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1 Introduction and Motivation

The notion of entropy plays on important role in the standard information theory and statistical
decision functions theory based on Kolmogorov axiomatic probability theory. In this paper, our aim
will be to suggest, if possible, an analogy of entropy within the framework of possibilistic measures
and to analyze, whether the modified notion can play a role similar to that one played by the standard
notion of entropy. First of all, let us sketch, very briefly, the probabilistic notion of entropy, restricting
ourselves to the case of probabilities over finite spaces of elementary random events, as this approach
seems to be quite sufficient for the purposes of this introductory section.

Let Ω={ω1, ω2, . . . , ωn} be a finite set. An n-tuple P =〈p(ω1), p(ω2), . . . , p(ωn)〉, p(ωi) ∈ [0, 1] for
each i = 1, . . . , n, is called a probabilistic distribution on Ω, if

∑n
i=1 p(ωi) = 1 holds, we will write pi

for p(ωi). For each A ⊂ Ω, the probability P∗(A) of A, induced by P, is defined by P∗(A) =
∑

ω∈A p(ω).
The (total amount of) information I(P ) contained in the probabilistic distribution P on Ω, and also
called the entropy of P, is the real number defined by

I(P ) =
n∑

i=1

(lg(1/pi))pi = −
n∑

i=1

(lg pi)pi, (1.1)

where lg denotes the binary logarithm (logarithm to the base 2) and, for pi = 0, the value pi lg pi is
taken as 0 by convention.

The intuition behind may be as follows. The amount of information obtained by a random sample
giving ωi, i.e., the result with probability pi, is quantified by the real number lg(1/pi). It is a decreasing
function of pi, hence, the smaller is the probability of the obtained results (the more surprising is this
result, we could say), the greater is the amount of information obtained. So, the total amount of
information or the entropy I(P ) related to the probability distribution P = 〈p1, . . . , pn〉 is then
defined by the expected value of the function lg(1/p) with respect to the probability distribution P.

The particular choice of the function lg(1/p) is motivated by the well-known fact of elementary
information theory according to which for the statistically independent product of two or more proba-
bilistic distributions on Ω the entropy of the resulting probabilistic distribution on the corresponding
Cartesian product Ωn is the sum of the entropies of the particular probabilistic distributions on Ω.
More formally, if n = 2 and P i = 〈pi

1, . . . , p
i
n〉, i = 1, 2, are probabilistic distribution on Ω, and if P 12,

Ω × Ω → [0, 1] is defined by p12
i,j = p12(ωi, ωj) = p1(ωi)p2(ωj) = p1

i p
2
j , then P 12 obviously defines a

probability distribution and I(P 12) = I(P 1) + I(P 2).
However, because of our intention to modify the notion of entropy to the case when the phenomenon

of uncertainty is quantified and processed by the tools offered by possibilistic measures (real-valued
as well as lattice-valued ones) also other decreasing functions of the probability value are worth being
considered, let us take the function 1− p.

It is a well-known fact of elementary mathematical analysis and information theory that I(P )
takes its maximum value lg(n) iff P is the uniform probability distribution P0 = 〈1/n, 1/n, . . . , 1/n〉.
Interesting enough, the same is the case for the entropy I∗ defined by

I∗(P ) =
n∑

i=1

(1− pi)pi = 1−
n∑

i=1

p2
i (1.2)

when the maximum value 1 − (1/n) is also taken iff P = P0. Indeed, given P = 〈p1, . . . , pn〉 and
setting εi = (1/n)− pi for each i = 1, . . . , n, so that

∑n
i=1 εi = 0, we obtain that

n∑

i=1

p2
i =

n∑

i=1

((1/n)− εi)2 =
n∑

i=1

[(1/n)2 − (2/n)εi + ε2
i ] = (1/n) +

n∑

i=1

ε2
i ≥ 1/n, (1.3)

so that I∗(P ) ≤ 1− (1/n) follows.
As can be easily seen, both I and I∗ take their minimal value 0 iff P = 〈p1, . . . , pn〉 is “degenerated”

in the sense that pi = 1 for some i ≤ n, hence, pj = 0 for every j 6= i. Indeed, if pi > 0, pj > 0 holds
for i 6= j, then lg(1/pi) > 0, lg(1/pj) > 0 follows, so that I(P ) ≥ pi lg(1/pi) + pj lg(1/pj) > 0 results.
Moreover, in this case

