
Subroutines for Large-Scale Nonlinear Programming

Lukšan, Ladislav
2007

Dostupný z http://www.nusl.cz/ntk/nusl-37389

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 23.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-37389
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
Academy of Sciences of the Czech Republic

Subroutines for large-scale nonlinear
programming

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček

Technical report No. V1000

June 30, 2007

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 2 688 42 44, fax: +420 2 858 57 89,
e-mail:e-mail:ics@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Subroutines for large-scale nonlinear
programming

Ladislav Lukšan, Ctirad Matonoha, Jan Vlček 1

Technical report No. V1000

June 30, 2007

Abstract:

We present two basic FORTRAN subroutines for large-scale nonlinear programming. Subrou-
tines PIND and PNUL, intended for sparse equality constrained nonlinear programming problems,
are based on the indefinitely preconditioned conjugate gradient method applied to the linear
KKT system or to the reduced system obtained by a null-space approach. Besides the de-
scription of methods and codes, we propose computational experiments which demonstrate
the efficiency of the proposed algorithms.

Keywords:
Large-scale optimization, large-scale nonlinear programming, sparse problems, partially
separable problems, discrete Newton methods, KKT systems, indefinite preconditioners.

1This work was supported by the Grant Agency of the Czech Academy of Sciences, project No.
IAA1030405, the Grant Agency of the Czech Republic, project No. 201/06/P397, and the institutional
research plan No. AV0Z10300504



1 Introduction

We propose two basic subroutines which implement selected large-scale nonlinear pro-
gramming algorithms. The double-precision FORTRAN 77 subroutines PIND, PNUL are
designed to find a close approximation to a local minimum of a general twice continuously
differentiable function F : Rn → R under equality constraints

ci(x) = 0, 1 ≤ i ≤ nc.

Here x ∈ Rn is a vector of n variables and ci : Rn → R, 1 ≤ i ≤ nc ≤ n, are twice
continuously differentiable functions. Subroutines PIND, PNUL are based on the inexact
discrete Newton method applied to nonlinear KKT equations. Subroutine PIND uses the
indefinitely preconditioned conjugate gradient method for solving the indefinite linear
KKT system [2], [3]. Subroutine PNUL uses null-space transformations and the standard
conjugate gradient method applied to a reduced system [1], [3].

To simplify the user’s work, additional easy-to-use subroutines are added. These sub-
routines call general subroutines PIND, PNUL:

PINDU,PNULU – optimization with general equality constraints.

Each subroutine contains a description of formal parameters and extensive comments.
Moreover, text files PIND.TXT, PNUL.TXT containing a detailed description of all important
subroutines (including indications of required storage) are added. Finally, test programs
TINDU, TNULU containing sets of test problems are included. These test programs serve
as examples for using the subroutines, verify their correctness and demonstrate their
efficiency.

2 Inexact discrete Newton methods for equality constrained non-

linear programming problems

Consider a general twice continuously differentiable function F : Rn → R and a twice
continuously differentiable mapping c : Rn → Rnc and assume that the Hessian matrix
of F and the Jacobian matrix of c are both sparse. In this case, discrete versions of the
Newton method can be efficiently used for seeking a local minimum of F on the manifold
defined by equality constraints c(x) = 0. The sparsity pattern of the Hessian matrix (only
the upper part) is stored in the standard compressed row format using arrays IH and JH.
For example, if the Hessian matrix has the pattern

G =

⎡
⎢⎢⎢⎢⎣

∗ ∗ ∗ 0 ∗
∗ ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗
0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗

⎤
⎥⎥⎥⎥⎦

(asterisks denote nonzero elements), then arrays IH and JH contain elements

IH =
[

1 5 7 9 10 11
]
, JH =

[
1 2 3 5 2 4 3 5 4 5

]
,

1



i.e., IH contains pointers of the diagonal elements in the upper part of the Hessian matrix
and JH contains column indices of the nonzero elements stored. Note that IH has n + 1
elements and the last element is equal to m+1, where m is the number of elements stored.

