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Slušný, Stanislav
2007
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Abstract

The design of intelligent embodied agents represents one of the key research topics of today’s artificial intelli-
gence. The goal of this work is to study emergence of intelligent behavior within a simple intelligent agent. Cognitive
agent functions are realized by mechanisms based on neural networks and evolutionary algorithms. The evolutionary
algorithm is responsible for the adaptation of a neural network parameters based on the performance of the embodied
agent in a simulated environment. The evolutionary learning is realized for several architectures of neural networks,
namely the feed-forward multilayer perceptron network, the recurrent Elmans neural network, and the radial basis
function network. In experiments, we demonstrate the performance of evolutionary algorithm in the problem of agent
learning where it is not possible to use traditional supervised learning techniques.

1. Introduction

One of the main goals of Artificial Intelligence is to gain
insight into natural intelligence through a synthetic ap-
proach, by generating and analyzing artificial intelligent
behavior. In order to glean an understanding of a phe-
nomenon as complex as natural intelligence, we need to
study complex behavior in complex environments.

In contrast to traditional systems, reactive and behavior
based systems have placed agents with low levels of co-
gnitive complexity into complex, noisy and uncertain
environments. One of the many characteristics of intelli-
gence is that it arises as a result of an agent’s interaction
with complex environments. Thus, one approach to de-
velop autonomous intelligent agents, calledevolutionary
robotics, is through a self-organization process based on
artificial evolution. Its main advantage is that it is an
ideal framework for synthesizing agents whose behavior
emerge from a large number of interactions among their
constituent parts [9].

In the following sections we introduce multilayer per-
ceptron networks (MLP), Elmans networks (ELM) and
radial basis function networks (RBF). Then we take
a look at Khepera robots and related simulation soft-
ware. In the following section we present two experi-
ments with Khepera robots. In both of them, the artifi-
cial evolution is guiding the self-organization process. In

the first experiment we expect an emergence of behavior
that guarantees full maze exploration. The second expe-
riment shows the ability to train the robot to discriminate
between walls and cylinders. In the last section we draw
some conclusions and present directions for our future
work.

2. Neural Networks

2.1. Multilayer Perceptron Networks

A multilayer feedforward neural network is an intercon-
nected network of simple computing units called neu-
rons which are ordered in layers, starting from the in-
put layer and ending with the output layer [5]. Between
these two layers there can be a number of hidden layers.
Connections in this kind of networks only go forward
from one layer to the next. The outputy(x) of a neuron
is defined in equation (1):

y(x) = g

(
n∑

i=1

wixi

)
, (1)

wherex is the neuron withn input dendrites (x0 ...
xn), one output axony(x), w0 ... wn are weights and
g : ℜ → ℜ is the activation function. We have used
one of the most common activation functions, the logis-
tic sigmoid function (2):
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σ(ξ) = 1/(1 + e−ξt), (2)

wheret determines its steepness.

In our approach, the evolutionary algorithm is responsi-
ble for weights modification, the architecture of the ne-
twork is determined in advance and does not undergo
the evolutionary process.

2.2. Recurrent Neural Networks

In recurrent neural networks, besides the feedforward
connections, there are additional recurrent connections
that go in the opposite direction. These networks are of-
ten used for time series processing because the recurrent
connection can work as a memory for previous time
steps. In the Elman [3] architecture, the recurrent con-
nections explicitly hold a copy (memory) of the hidden
units activations at the previous time step. Since hid-
den units encode their own previous states, this network
can detect and reproduce long sequences in time. The
scheme how the Elman network works is like this (also
cf. Fig. 1):

• Compute hidden unit activations using net input
from input units and from the copy layer.

• Compute output unit activations as usual based on
the hidden layer.

• Copy new hidden unit activations to the copy la-
yer.

Figure 1: Scheme of layers in the Elman network archi-
tecture.

Figure 2: Scheme of layers in the RBF network architecture.

2.3. Radial Basis Function Networks

An RBF neural network represents a relatively new neu-
ral network architecture. In contrast with the multilayer
perceptrons the RBF network contains local units, which
was motivated by the presence of many local response
units in human brain. Other motivation came from nu-
merical mathematics, radial basis functions were first in-
troduced as a solution of real multivariate interpolation
problems [12].