∑n
i=1 p2

i <
∑n

i=1 pi = 1 holds, so that I∗(P ) = 1−∑n
i=1 p2

i > 0 is valid.
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2 Laplace Principle and Maximum Entropy

The uniform probability distribution P0 may enter the scene also when applying the so called Laplace
principle to statistical decision making under uncertainty. In its most general philosophical setting
this principle declares that two or more alternative solutions (to a decision problem, say) can be taken
as equivalent (equally good, acceptable,. . . ) with respect to the criterion under consideration (profit
or loss resulting when applying this or that solution), if we have not at hand any argument in favor
of the hypothesis that one of these alternatives is better than the other one(s). Hence, considering a
system with possible internal states ω1, ω2, . . . , ωn, just one ωi being the actual one, supposing that
this actual internal state results from a random sample (taken by God or the Nature, say), but not
having at hand any arguments in favor of the idea that one state is more probable than the other ones,
the Laplace principle brings us to the conclusion that P0 should be taken as our hypothesis concerning
the apriori probabilities of particular states. This approach is often applied in the so called Bayesian
statistical decision functions when some apriori probabilistic distribution on states is a necessary part
of the mathematical model, but we have no idea how to specify this distribution.

The choice of P0 = 〈1/n, . . . , 1/n〉 as the apriori probability distribution on Ω is rational from the
following minimax or worst-case point of view. Consider the most pessimistic situation when we have
no relevant information (neither a statistical one) enabling to specify, at least partially, the actual
internal state, but we still have to take a decision which of ω1, ω2, . . . , ωn is the case. Let us also
assume that the loss λ(ωi, ωj), suffered when ωı̈ is the actual internal state and ωj is our decision, is
defined in the most simple way: λ(ωi, ωj) = 0, if i = j, λ(ωi, ωj) = 1, if ı̈ 6= j. Our decision making will
consist in the random sampling from Ω using a probability distribution P = 〈p1, p2, . . . , pn〉, hence, the
expected loss suffered when ωi is the actual state is given by the value P∗({ω ∈ Ω : ω 6= ωi}) = 1− pi.
Applying the worst-case principle we take the value maxn

i=1{1− pi} = 1−minn
i=1 pi as the minimax

quality criterion of the decision procedure based on P. This value takes the optimal, i.e., the minimum
value just when P = P0, the distribution with the maximum entropy value I(P ) as well as I∗(P ).

3 Real-Valued Possibilistic Measures
and Entropies

In what follows, we will investigate an alternative model of uncertainty quantification and processing
based on possibilistic distributions and measures. In particular, we will seek for analogies of the
notions of entropy, Laplace principle and uniform probability distribution, if any, analyzing in more
detail their properties.

Let Ω be a nonempty set. A mapping π : Ω → [0, 1] is called (real-valued) possibilistic distribution
on Ω, if

∨
ω∈Ω π(ω) = 1 holds, here and below

∨
,∨(

∧
,∧, resp.) denotes the supremum (infimum,

resp.) operation defined in [0, 1] by the standard linear ordering ≤ . The (real-valued) possibilistic
measure induced by π is the mapping Π : P(Ω) → [0, 1] such that Π(A) =

∨
ω∈A π(ω) for each

∅ 6= A ⊂ Ω,Π(∅) = 0 by convention. Given a mapping f : Ω → [0, 1], the expected value Ef(·)dΠ of
f w.r.t. Π and w.r.to the t-norm t = ∧ (infimum) on [0, 1]× [0, 1] is defined by

Ef(·)dΠ =
∨

t∈[0,1]

[t ∧Π({ω ∈ Ω : f(ω) ≥ t})]. (3.1)

This is a particular case of the Sugeno integral analyzed in [2] under a mode general setting with
lattice-valued partial possibilistic measures and mappings f defined on some proper subsystems of
P(Ω) and for general t-norms on [0, 1] × [0, 1]. According to the results obtained in [2] (cf. formula
(5), p. 229), in our particular case the relation