The sparsity pattern of the Jacobian matrix is stored in the standard compressed row
format using arrays ICG and JCG. For example, if the Jacobian matrix has the pattern

J =

⎡
⎢⎢⎢⎢⎣

∗ ∗ 0 ∗
∗ ∗ ∗ 0
∗ 0 0 ∗
0 ∗ ∗ 0
∗ 0 ∗ 0

⎤
⎥⎥⎥⎥⎦

(asterisks denote nonzero elements) then arrays ICG and JCG contain elements

ICG =
[

1 4 7 9 11 13
]
, JCG =

[
1 2 4 1 2 3 1 4 2 3 1 3

]
,

i.e., ICG contains pointers of the first elements in rows of the Jacobian matrix and JCG

contains column indices of the nonzero elements. Note that ICG has nc + 1 elements and
the last element is equal to mc + 1, where mc is the number of nonzero elements.

Applying the Newton method to the system

∇F (x) + A(x)u = 0,

c(x) = 0

of n + nc nonlinear equations for unknown vectors x ∈ Rn and u ∈ Rnc (first-order
necessary conditions), where A(x) is the Jacobian matrix of c(x), we obtain the iterative
process

xk+1 = xk + αkd
x
k,

uk+1 = uk + αkd
u
k ,

where dx
k, du

k are direction vectors obtained by solving the linear KKT system

[
G(xk, uk) A(xk)
A(xk)

T 0

] [
dx

k

du
k

]
= −

[
g(xk, uk)

c(xk)

]
, (1)

and αk > 0 is a scalar step-size. Here

g(x, u) = ∇F (x) +

m∑
i=1

ui∇ci(x), G(x, u) = ∇2F (x) +

m∑
i=1

ui∇2ci(x)

is the gradient and the Hessian matrix of the Lagrangian function L(x, u) = F (x)+uT c(x),
respectively.

Various penalty functions can be used for obtaining the step-size αk. We use the
augmented Lagrangian function

Pk(α) = F (xk + αdx
k) + (uk + du

k)
T c(xk + αdx

k) +
σ

2
‖c(xk + αdx

k)‖2 (2)

in our subroutines, where σ ≥ 0 is a penalty parameter (parameter RPF1 in subroutines
PIND and PNUL). It can be shown (see [2]) that if system (1) is solved in such a way

2



that ‖Gkd
x
k + Akd

u
k + gk‖ ≤ ωk‖gk‖ and ‖AT

k dx
k + ck‖ ≤ ωk‖ck‖ with 0 < ωk < 1 and

if σ > −(dx
k)

T Gkd
x
k/ ((1 − ωk)‖ck‖), then P ′

k(0) (the first order derivative of Pk(α) at
α = 0) is negative so that Pk(α) decreases in the direction dx

k. By our experience, it is
not advantageous to recompute σ in every iteration. A more efficient way is to use a
constant value σ ≥ 0 and replace Gk by a diagonal positive definite matrix Dk (restart)
if P ′

k(0) ≥ 0. Using this Dk for the construction of an indefinite preconditioner (see
Section 2.1) we obtain the exact solution of (1) in the first iteration of an inner Krylov-
subspace method and, moreover, (dx

k)
T Dkd

x
k > 0. Thus P ′

k(0) < 0 holds for any value
σ ≥ 0. This procedure allows us to choose sufficiently small values of σ, which decreases
the Maratos-like effects (step-size reduction) considerably. Assuming P ′

k(0) < 0, the step-
size αk is chosen in such a way that it is the first member of the sequence αj

k, j ∈ N ,
where α1

k = 1 and βαj
k ≤ αj+1

k ≤ βαj
k with 0 < β ≤ β < 1, satisfying

P (αk) − P (0) ≤ ε1αkP
′
k(0)

with the line search parameter 0 < ε1 < 1/2 (parameter TOLS in subroutines PIND and
PNUL). We use the values β = 0.1 and β = 0.9 in our subroutines. The value αj+1

k

can be chosen either by a bisection (MES = 1) or by a two-point quadratic interpolation
(MES = 2) or by a three-point quadratic interpolation (MES = 3) or by a three-point cubic
interpolation (MES = 4) (MES is a parameter of subroutines PIND and PNUL).

