however, contamination
by noise and insufficient data to estimate the PDF relia-
bly cause the value of MI to fluctuate. A systematic error
is also introduced by similarities in the dynamics of the
two systems as MI quantifies not only dependencies in
the variables resulting from coupling between the sys-
tems but also dependencies resulting from common dy-
namics.

For the purpose of evaluation, mutual information can
be normalized bymin{H(Φ1), H(Φ2)} yielding an in-
dex of phase dependence in the interval〈0, 1〉. The va-
lue of 0 indicates that the random variablesΦ1, Φ2 are
independent and the value of1 indicates that a functio-
nal relationship exists between the variables. In general
a stronger connection between the PDFs of the processes
will produce a higher value of MI.

Use of mutual information requires an effective tool
to estimate the marginal PDF of each stochastic varia-
ble and also the joint PDF. This is currently the most
challenging problem in applying information-theoretic
functionals to time series analysis. An effective PDF
estimator must capture the salient features of the PDF
while being as resistant to noise as possible. There are
many ways of estimating the PDF, a comprehensive re-
view is in [23].

As an alternative to using (2), mutual information can be
directly estimated from some statistics of the data. This
is the approach used in this paper. One of the most pro-
mising estimators of mutual information, the Kraskov-
Grassberger-Stögbauer method [9] of estimating mutual
information from nearest neighbor distances is applied.
The work is based on earlier efforts of Kozachenko and
Leonenko [8] on asymptotically unbiased estimators of
entropy.

2.3. Bootstrap Synchronization Detection

The above methods do not use any mathematical defini-
tion of synchronization as a basis for detecting the pre-
sence of synchronization. Rather they provide an index
related to the mutual dependence of the phases of the
systems. On the other hand, the method proposed in this
section is based on a mathematical definition of phase
synchronization. There are currently two widely accep-
ted definitions of phase synchronization which respect
the possible influence of noise on the systems and are
therefore practically applicable:

|mφ1(t)− nφ2(t)| = |∆φ(t)| < δ, (3)

which allows the phase time series to fluctuate slightly.
This allows a pair of synchronized systems to be labeled
as such even in the presence of some noise. This con-
dition states that the phase difference between the two
time series is bounded. This is a theoretically sound de-
finition but unfortunately it cannot be tested on time se-
ries of finite length as every such time series satisfies (3)
for δ = sup{|∆φ|}. The other, slightly weaker condi-
tion, states that two systems are phase synchronized if
their mean phase velocities are equal

m〈φ̇1〉 = n〈φ̇2〉, (4)
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where〈...〉 denotes the time average. In the following,
we show that this condition can be tested on a finite time
series. First, it is necessary to prove that if the mean
frequencies are not equal (systems are not synchroni-
zed) then the phase difference time series has a non-zero
gradient and vice-versa. Henceforth we will work with
sampled time series. This will be indicated by the use of
the variablei to index the time seriesφ1, φ2 and∆φ. We
note that the condition (4) can be rewritten as

〈∆̇φ〉 = 0, (5)

Using least squares linear regression we may write

∆φ(i) = at(i) + b+ ǫ(i) (6)

wherea andb are chosen to minimizeχ2 =
∑

i ǫ(i)
2

[3]. As a corollary to this we have that meanǫ(i) is zero.
Subtracting the equation for∆φ(i) from the equation for
∆φ(i+ 1) and rearranging gives

∆φ(i+ 1)−∆φ(i)

t(i+ 1)− t(i)
= a+

ǫ(i+ 1)− ǫ(i)

t(i+ 1)− t(i)
(7)

Averaging over all samples (assuming equidistant sam-
pling) we obtain

〈∆φ(i + 1)−∆φ(i)〉

∆t
= a, (8)

where∆t = t(i+ 1)− t(i). If we sampled with infinite
density we would be able to take the limit∆t → 0 to
arrive at

〈∆̇φ〉 = a (9)

We note that the above shows that no matter what the
actual evolution of the phase difference is, a linear trend
will be present if the systems are unsynchronized. The
phase locking condition (4) can thus be restated asa =
0. In real time series, noise and fluctuations will inva-
riably cause the value ofa to be slightly different from
zero. The question is whether the gradienta is signifi-
cantly non-zero. In this way, the problem of detecting
synchronization has been transformed into the problem
of estimating the significance of a gradient in the phase
difference time series.