Ef(·)dΠ =
∨

ω∈Ω

[f(ω) ∧ π(ω)] (3.2)

holds. Indeed,

2



∨

ω∈Ω

(f(ω) ∧ π(ω)) =
∨

t∈[0,1]

∨

ω∈Ω,f(ω)=t

(f(ω) ∧ π(ω)) =

=
∨

t∈[0,1]

[t ∧Π({ω ∈ Ω : f(ω) = t})] =

=
∨

t∈[0,1]

[t ∧Π({ω ∈ Ω : f(ω) ≥ t})] = Ef(·)dΠ. (3.3)

In the following definition we take an inspiration from the probabilitic entropy I∗ introduced above
keeping also the symbol I∗, as perhaps no misunderstanding menaces.

Definition 3.1 Let π be a real-valued possibilistic distribution on a nonempty space Ω. The possi-
bilistic entropy I∗(π) of π is the real number from [0, 1] defined by

I∗(π) = E(1− π(·))dΠ. (3.4)

Lemma 3.1 Let π be as in Definition 3.1. Then I∗(π) = 0 iff π takes only the values 0 or 1.

Proof. If π(ω) ∈ {0, 1} for every ω ∈ Ω, then either π(ω) = 0 or 1 − π(ω) = 0 for every ω ∈ Ω, so
that, due to (3.2), I∗(π) =

∨
ω∈Ω((1 − π(ω)) ∧ π(ω)) = 0 follows. If 0 < π(ω) < 1 holds for some

ω ∈ Ω, then 0 < 1− π(ω) < 1 and 0 < (1− π(ω)) ∧ π(ω) ≤ I∗(π) follows and the assertion is proved.
2

A probabilistic (possibilistic, resp.) distribution on Ω is called positive, if p(ω) > 0(π(ω) > 0,
resp.) holds for each ω ∈ Ω. Supposing that Ω is finite or countable, each non-positive probabilistic
distribution on Ω can be replaced, without any loss of generality, by its reduction to the subset
Ω0 = {ω ∈ Ω : p(ω) > 0}. For possibilistic distribution such a reduction is possible for each Ω.
Consequently, the only positive probabilistic distribution P0 for which I(P0) = I∗(P0) = 0 holds is
the case when Ω = {ω0}, so that p(ω0) = 1, and the only positive possibilistic distribution π0 on Ω
with I∗(π0) = 0 is the unit or maximum one with π0(ω) = 1 for every ω ∈ Ω.

In the probabilistic case the standard intuition behind is easy to be accepted. If p(ω) = 1 for some
ω0 ∈ Ω, then we can predict “with the probability one” that ω0 will be the result when making a
random sample from the corresponding distribution, so that no new information is achieved. When
considering a possibilistic distribution with values only 0 or 1, the interpretation behind may read
as follows. If π(ωa0) = 1, we have absolutely no argument against the idea or explanation that ωi0

will occur, so that the actual appearance of this ωi0 says to us nothing new about the world and
the system under consideration. Hence, no new information is obtained just as it is the case of
the random sample giving the result the apriori probability of which is just one. Contrary to this
case, if the possibility degree π(ω0) is zero, we may take it as the case when we have at hand a
sufficient amount of data or arguments to deduce, beyond any doubt, that ωi0 cannot occur. Finally,
if 0 < π(ωi0) < 1 holds, there are some nonnegligible arguments in favor of the idea that ωi0 occurs,
but there are also (different) nonnegligible arguments against this expectation. Hence, none of the
two alternatives can be deduced beyond any doubts and the actual appearance of ωi0 can be taken
as a new piece of information enriching our knowledge (reducing our uncertainty) as far as the world
and system under consideration are concerned.