To simplify the description of individual methods for computing direction vectors, we
omit the outer index k and denote the inner index by i. Thus the linear KKT system (1)
can be written in the form

Kd =

[
B A
AT 0

] [
dx

du

]
=

[
bx

bu

]
= b, (3)

where B is an approximation of G(x, u) computed by using differences of gradients of the
Lagrangian function. In this case, the method based on graph coloring problem described
in [4] is used.

2.1 Methods utilizing indefinite preconditioners

In subroutine PIND, directions dx and du are computed directly from linear KKT system
(3) by the preconditioned conjugate gradient method with the indefinite preconditioner

C =

[
D A
AT 0

]
(4)

investigated in [2]. Here D is a positive definite diagonal matrix derived from the diagonal
of B. Multiplication by C−1 can be expressed in the form

C−1r =

[
D−1 − D−1A(AT D−1A)−1AT D−1 D−1A(AT D−1A)−1

(AT D−1A)−1AT D−1 −(AT D−1A)−1

] [
rx

ru

]

=

[
D−1(rx − Atu)

tu

]
, tu = (AT D−1A)−1(AT D−1rx − ru). (5)

More precisely, we set d1 = 0, r1 = b,

tu1 = (AT D−1A)−1(AT D−1rx
1 − ru

1 ), tx1 = D−1(rx
1 − Atu1),

3



p1 = t1, and for i = 1, 2, 3, . . . we proceed in the following way. If ‖rx
i ‖ ≤ ω‖bx‖ and

‖ru
i ‖ ≤ ω‖bu‖, where ω is a precision used, we set d = di and terminate the computation.

Otherwise compute

qi = Kpi, αi = rT
i ti/p

T
i qi,

di+1 = di + αipi, ri+1 = ri − αiqi,

tui+1 = (AT D−1A)−1(AT D−1rx
i+1 − ru

i+1),

txi+1 = D−1(rx
i+1 − Atui+1),

βi = rT
i+1ti+1/r

T
i ti, pi+1 = ti+1 + βipi.

In these relations, we use vectors

r =

[
rx

ru

]
, t =

[
tx

tu

]
.

In the above algorithm, a multiplication by the matrix (AT D−1A)−1 is used. This
matrix is not computed explicitly, but the sparse Choleski decomposition is used instead.
Unfortunately, matrix AT D−1A can be dense if A has dense rows. To eliminate this
situation, we assume that AT = [AT

s , AT
d ] and D = diag(Ds, Dd), where AT

s D−1
s As is

sparse and Ad consists of dense rows. Then

(AT D−1A)−1 = (AT
s D−1

s As + AT
d D−1

d Ad)
−1

= (AT
s D−1

s As)
−1 − (AT

s D−1
s As)

−1AT
d M−1

d Ad(A
T
s D−1

s As)
−1,

where
Md = Dd + Ad(A

T
s D−1

s As)
−1AT

d

is a (low-dimensional) dense matrix. Again the sparse Choleski decomposition is used
instead of (AT

s D−1
s As)

−1. To realize this elimination effectively, we need to define the
maximum number of dense rows (parameter MD in subroutine PIND) and the maximum
number of elements in sparse rows (parameter MDE in subroutine PIND).

2.2 Methods based on null-space transformation

Consider the unique representation dx = Zdz + D−1Ada, where

dz = (ZT DZ)−1ZT Ddx, da = (AT D−1A)−1AT dx

and where Z is a matrix whose columns form an orthogonal basis in the subspace of vectors
v ∈ Rn satisfying the equation AT v = 0 (thus ZT A = 0). Using the second equation in
(3), we get da = (AT D−1A)−1bu and the first one implies BZdz = bx − BD−1Ada − Adu,
which after premultiplying by ZT gives

ZT BZdz = bz , (6)

where bz = ZT (bx−BD−1Ada). Thus dz can be obtained by the conjugate gradient method
with the preconditioner ZT DZ applied to equation (6). Unfortunately, the matrix Z is
not usually known (its computation is time-consuming and difficult for large sparse A