It is a feed-forward neural network with one hidden la-
yer of RBF units and a linear output layer (see Fig. 2).
By an RBF unit we mean a neuron withn real inputs~x
and one real outputy, realizing a radial basis functionϕ,
such as Gaussian.

y(~x) = ϕ

(
‖ ~x− ~c ‖

b

)
. (3)

The network realizes the function:

fs(~x) =
h∑

j=1

wjsϕ

(
‖ ~x− ~cj ‖

bj

)
, (4)

wherefs is the output of the s-th output unit.

There is a variety of algorithms for RBF network lear-
ning, in our previous work we studied their behavior and
possibilities of their combinations [8].

The learning algorithm that we use for RBF networks
was motivated by the commonly used Three-step lear-
ning. Parameters of RBF network are divided into three
groups: centers, widths of the hidden units, and output
weights. Each group is then trained separately. The cen-
ters of hidden units are found by clustering (k-means al-
gorithm) and the widths are fixed so as the areas of im-
portance belonging to individual units cover the whole
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input space. Finally, the output weights are found by EA.
The advantage of such approach is the lower number of
parameters to be optimized by EA , i.e. smaller length
of individual.

3. Evolutionary Learning Algorithms for Robotics

3.1. The Khepera Robot

Khepera [7] is a miniature mobile robot with a diame-
ter of 70 mm and a weight of 80 g. The robot is sup-
ported by two lateral wheels that can rotate in both di-
rections and two rigid pivots in the front and in the back.
The sensory system employs eight “active infrared light”
sensors distributed around the body, six on one side and
two on other side. In “active mode” these sensors emit a
ray of infrared light and measure the amount of reflected
light. The closer they are to a surface, the higher is the
amount of infrared light measured. The Khepera sensors
can detect a white paper at a maximum distance of ap-
proximately 5 cm.

In a typical setup, the controller mechanism of the robot
is connected to the eight infrared sensors as input and
its two outputs represent information about the left and
right wheel power. For a neural network we typically
consider architectures with eight input neurons, two out-
put neurons and a single layer of neurons, mostly five or
ten hidden neurons is considered in this paper. It is di-
fficult to train such a network by traditional supervised
learning algorithms since they require instant feedback
in each step, which is not the case for evolution of beha-
vior. Here we typically can evaluate each run of a robot
as a good or bad one, but it is impossible to assess each
one move as good or bad. Thus, the evolutionary algo-
rithm represent one of the few possibilities how to train
the network.

3.2. Evolutionary Algorithm

The evolutionary algorithms (EA) [6, 4] represent a sto-
chastic search technique used to find approximate so-
lutions to optimization and search problems. They use
techniques inspired by evolutionary biology such as mu-
tation, selection, and crossover. The EA typically works
with a population ofindividuals representing abstract
representations of feasible solutions. Each individual is
assigned afitnessthat is a measure of how good solu-
tion it represents. The better the solution is, the higher
the fitness value it gets. The population evolves towards
better solutions. The evolution starts from a population
of completely random individuals and iterates in gene-
rations. In each generation, the fitness of each individual
is evaluated. Individuals are stochastically selected from
the current population (based on their fitness), and mo-

dified by means of operatorsmutationandcrossoverto
form a new population. The new population is then used
in the next iteration of the algorithm.

3.3. Evolutionary Network Learning

Various architectures of neural networks used as robot
controllers are encoded in order to use them the evolu-
tionary algorithm. The encoded vector is represented as
a floating-point encoded vector of real parameters deter-
mining the network weights.

Typical evolutionary operators for this case have been
used, namely the uniform crossover and the mutation
which performs a slight additive change in the parameter
value. The rate of these operators is quite big, ensuring
the exploration capabilities of the evolutionary learning.
A standard roulette-wheel selection is used together with
a small elitist rate parameter. Detailed discussions about
the fitness function are presented in the next section.

4. Experiments

4.1. Setup

Although evolution on real robots is feasible, serial eva-
luation of individuals on a single physical robot might
require quite a long time. One of the widely used simu-
lation software (for Khepera robots) is the Yaks simu-
lator [2], which is freely available. Simulation consists
of predefined number of discrete steps, each single step
corresponds to 100 ms.