As (1−x)∧x ≤ 1/2 holds for each 0 ≤ x ≤ 1, the equality being the case when x = 1/2, we obtain
easily that

I∗(π) = E(1− π(·))dΠ =
∨

ω∈Ω

((1− π(ω)) ∧ π(ω)) ≤ 1/2 (3.5)

holds for every real-valued possibilistic distribution π on Ω. If there exists ω0 ∈ Ω such that π(ω0) = 1/2
holds, then I∗(π) = 1/2 follows, this condition being also the necessary one when Ω is finite. It
would be perhaps more elegant to define the possibilistic entropy as a normalized mapping setting
I∗(π) = 2E(1− π(·))dΠ, but let us keep the definition 3.1 as it stands.
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4 Possibilistic Decision Functions and Extremum Entropy
Values

Let us sketch, very briefly, a particular case of possibilistic decision functions proposed and developed
in [7], namely that one with real-valued possibilistic measures and normalized loss functions and with
the infimum operation in the role of t-norm on [0, 1]× [0, 1]. Let S be the set of all states of a system
(solutions to a problem, . . . ) just one state being the actual one (just one solution being the correct
or acceptable one,. . . ). Let D be the set of all possible decisions, let E be the set of possible empirical
values (data, observations,. . . ), let δ : E → D be a decision function, let λ : S×D → [0, 1] be the loss
function, so that λ(s, d) defines the loss suffered by the subject (a manager who controls the system
under consideration, say) when s ∈ S is the actual state of the system and d ∈ D is the decision taken
by the subject. Hence, if e ∈ E is the empirical value being at the subject’s disposal, and δ is the
decision function applied, the suffered loss reads as λ(s, δ(e)) ∈ [0, 1].

The phenomenon of uncertainty enters our model when supposing that the empirical value e ∈ E
and the actual state s are the values of variables η and σ, both being charged by uncertainty, this
time quantified and processed by possibilistic tools. Hence, let Ω be a nonempty space and let
π be a possibilistic distribution on Ω, so that Π(A) =

∨
ω∈A π(ω) defines, for each A ⊂ Ω, the

possibilistic measure induced by π on P(Ω). Let σ : Ω → S, η : Ω → E be mappings with the
intuition behind as above, obviously, under our setting, the values Π({ω ∈ Ω : σ(ω) ∈ S1}) and
Π({ω ∈ Ω : η(ω) ∈ E1}) are defined for every S1 ⊂ S and E1 ⊂ E. The possibilistic distribution πS

on S, defined by πS(s) = Π({ω ∈ Ω : σ(ω) = s}) for each s ∈ S, will be called the apriori possibilistic
distribution on S.

Within the formal framework just introduced, the loss suffered when σ(ω) is the actual state,
η(ω) is the empirical value being at the disposal, and δ is the applied decision function, converts into
the function λ(σ(ω), δ(η(ω))), taking Ω into [0, 1], and the subject’s aim is to minimize this loss by
an appropriate choice of the decision function δ. As can be easily seen, supposing that the variables
σ and η are fixed, the best decision function δ0 : E → D would be such one with the inequality
λ(σ(ω), δ0(η(ω))) ≤ λ(σ(ω), δ(η(ω))) holding for each δ : E → D and each ω ∈ Ω, however, such δ0

does not exists up to the most trivial cases, cf. [7], e.g. Hence, some weaker demands must be imposed
on the optimality of the chosen decision function.

The well-known Bayes principle and the worst-case or minimax principle are the two most often
used alternative approaches how to optimize the decision function δ. According to the Bayes principle
the user’s aim is to minimize the expected value of the loss function λ(σ(ω), δ(η(ω))), hence, processing
the uncertainty by possibilistic tools, to minimize the value

χB
σ (δ) = Eλ(σ(·), δ(η(·)))dΠ =

∨

t∈[0,1]

[t ∧Π({ω ∈ Ω : λ(σ(ω), δ(η(ω))) ≥ t})] =

=
∨

ω∈Ω

[π(ω) ∧ λ(σ(ω), δ(η(ω)))], (4.1)

when applying (3.2). For the worst-case of minimax approach we define, for each s ∈ S, the conditional
expected value of the loss λ(σ(ω), δ(η(ω))) supposing that σ(ω) = s, and we take the supremum of
these values for s ranging over S as the quality criterion of the decision function δ. Hence, we try to
choose δ minimizing the value

χMM (δ) =
∨

s∈S

Eλ(s, δ(η(·)))dΠ =
∨

s∈S

∨

ω∈Ω

[λ(s, δ(η(ω))) ∧ π(ω)] =

=
∨

ω∈Ω

∨

s∈S

[λ(s, δ(η(ω))) ∧ π(ω)] ≥
∨

ω∈Ω

[λ(σ(ω), δ(η(ω))) ∧ π(ω)] =

= χB
σ (δ). (4.2)

So, the well-known and easy to understand inequality between the Bayes and the minimax risk of
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the decision function δ, valid in the case of statistical decision functions, is valid also in the case of
possibilistic decision functions.