4



because of fill-in). For this reason, we use a modification proposed in [1]. In subroutine
PNUL, the conjugate gradient iterations are modified in such a way that they use vectors
d̃ = Zdz, t̃ = Ztz, p̃ = Zpz and vectors r̃, q̃ such that rz = ZT r̃, qz = ZT q̃. After this
transformation, the multiplication tz = (ZTDZ)−1rz can be replaced by the formula

t̃ = Z(ZT DZ)−1ZT r̃ = (D−1 − D−1A(AT D−1A)−1AT D−1)r̃

so that the matrix Z need not be used explicitly. Since d̃ does not influence formulas in
conjugate gradient iterations directly, we can use dx = d̃ + D−1Ada instead of d̃. Since du

cannot be obtained from conjugate gradient iterations, it has to be estimated in another
way. The most natural choice is the weighted least-square minimization of the total
residual r̃ − Adu. This choice leads to the formula du = (AT D−1A)−1AT D−1r̃.

The above considerations form a basis for an efficient preconditioned conjugate gradient
algorithm. More precisely, we set dx

1 = D−1A(AT D−1A)−1bu, r̃1 = bx − Bdx
1 , du

1 =
(AT D−1A)−1AT D−1r̃1, t̃1 = D−1(r̃1 − Adu

1), γ = r̃T
1 t̃1, p̃1 = t̃1 and for i = 1, 2, 3, . . . we

proceed in the following way. If r̃T
i t̃i ≤ ωγ, where ω is a precision used, we set dx = dx

i ,
du = du

i and terminate the computation. Otherwise compute

q̃i = Bp̃i, αi = r̃T
i t̃i/p̃

T
i q̃i,

dx
i+1 = dx

i + αip̃i, r̃i+1 = r̃i − αiq̃i,

du
i+1 = (AT D−1A)−1AT D−1r̃i+1,

t̃i+1 = D−1(r̃i+1 − Adu
i+1),

βi = r̃T
i+1t̃i+1/r̃

T
i t̃i, p̃i+1 = t̃i+1 + βip̃i.

In these computations, a multiplication by the matrix (AT D−1A)−1 is used again. Thus
we proceed in the same way as in Section 2.1 if A has dense rows (subroutine PNUL also
uses parameters MD and MDE) .

3 Description of subroutines

In this section we describe easy-to-use subroutines PINDU, PNULU which can be called from
the user’s program. In the description of formal parameters we introduce a type of the
argument denoted by two letters. The first letter is either I for integer arguments or R for
double-precision real arguments. The second letter specifies whether the argument must
have a value defined on the entry to the subroutine (I), whether it is a value which will
be returned (O), or both (U), or whether it is an auxiliary value (A). Besides the formal
parameters, we use a COMMON /STAT/ block containing statistical information. This block,
used in each subroutine, has the following form:

COMMON /STAT/ NRES,NDEC,NIN,NIT,NFV,NFG,NFH

Its elements have the following meanings:
Element Type Significance

NRES IO Number of restarts.

NDEC IO Number of matrix decompositions.

NIN IO Number of inner iterations (for solving linear systems).

5



NIT IO Number of iterations.

NFV IO Number of function evaluations.

NFG IO Number of gradient evaluations.

NFH IO Number of Hessian evaluations.

Easy-to-use subroutines are called by the following statements:

CALL PINDU(NF,NC,X,IH,JH,CF,ICG,JCG,IPAR,RPAR,F,GMAX,CMAX,IPRNT,ITERM)
CALL PNULU(NF,NC,X,IH,JH,CF,ICG,JCG,IPAR,RPAR,F,GMAX,CMAX,IPRNT,ITERM)

Their arguments have the following meanings:

Argument Type Significance

NF II Number of variables of the objective.

NC II Number of constraints.

X(NF) RU On input, vector with the initial estimate to the solution. On output, the
approximation to the minimum.

IH(NF+1) IA Pointers of the diagonal elements in the upper part of the Hessian matrix.

JH(NH) IA Column indices of the nonzero elements and additional working space for
the Choleski decomposition of the Hessian matrix.

CF(NC+1) RA Vector containing values of constraint functions (significant only if NC > 0).

ICG(NC+1) IA Pointers of the first elements in rows of the constraint Jacobian matrix.