To evaluate the individual, simulation is launched seve-
ral times. Individual runs are called “trials”. In each trial,
neural network is constructed from the chromosome, en-
vironment is initialized and the robot is put into rando-
mly chosen starting location. The inputs of neural ne-
tworks are interconnected with robot’s sensors and out-
puts with robot’s motors. The robot is then left to “live”
in the simulated environment for some (fixed) time pe-
riod, fully controlled by neural network. As soon as the
robot hits the wall or obstacle, simulation is stopped. De-
pending on how well the robot is performing, the indi-
vidual is evaluated by value, which we call “trial score”.
The higher the trial score, the more successful robot in
executing the task in a particular trial. The fitness value
is then obtained by summing up all trial scores.
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4.2. Maze Exploration

Figure 3: The environment in the maze exploration task. The
zone is drawn as the bigger circle, the smaller ci-
rcle represents the Khepera robot.

In this experiment, the agent is put in the maze of 60x30
cm(Fig. 3). The agent’s task is to fully explore the maze.
Fitness evaluation consists of four trials, individual trials
differ by agent’s starting location. Agent is left to live in
the environment for 250 simulation steps.

The three-componentTk,j motivates agent to learn to
move and to avoid obstacles:

Tk,j = Vk,j(1−
√

∆Vk,j)(1 − ik,j). (5)

First componentVk,j is computed by summing abso-
lute values of motor speed in thek-th simulation step
and j-th trial, generating value between 0 and 1. The
second component(1 −

√
∆Vk,j) encourages the two

wheels to rotate in the same direction. The last compo-
nent(1− ik,j) encourage obstacle avoidance. The value
ik,j of the most active sensor ink-th simulation step and
j-th trial provides a conservative measure of how close
the robot is to an object. The closer it is to an object, the
higher the measured value in range from 0 to 1. Thus,
Tk,j is in range from 0 to 1, too.

In thej-th trial, scoreSj is computed by summing nor-
malized trial gainsTk,j in each simulation step.

Sj =

250∑

k=1

Tk,j

250
(6)

To stimulate maze exploration, agent is rewarded, when
it passes through the zone. The zone is randomly located
area, which can not be sensed by an agent. Therefore,
∆j is 1, if agent passed through the zone inj-th trial
and0 otherwise. The fitness value is then computed as
follows:

Fitness =

4∑

j=1

(Sj + ∆j) (7)

Successful individuals, which pass through the zone in
each trial, will have fitness value in range from 4 to 5.
The fractional part of the fitness value reflects the speed
of the agent and it’s ability to avoid obstacles.

4.3. Results

All the networks included in the tests were able to learn
the task of finding a random zone from all four positi-
ons. The resulting best fitness values (cf. Tab. 1) are all
in the range of 4.3–4.4 and they differ only in the order
of few per cent. It can be seen that the MLP networks
perform slightly better, RBF networks are in the middle,
while recurrent networks are a bit worse in terms of the
best fitness achieved. According to their general perfor-
mance, which takes into account ten different EA runs,
the situation changes slightly. In general, the networks
can be divided into two categories. The first one repre-
sents networks that performed well in each experiment
in a consistent manner, i.e. every run of the evolutio-
nary algorithm out of the ten random populations en-
ded in finding a successful network that was able to find
the zone from each trial. MLP networks and recurrent
networks with 5 units fall into this group. The second
group has in fact a smaller trial rate because, typically,
one out of ten runs of EA did not produced the optimal
solution. The observance of average and standard devi-
ation values in Tab. 1 shows this clearly. This might still
be caused by the less-efficient EA performance for RBF
and Elman networks.

Figure 4: Testing environment in the maze exploration task is
the bigger maze of 100x100 cm. Agent’s strategy
is to follow wall on it’s left side.

The important thing is to test the quality of the obtai-
ned solution is tested in a different arena, where a big-
ger maze is utilized (Fig. 4). Each of the architectures is
capable of efficient space exploration behavior that has
emerged during the learning to find random zone posi-
tions. The above mentioned figure shows that the robot
trained in a quite simple arena and endowed by relati-
vely small network of 5–10 units is capable to navigate
in a very complex environment.
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Figure 5: Plots of fitness curves in consecutive populations (maximal, minimal, and average individual) for a typical EA run (one
of ten) training the RBF (and MLP, respectively) network with 5 units.