Lemma 4.1 Let S = D, let π(ω) ∈ {0, 1} for each ω ∈ Ω, let λ(s, d) = 0, if s = d, λ(s, d) = 1, if s 6= d
hold for each s, d ∈ E(= D). Then χB

σ (δ) = χMM (δ) = 1, if there is ω0 ∈ Ω such that π(ω0) > 0 and
σ(ω0) 6= δ(η(ω0)) holds, χB

σ (δ) = χMM (δ) = 0 otherwise.

Proof. Let ω0 ∈ Ω be such that π(ω0) > 0 (hence, π(ω0) = 1) and σ(ω0) 6= δ(η(ω0)) holds. Then
λ(σ(ω0, δ(η(ω0))) = 1 follows, so that the relation

χB
σ (δ) =

∨

ω∈Ω

[λ(σ(ω), δ(η(ω))) ∧ π(ω)] ≥ λ(σ(ω0), δ(η(ω0))) ∧ π(ω0) =

= 1 ∧ 1 = 1 = χMM (δ) (4.3)

is valid. If σ(ω) = δ(η(ω)) for each ω ∈ Ω such that π(ω) > 0 holds, then obviously 〈(σ(ω), δ(η(ω)))∧
π(ω) = 0 for every ω ∈ Ω, so that χB

σ (δ) = χMM (δ) = ® follows and the assertion is proved. 2

Consequently, if π is a possibilistic distribution on a finite space Ω and if I∗(π) = 0, then χB
σ (δ) =

χMM (δ) = 1 for each apriori possibilistic distribution σ on S and for each decision function δ which
is not absolutely correct, i.e., which decides wrongly for some ω ∈ Ω with π(ω) > 0.

The following alternative variant of Lemma 4.1 seems to be perhaps more close to the intuition
behind the notion of possibilistic degrees and measures.

Lemma 4.2 Let the notations and conditions of Lemma 4.1 hold, but this time with loss function
defined by λ(s, d) = |πS(s) − πS(d)|, let us recall that πS : S → [0, 1] is the apriori possibilistic
distribution on the set S of states. Then χB

σ (δ) = χMM (δ) = 1, if there is ω0 ∈ Ω such that π(ω0) > 0
and πS(σ(ω0)) 6= πS(δ(η(ω0))) holds.

Proof. Again, if π(ω0) > 0, then π(ω0) = 1 holds, so that (4.3) yields that

χB
σ (δ) ≥ λ(σ(ω0), δ(η(ω0))) ∧ π(ω0) = |πS(σ(ω0))− πS(δ(η(ω0)))| (4.4)

holds. As π(ω) ∈ {0, 1} for each ω ∈ Ω, we obtain immediately that Π(A) =
∨

ω∈A π(ω) ∈ {0, 1} is
valid for each A ⊂ Ω, in particular, also πS(s) ∈ {0, 1} for each s ∈ S. Consequently, if πS(s) 6= πS(d)
for some s, d ∈ S (= D), then |πS(s)−πS(d)| = 1 follows. So, χB

σ (δ) = χMM (δ) = 1 and the assertion
is proved. 2

When considering the 0− 1-loss function as in Lemma 4.1, what matters when taking the decision
d = δ(η(ω)) is the identity of this state with the actual state s = σ(ω). We could generalize this
approach when replacing this demand by that of indistinguishability. So, given a general loss function
λ : S ×D(= S) → [0,∞), we could define states s and d as indistinguishable, if λ(s, d) = 0 (including
the case when s = d as a particular one). Such states can be taken as being identical as far as the
quantitative characteristics of qualities of the decision functions under consideration are concerned.
In the possibilistic framework, states s and d can be taken as indistinguishable, if the arguments
(reasons) putting in question that s(d, resp.) is the actual state are the same, in particular, that there
are no such reasons as it is the case when πS(s) = πS(d) = 1. Dually, πS(s) = πS(d) = 0 is the case
when the reasons against s as well as against d are so strong that they exclude ultimately both these
possibilisties. The loss function λ(s, d) defined by |πS(s) − πS(d)| may be taken as an attempt to
formalize this idea more precisely.