JCG(MC) IA Column indices of nonzero elements of the constraint Jacobian matrix.

IPAR(7) IA Integer parameters (see Table 1).

RPAR(5) RA Real parameters (see Table 1).

F RO Value of the objective function at the solution X.

GMAX RO Maximum absolute value of a particular derivative of the Lagrangian func-
tion.

CMAX RO Maximum constraint violation.

IPRNT II Print specification:

IPRNT = 0: print is suppressed,
IPRNT = 1: basic print of final results,
IPRNT = −1: extended print of final results,
IPRNT = 2: basic print of intermediate and final results,
IPRNT = −2: extended print of intermediate and final results.

ITERM IU Variable that indicates the cause of termination:

ITERM = 1: if ‖X−Xold‖ was less than or equal to TOLX in two subsequent
iterations,

ITERM = 3: if F is less than or equal to TOLB,
ITERM = 4: if GMAX is less than or equal to TOLG,
ITERM = 11: if NIT exceeded MIT,
ITERM = 12: if NFV exceeded MFV,
ITERM = 13: if NFG exceeded MFG,

6



ITERM < 0: if the method failed.

Parameter PIND PNUL Parameter PIND PNUL

IPAR(1) MIT MIT RPAR(1) XMAX XMAX

IPAR(2) MFV MFV RPAR(2) TOLX TOLX

IPAR(3) MFG MFG RPAR(3) TOLC TOLC

IPAR(4) MOS5 MOS5 RPAR(4) TOLG TOLG

IPAR(5) MD MD RPAR(5) RPF1 RPF1

IPAR(6) MDE MDE

IPAR(7) IFIL IFIL

Table 1: Integer and real parameters

The integer and real parameters listed in Table 1 have the following meanings:

Argument Type Significance

MIT II Maximum number of iterations; the choice MIT = 0 causes that the default
value MIT = 1000 will be taken.

MFV II Maximum number of function evaluations; the choice MFV = 0 causes that
the default value MFV = 1000 will be taken.

MFG II Maximum number of gradient evaluations; the choice MFG = 0 causes that
the default value MFG = 10000 will be taken.

MOS5 II Choice of preconditioning strategy:

MOS5 < 0: preconditioning by the constraint preconditioner with incom-
plete Gill-Murray decomposition,

MOS5 = 1: preconditioning by the constraint preconditoner with com-
plete Gill-Murray decomposition,

MOS5 = 2: preconditioning is not used.
The choice MOS5 = 0 causes that the default value MOS5 = 1 will be taken.

MD II Maximum number of the dense rows; the choice MD = 0 causes that the
default value MD = 10 will be taken.

MDE II Maximum number of nonzero elements in sparse rows; the choice MDE = 0
causes that the default value MDE = 50 will be taken.

XMAX RI Maximum stepsize; the choice XMAX = 0 causes that the default value
XMAX = 103 will be taken.

TOLX RI Tolerance for the change of the coordinate vector X; the choice TOLX = 0
causes that the default value TOLX = 10−12 will be taken.

TOLC RI Tolerance for the constraint violation; the choice TOLC = 0 causes that the
default value TOLC = 10−6 will be taken.

TOLG RI Tolerance for the Lagrangian function gradient; the choice TOLG = 0 causes
that the default value TOLG = 10−6 will be taken.

RPF1 RI Value of the penalty parameter in the merit function; the choice RPF = 0
causes that the default value RPF = 10−4 will be taken.

The subroutines PINDU,PNULU require the user supplied subroutines OBJ,DOBJ that define the
objective function and its gradient and subroutines CON,DCON that define constraint functions
and their gradients. These subroutines have the form

7



SUBROUTINE OBJ(NF,X,F)
SUBROUTINE DOBJ(NF,X,G)
SUBROUTINE CON(NF,KC,X,FC)
SUBROUTINE DCON(NF,KC,X,GC)

The arguments of the user supplied subroutines have the following meanings:

Argument Type Significance

NF II Number of variables of the objective function.

KC II Index of the constraint function.

X(NF) RI An estimate to the solution.

F RO Value of the objective function at the point X.

FC RO Value of the KC-th constraint function at the point X.