In general it is not possible to assume thata will have
any particular distribution. This fact makes the con-
struction of a direct statistical test of the value ofa very
difficult. In this work we propose not to test the value of
a directly but to estimate its significance in an indirect
fashion. This requires that a least-squares fit of a hori-
zontal line∆φ(i) = c+ η(i) is performed, where again
c is chosen to minimizeχ2 =

∑
i η(i)

2. In this casec is
simply the mean of∆φ(i). We now compare the sample

of errors of the original fit (6) and that of the errors of the
horizontal line fit. If there is no real gradient in the time
series∆φ(i) then the value ofa is the result of random
fluctuations and the distributions of the errors of both of
the fits should be thesame. If on the other hand there
is a trend in the time series and the value ofa explains
part of the variance of the errors than the distributions
will be different. There is a standard test that determi-
nes if two samples are drawn from the same distribution
— the Kolmogorov-Smirnov test [14]. The test is a stan-
dard hypothesis test with the null hypothesis being that
the samples are drawn from the same distribution. This
means that the proposed synchronization detector assu-
mes that the processes are synchronized and tries to re-
ject this assumption using evidence from the data. This
is a completely new approach to detecting synchronized
states.

As described above, the method requires a high volume
of data, on the order of hundreds or thousands of cycles
to reliably differentiate between synchronized and un-
synchronized states. This is because of long correlations
in the time series which cause the appearance of spuri-
ous gradients in short time series. We use a simple solu-
tion which breaks these long correlations if there is no
gradient but preserves the autocorrelation of the signal
if there is a significant trend: time indices are sorted by
the magnitude of the associated phase difference values.
This step leads to a significant reduction in the frequency
of false negatives and improves the efficiency of the me-
thod greatly. As it will be shown in the next section, time
series only tens of periods long are now necessary for
reliable detection even for higher locking ratios, such as
those occurring in the cardiorespiratory system.

3. Experiments

Numerical tests on model systems are a prerequisite to
the application of any method to experimental data. Ex-
perimental data suffer from a number of problems which
make the task of synchronization detection (indeed of
any type of interaction analysis) difficult. The main pro-
blem is generally stationarity: the methods require as
much data as possible to provide reasonable estimates,
on the other hand using time series that are too long may
violate the assumption of stationarity of the system. Ex-
perimental time series are burdened with noise signals of
multiple origins (measurement, thermal, quantization).

Testing on model systems under many different condi-
tions does not ensure that the method will work well in
practice but succesfull tests under a wide range of con-
ditions indicate that the method should work well. Such
tests also show how the effectivity of the method chan-
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ges with respect to different parameters.

In this work we investigate the problem of detecting
higher-order synchronization at the ratio of frequencies
1:4. The ratio has been carefully selected to match the
frequency ratio of the heart-beat period to the breathing
cycle period. The problem of detecting synchronization
in the cardiorespiratory system has been examined by
some authors, e.g. [4].

3.1. Phase synchronization in noisy systems

The simplest possible nonlinear oscillator is thephase
oscillator. A linearly coupled pair of symmetrically
coupled phase oscillators is described by the differential
equations

φ̇1 = ω1 + b cos(φ1) + ǫ sin(mφ2 − nφ1) + η1
φ̇2 = ω2 + b cos(φ2) + ǫ sin(nφ1 −mφ2) + η2,

(10)

whereω1,2 represent the natural frequencies of the sys-
tems,b is the coefficient of the nonlinear term,ǫ re-
presents the strength of coupling andη1,2 are uncorre-
lated Gaussian noise terms. In this paper we show the
synchronization results for a pair of oscillators with the
frequency ratio approximately 1:4. When the systems
synchronize, the definition (4) should hold.
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Figure 1: Comparison of synchronization analysis algo-
rithms. Circles denote the DPV, pluses denote the
detection rate of the bootstrap synchronization de-
tector, crosses indicates the normalized mutual in-
formation estimated usingkNN and full squares
denote the mean phase coherence. Time series len-
gth is 2048 data points with about60 points per
period of the faster system (≈ 18 periods).