An apriori possibilistic distribution πS on S is called S0-almost uniform, where S0 is a fixed
nonempty proper subset of S, if πS(s) = 1/2 for each s ∈ S − S0. Obviously, S0 6= ∅ must hold,
as the mapping πS : S → [0, 1] such that πS(s) = 1/2 for each s ∈ S does not meet the condition
that

∨
s∈S πS(s) = 1. Hence, for each S0-almost uniform apriori possibilistic distribution πS on S the

relation

I∗(πS) =
∨

s∈S

((1− πS(s)) ∧ πS(s)) = 1/2 (4.5)
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holds, so that I∗(πS) takes the maximal possible value for πS ranging over possibilistic distributions
on S. Given a fixed s0 ∈ [0, 1], the value sup{|x − x0| : x ∈ [0, 1]} = |0 − x0| = x0, if x0 ≥ 1/2, this
value being 1− x0 ≥ 1/2, if x0 ≤ 1/2 holds, hence, infx0∈[0,1] supx∈[0,1] |x− x0| = 1/2. So, if πS is an
S0-almost uniform apriori possibilistic distribution on S, then for each ω ∈ Ω such that σ(ω) ∈ S−S0

holds the loss function λ(σ(ω), δ(η(ω))) defined by |πS(σ(ω))−πS(δ(η(ω)))| takes the value 1/2, hence,
for each δ(η(·)) : Ω → S,

∨

ω∈Ω,σ(ω)∈S−S0

λ(σ(ω), δ(η(ω))) = 1/2 (4.6)

holds, so that the apriori possibilistic distribution πS is optimal in the minimax sense on Ω0 = {ω ∈
Ω : σ(ω) ∈ S−S0}, like it is the case of the uniform apriori probability distribution 〈1/n, 1/n, . . . , 1/n〉
on the finite state space S of cardinality n.

It is perhaps worth noting explicitly that for πS on S such that I∗(πS) < 1/2 holds the relation
(4.6) is not valid for no matter which proper subset S0 of S. Indeed, if I∗(πS) = (1/2) − ε holds for
some ε > 0, then πS(s) ≤ (1/2)− ε or πS(s) ≥ (1/2) + ε follows for each s ∈ S, hence,

∨

x∈[0,1]

|x− πS(s)| ≥ (1/2) + ε (4.7)

is the case for each s ∈ S. Consequently,
∨

ω∈Ω,σ(ω)∈S−S0
λ(σ(ω), δ(η(ω))) = (1/2)+ ε is valid for each

∅ 6= S0 ⊂ S, so that πS is not the optimal (in the minimax sense) apriori possibilistic distribution on
S.

5 Independent Products of Real-Valued
Possibilistic Distributions

An important property of the notion of standard probabilistically based entropy function consists in
the fact that the entropy of independent product of two or more probability distributions is equal to the
sum of the entropy values defined by the particular probability distributions. In more detail, let us limit
ourselves to finite spaces Ω1 and Ω2, let pi : Ωi → [0, 1] be a probability distribution on Ωi, i = 1, 2, and
let us define the probability distribution p12 on Ω1 ×Ω2, setting p12(ω1, ω2) = p1(ω1)p2(ω2) for every
〈ω1, ω2〉 ∈ Ω1 × Ω2. For entropy values I(pi) = −∑

ωi∈Ωi
pi(ωi)lg2 pi(ωi) for i = 1, 2, and I(p12) =

−∑
〈ω1,ω2〉∈Ω1×Ω2

p12(ω1, ω2) lg2 p12(ω1, ω2) (with the convention 0 lg2 0 = 0 applied) the relation
I(p12) = I(p1) + I(p2) is valid. Let us prove that for possibilistically defined independent product
π12 of real-valued possibilistic distributions π1, π2 and for entropy function I∗(π) = E(1 − π(·))dΠ
(cf. (3.4)) the maxitive version of the additivity property is valid. The following more or less trivial
assertions of standard mathematical analysis are perhaps worth being stated and proved explicitly.