G(NF) RO Gradient of the objective function at the point X.

GC(NF) RO Gradient of the KC-th constraint function at the point X.

4 Verification of subroutines

In this section we report the results obtained by using test programs TINDU, TNULU which serve
for demonstration, verification and testing of subroutines PINDU, PNULU. These results are listed
in the following tables (rows corresponding to individual test problems contain the number of
iterations NIT, the number of function evaluations NFV, the number of gradient evaluations NFG,
the value of the termination criterion constraint C, the value of the termination criterion G and
the cause of termination ITERM). All computations reported were performed on a Pentium PC
computer, under the Windows XP system using the Digital Visual Fortran (Version 6) compiler,
in double-precision arithmetic.

8



Problem NIT NFV NFG C G ITERM

1 9 10 60 0.177636E-14 0.202238E-11 4
2 12 13 182 0.425254E-10 0.621097E-07 4
3 10 11 66 0.172595E-11 0.842788E-08 4
4 16 19 102 0.141707E-10 0.405805E-09 4
5 18 19 190 0.642577E-08 0.311534E-06 4
6 18 19 266 0.125855E-11 0.711327E-08 4
7 9 11 70 0.118305E-11 0.221512E-11 4
8 38 51 273 0.444089E-15 0.111759E-07 4
9 28 70 203 0.134587E-11 0.125862E-08 4
10 12 15 78 0.140633E-07 0.486837E-07 4
11 9 10 60 0.261324E-11 0.299467E-11 4
12 7 8 56 0.143574E-11 0.288525E-10 4
13 15 17 128 0.177636E-14 0.641856E-06 4
14 12 13 91 0.229161E-07 0.274480E-07 4
15 19 35 120 0.550671E-13 0.127818E-11 4
16 8 9 45 0.679852E-09 0.608118E-07 4
17 9 10 50 0.222045E-15 0.177636E-14 4
18 10 13 55 0.368464E-08 0.809397E-06 4

Σ 259 353 2095 TIME = 00.84

Table 2: Results obtained by program TINDU

Problem NIT NFV NFG C G ITERM

1 6 7 42 0.536016E-12 0.763704E-08 4
2 11 12 168 0.351663E-13 0.478977E-10 4
3 11 12 72 0.315126E-11 0.434427E-09 4
4 20 21 126 0.285079E-10 0.555964E-08 4
5 15 16 160 0.626330E-08 0.199604E-06 4
6 16 19 238 0.524025E-13 0.320156E-09 4
7 11 13 84 0.652065E-10 0.358497E-09 4
8 40 54 287 0.236033E-12 0.569894E-06 4
9 20 37 147 0.323282E-06 0.393792E-06 4
10 13 20 84 0.120160E-06 0.580382E-06 4
11 7 8 48 0.838722E-09 0.263766E-09 4
12 6 7 49 0.303063E-07 0.569950E-06 4
13 15 25 128 0.278610E-07 0.977278E-06 4
14 13 14 98 0.529941E-10 0.346411E-10 4
15 19 22 120 0.124682E-07 0.429103E-06 4
16 7 8 40 0.110654E-10 0.142114E-10 4
17 8 9 45 0.121537E-12 0.166850E-11 4
18 11 17 60 0.753158E-07 0.768419E-06 4

Σ 249 321 1996 TIME = 00.79

Table 3: Results obtained by program TNULU

9



References

[1] Gould N.I.M, Hribar M.E., Nocedal J.: On the solution of equality constrained quadratic
programming problems arising in optimization. Technical Report RAL-TR-1998-069,
Rutherford Appleton Laboratory, 1998.

[2] Lukšan L., Vlček J.: Indefinitely Preconditioned Inexact Newton Method for Large Sparse
Equality Constrained Nonlinear Programming Problems. Numerical Linear Algebra with
Applications 5 (1998) 219-247.

[3] Lukšan L., Vlček J.: Numerical experience with iterative methods for equality constrained
nonlinear programming problems. Optimization Methods and Software 16 (2001) 257-287.

[4] Tůma M.: A note on direct methods for approximations of sparse Hessian matrices. Aplikace
Matematiky 33 (1988) 171-176.

10