In Fig. 1 we plot the function〈nφ̇1 −mφ̇2〉, here called
the difference of scaled phase velocities (DPV) together

with the results of the introduced synchronization ana-
lysis algorithms. The DPV is “normalized” by dividing
all of its values by the value attained with non-existent
coupling, this was done so that the shape of the DPV
was clearly seen in the figure. The standard deviation of
the inserted uncorrelated Gaussian noise was set to0.02.

The synchronization transition region is approximately
at the coupling strength0.23 and is indicated by the
phase difference velocity rapidly approaching0.

3.2. Arnold tongues in phase oscillators

The second test is a reconstruction of one of the “Ar-
nold tongues” for the system of coupled phase oscilla-
tors. The Arnold tongue refers to the region of synchro-
nization of the coupled model system in the parameter
space. We investigate coupled phase oscillator model
(10), where the frequenciesω1,2 are set to

ω1 = 1 + ∆f
ω2 = 4−∆f

(11)

where∆f is the frequency mismatch. The standard de-
viation of the inserted Gaussian uncorrelated noise was
set to0.02. The coupling strengthǫ spanned the interval
〈0, 0.5〉, and the frequency mismatch was varied in the
interval〈−0.2, 0.2〉.

Fig. 2 shows the difference in scaled phase velocities
(DPV) adjusted for the locking ratio 1:4. In the synchro-
nized region,this difference should be0 indicating that
there are exactly four cycles of the faster system for one
cycle of the slower system, the shape of the region re-
sembles a tongue, hence the name of the region. In the
figure, there are other flat regions with nonzero DPV.
These regions correspond to synchronization indiffe-
rent ratios than 1:4. A synchronization analysis algori-
thm with adequate specificity should not be sensitive to
the parameter combinations inside these regions.

In Fig. 3 it can be clearly seen that the Bootstrap syn-
chronization detector is able to identify the region of 1:4
synchronization clearly. The interface between the syn-
chronized and unsynchronized regions is sharply defi-
ned indicating that the detector is sensitive even near the
transition between regions.

Figs. 4 and 5 show how the value of the synchroni-
zation indices varies with the frequency mismatch and
coupling strength. It can be discerned that the highest
values of the indices are in the synchronization region.
However, we note that the values are not constant inside
the region, thus rendering eventual thresholding more
difficult and that there are non-zero values outside the

PhD Conference ’07 120 ICS Prague

Institucionální repozitář AV ČR  http://hdl.handle.net/11104/0148645



Martin Vejmelka Detecting Synchronized States

synchronization region. These correspond to the other
(secondary) plateaus in Fig. 2. Because the methods
are sensitive to synchronization outside the pre-selected
ratio, there is a danger of incorrectly accepting states
synchronized at different ratios as states synchronized
at the given ratio.

To the best of our knowledge there is currently no pro-
cedure which would reliably compute a threshold discri-
minating between the synchronized and unsynchronized
states for either of the indices (MPC and MI) based on
a single bivariate time-series.
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Figure 2: Difference of scaled phase velocities (DPV) plot-
ted as a function of the frequency mismatch and of
the coupling strength. The synchronization region
is clearly seen as a plateau where the value of DPV
is 0.
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Figure 3: Detection rates of the bootstrap synchronization
detector in percent. Comparing this image with
Fig. 2, it is clearly seen that the region of synchro-
nization is detected with excellent precision.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Coupling strength [-]

Frequency shift [-]

Figure 4: The values of the mean phase coherence. MPC
shows the highest values in the synchronization re-
gion, however non-zero values are also outside the
region and the value of the MPC indexR varies
widely even inside the synchronization region.
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Figure 5: The values of mutual information estimated using
the kNN method. The value of MI clearly attains
its highest values in the synchronization region but
also shows non-zero values outside the 1:4 syn-
chronization region. The estimate is more stable
inside the synchronization region than the MPC es-
timate, cf. Fig. 4.