Lemma 5.1 Let [0, 1] be the unit interval of real numbers equipped by their standard linear ordering
≤, let ∨,

∨
(∧,

∧
, resp.) denote the standard supremum (infimum, resp.) operation in [0, 1]. Then for

each ∅ 6= A ⊂ [0, 1] and each s ∈ [0, 1] the relation

s ∧
(∨

A
)

=
∨

t∈A

(s ∧ t) (5.1)

holds, where
∨

A abbreviates
∨

t∈A t.

Proof. The relation s∧(
∨

A) ≥ s∧t holds for each t ∈ A, so that the inequality s∧(
∨

A) ≥ ∨
t∈A(s∧t)

immediately follows. As far as the inverse inequality is concerned, if s ≥ ∨
A is the case, then

s ∧ (
∨

A) =
∨

A, s ∧ t = t for each t ∈ A, so that
∨

t∈A(s ∧ t) =
∨

A. Finally, s ∧ t ≤ s holds for each
t ∈ A, but if s <

∨
A is the case, then there exists t0 ∈ A such that s < t0 holds, hence, the relation

s ∧ t0 = s =
∨

t∈A(s ∧ t) = s ∧ (
∨

A) easily follows and the assertion is proved. 2
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Lemma 5.2 For each ∅ 6= I ⊂ [0, 1] the inequality
(∧

x∈I

x

)
∧

(
1−

∧

x∈I

x

)
≤

∨

x∈I

(x ∧ (1− x)) (5.2)

holds.

Proof. As 1−∧
x∈I x =

∨
s∈I(1− x) obviously holds, (5.2) reduces to
(∧

x∈I

x

)
∧

(∨

x∈I

(1− x)

)
≤

∨

s∈I

(x ∧ (1− x)) (5.3)

Applying Lemma 5.1 to s =
∧

x∈I x and A = {1− x : x ∈ I}, we obtain that

(∧

x∈I

x

)
∧

(∨

x∈I

(1− x)

)
=

∨

x∈I

((∧

x∈I

x

)
∧ (1− x)

)
≤

≤
∨

x∈I

(x ∧ (1− x)) (5.4)

holds, as
∧

x∈I x ≤ x holds trivially for each x ∈ I. The assertion is proved. 2

Lemma 5.3 For each x, y ∈ [0, 1] such that |x− y| ≤ ε holds, the inequality

K(x, y) = |((1− x) ∧ x)− ((1− y) ∧ y)| ≤ ε (5.5)

holds as well.

Proof. If x, y ≤ 1/2(x, y ≥ 1/2, resp.) is the case, then K(x, y) = |x − y|(K(x, y) = |(1 − x) − (1 −
y)| = |y − x| = |x − y|, resp.) follows, so that K(x, y) ≤ ε holds. Otherwise we may suppose,
without any loss of generality, that x < 1/2 and y > 1/2 is the case, hence, as |x − y| ≤ ε holds,
the inclusions x ∈ (1/2 − ε, 1/2) and y ∈ (1/2, 1/2 + ε) follow. In this case, however, (1 − x) ∧ x = x,
(1− y) ∧ y = 1− y ∈ (1/2− ε, 1/2) holds, so that K(x, y) = |x− (1− y)| ≤ ε results and the assertion
is proved. 2

Let Ω be a nonempty space, let S be a set of (real-valued) possibilistic measures on Ω, i.e., for
each i ∈ S, πi takes Ω into [0, 1] in such a way that

∨
ω∈Ω πi(ω) = 1 holds. Let ΩS denote the space

of all mappings taking S into Ω, hence, for each ωS ∈ ΩS and each i ∈ S, ωS(i) ∈ Ω holds. Let πS be
the mapping taking ΩS into [0, 1] and defined in this way: for each ωS ∈ ΩS ,

πS(ωS) =
∧

t∈S

πi(ωS(i)). (5.6)

Lemma 5.4 The mapping πS defines a (real-valued) possibilistic distribution on ωS .