Network type Maze exploration Wall and cylinder
mean std min max mean std min max

MLP 5 units 4.29 0.08 4.20 4.44 2326.1 57.8 2185.5 2390.0
MLP 10 units 4.32 0.07 4.24 4.46 2331.4 86.6 2089.0 2391.5
ELM 5 units 4.24 0.06 4.14 4.33 2250.8 147.7 1954.5 2382.5
ELM 10 units 3.97 0.70 2.24 4.34 2027.8 204.3 1609.5 2301.5
RBF 5 units 3.98 0.90 1.42 4.36 1986.6 230.2 1604.0 2343.0
RBF 10 units 4.00 0.97 1.23 4.38 2079.4 94.5 2077.5 2359.5

Table 1: Comparison of the fitness values achieved by different types of network in the experiments.

4.4. Walls and Cylinders Experiment

Figure 6: Trajectory of an agent doing the Walls and cylin-
ders task.

Following experiment is based on the experiment carried
out by Nolfi [10, 11]. The task is to discriminate be-
tween the sensory patterns produced by the walls and
small cylinders. As noted in [9], passive networks (i.e.
networks which are passively exposed to a set of sensory
patterns without being able to interact with the external

environment through motor action), are mostly unable
to discriminate between different objects. However, this
problem can easily be solved by agents that are left free
to move in the environment.

The agent is allowed to sense the world by only six fron-
tal infrared sensors, which provide it with only limited
information about environment. Fitness evaluation con-
sists of five trials, individual trials differ by agent’s star-
ting location. Agent is left to live in the environment for
500 simulation steps. In each simulation step, trial score
is increased by 1, if robot is near the cylinder, or 0.5, if
robot is near the wall. The fitness value is then obtained
by summing up all trial scores. Environment is the arena
of 40x40 cm surrounded by walls.

4.5. Results

It may seem surprising that even this more complicated
task was solved quite easily by relatively simple network
architectures(Fig. 6). The images of walls and cylinders
are overlapping a lot in the input space determined by
the sensors.

The results in terms of best individuals are again quite
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comparable for different architectures with reasonable
network sizes. The differences are more pronounced
than in the case of the previous task though. Again, the
MLP is the overall winner mainly when considering the
overall performance averaged over ten runs of EA. The
behavior of EA for Elman and RBF networks was less
consistent, there were again several runs that obviously
got stuck in local extrema (cf. Tab. 1).

We should emphasize the difference between fitness
functions in both experiment. The fitness function used
in the first experiment rewards robot for single actions,
whereas in the second experiment, we describe only de-
sired behavior.

All network architectures produced similar behavior.
Robot was exploring the environment by doing arc mo-
vements and after discovering target, it started to move
there and back and remained in it’s vicinity.

5. Conclusions

The main goal of this paper was to demonstrate the abi-
lity of neural networks trained by evolutionary algorithm
to achieve non-trivial robotic tasks. There have been two
experiments carried out with three types of neural ne-
tworks and different number of units.

For the maze exploration experiment the results are en-
couraging, a neural network of any of the three types
is able to develop the exploration behavior. The trai-
ned network is able to control the robot in the previ-
ously unseen environment. Typical behavioral patterns,
like following the right wall have been developed, which
in turn resulted in the very efficient exploration of an
unknown maze. The best results achieved by any of the
network architectures are quite comparable, with sim-
pler perceptron networks (such as the 5-hidden unit per-
ceptron) marginally outperforming Elman and RBF ne-
tworks.

In the second experiment it has been demonstrated that
the above mentioned approach is able to take advantage
of the embodied nature of agents in order to tell walls
from cylindrical targets. Due to the sensor limitations of
the agent, this task requires a synchronized use of a su-
itable position change and simple pattern recognition.
This problem is obviously more difficult than the maze
exploration, nevertheless, most of the neural architectu-
res were able to locate and identify the round target re-
gardless of its position.

The results reported above represent just a few steps in
the journey toward more autonomous and adaptive ro-
botic agents. The robots are able to learn simple beha-

vior by evolutionary algorithm only by rewarding the
good ones, and without explicitly specifying particu-
lar actions. The next step is to extend this approach
for more complicated actions and compound behavi-
ors. This can be probably realized by incremental lear-
ning one network a sequence of several tasks. Another—
maybe a more promising approach—is to try to build
a higher level architecture (like a type of a Brooks sub-
sumption architecture [1]) which would have a control
over switching simpler tasks realized by specialized ne-
tworks. Ideally, this higher control structure is also evol-
ved adaptively without the need to explicitly hardwire it
in advance. The last direction of our future work is the
extension of this methodology to the field of collective
behavior.
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