4. Discussion

Phase synchronization is in general difficult to detect so-
lely using information contained in the time series of ob-
servables. The main problem is that synchronization is
aprocess[18] that manifests itself in the time series and
causes phase locking. However detecting phase locking
in a time series does not automatically imply that the two
systems are synchronized. A simple example is of two
identical oscillators with the same initial conditions and
no coupling. Without the influence of noise, the two sys-
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tems will evolve along coincident trajectories and from
the time series they would appear to be perfectly locked.
The problem of detecting phase synchronization from
time-series therefore remains a problem of a statistical
nature.

The influence of noise on the quality of detection is two-
fold. A small amount of noise may break static correlati-
ons (resulting from common dynamics) such as those
described in the last paragraph. A large amount of no-
ise may prevent synchronization alltogether or cause di-
fficulties in detection of synchronization. A pervasive
type of problem is calledphase slipping, phase slipping
occurs when sufficiently strong noise perturbs the the
states of the two systems so that one of the systems lo-
ses a cycle and “slips” behind. A unified approach to
treating phase slips is not agreed upon at present. In
this work we have not investigated the problem of phase
slips, suffice it to note that phase slips adversely affect
all synchronization analysis methods. The problem is
discussed in [26].

5. Conclusion

In this work the notion of phase synchronization be-
tween nonlinear oscillatory systems has been introdu-
ced. Frequently used methods to “detect” synchroni-
zation have been introduced and their drawbacks have
been described. Subsequently a new synchronization de-
tection method — the Bootstrap synchronization detec-
tor, has been introduced. Numerical experiments similar
in nature to the problem of detecting synchronization in
the cardiorespiratory system have been performed. The
effectiveness of the proposed method has been demon-
strated and compared to existing approaches. The me-
thod will be applied in analysis of cardiorespiratory and
neural data within the project BRACCIA.
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Phys. Rev. E, page 046211, 2001.

[16] Palus M., Novotna D. Nonlin. Proc. Geophys,
13(3):287–296, 2006.

[17] M. Paluš, J. Kurths, U. Schwarz, N. Seehafer,
D. Novotná and I. Charvátová.Phys. Lett. A,
365:421–428, 2007.

[18] A. Pikovsky, M. Rosenblum, and J. Kurths. Syn-
chronization: A Universal concept in nonlinear
sciences. Cambridge University Press, Cambridge,
2001.

[19] M. G. Rosenblum, A. S. Pikovsky and J. Kurths.
Phys. Rev. Lett., 76:1804–1807, 1996.

[20] N. F. Rulkov, M. M. Suschik, L. S. Tsimring and
H. D. I. Abarbanel.Phys. Rev. E51(2):980–994,
1995.

PhD Conference ’07 122 ICS Prague

Institucionální repozitář AV ČR  http://hdl.handle.net/11104/0148645



Martin Vejmelka Detecting Synchronized States

[21] C. Schäfer, M. G. Rosenblum, J. Kurths, and H-H.
Abel. Nature, 392:239–240, 1998.

[22] S. J. Schiff, P. So, T. Chang, R. E. Burke, and
T. Sauer.Phys. Rev. E, 54(6):6708–6724, 1996.

[23] K. Schindler-Hlavá̌cková, M. Paluš, M. Vejmelka,
and J. Bhattacharya.Phys. Rep., 441(1):1–46,
2007.

[24] C. E. Shannon. In Bell Syst. Tech. J, 27:379–423,
1948.

[25] A. Stefanovska, H. Haken, P. V. E. McClintock,
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