Proof. As
∨

ω∈Ω πi(ω) = 1 holds for each i ∈ S, there exists, for each i ∈ S and each ε > 0, an
element ω0,i ∈ Ω such that πi(ω0,i) > 1 − ε holds. For ωS

0 ∈ ΩS defined by ωS
0 (i) = ω0,i, (5.6) yields

that πS(ωS
0 ) ≥ 1− ε holds, hence,

∨

ωS∈ΩS

πS(ωS) = 1 (5.7)

follows and the assertion is proved. 2
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The possibilistic distribution πS on ΩS will be called (possibilistically) independent product of
possibilistic distributions πi on Ω with i ranging over S. For each particular possibilistic distribution
πi, i ∈ S, as well as for their product πS , we can define their entropy functions applying (3.1) and
(3.2) and we obtain that

I(πi) =
∨

ω∈Ω

((1− πi(ω)) ∧ πi(ω)), (5.8)

I(πS) =
∨

ωS∈ΩS

((1− πS(ωS)) ∧ πS(ωS)), (5.9)

The following theorem can be taken as a possibilistic variant of the additivity property of statistically
independent products of probability distributions.

Theorem 5.1 Under the notations and conditions introduced above, the relation

I(πS) =
∨

i∈S

I(πi) (5.10)

holds.

Proof. As shown in the proof of Lemma 5.4, for each i0 ∈ S and each ε > 0 there exists ω(i, ε) ∈ Ω
such that πi(ω(i, ε)) > 1 − ε holds. Define, for each ω ∈ Ω, the mapping ωS [i0, ε, ω] : S → Ω in this
way:

ωS [i0, ε, ω](i0) = ω (5.11)

ωS [i0, ε, ω](j) = ω(j, ε) for each j ∈ S, j 6= i0. (5.12)

Consequently,

πS(ωS [i0, ε, ω]) =
∧

j∈S

πj(ωS(i0, ε, ω](j)) =

= πi0(ω) ∧

 ∧

j∈I,j 6=i0

πj(ω(j, ε))


 . (5.13)

Hence, if πi0(ω) ≤ 1 − ε holds, then πS(ωS [i0, ε, ω]) = πi0(ω) follows, as πj(ω(j, ε)) > 1 − ε is valid
for each j ∈ I, j 6= i0. If πi0(ω) > 1− ε is the case, i.e., of πi0(ω) ∈ (1− ε, 1] holds, then (5.13) yields
that also

πS(ωS [i0, ε, ω]) ≥ 1− ε, i.e. πS(ωS [i0, ε, ω]) ∈ [1− ε, 1] (5.14)

holds. So, in both the cases the inequality

|πS(ωS [i0, ε, ω])− πi0(ω)| ≤ ε (5.15)

is valid. Due to Lemma 5.3, also the inequality

K(πS(ωS [i0, ε, ω]), πi0(ω)) =
= ([πS(ωS [i0, ε, ω]) ∧ (1− πS(ωS [i0, ε, ω]))]−
− [πi0(ω) ∧ (1− πi0(ω))]) ≤ ε (5.16)

is valid. Hence, for each i ∈ S and ω ∈ Ω, the value πi(ω) ∧ (1 − πi(ω)) can be approximated, up to
an arbitrarily small difference ε > 0, by the value πS(ωS) ∧ (1 − πS(ωS)) for some ωS ∈ ΩS . So, we
may conclude that the inequality
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I(πS) =
∨

ωS∈ΩS

((1− πS(ωS)) ∧ πS(ωS)) ≥

≥
∨

i∈S,ω∈Ω

((1− πi(ω)) ∧ πi(ω)) =
∨

i∈S

( ∨

ω∈Ω

((1− πi(ω)) ∧ πi(ω))

)
=

=
∨

i∈S

I(πi) (5.17)

is valid.
Let us prove the inverse inequality I(πS) ≤ ∨

i∈S I(πi), i.e., the inequality

∨

ωS∈ΩS

((1− πS(ωS)) ∧ πS(ωS)) ≤
∨

i∈S

( ∨

ω∈Ω

((1− π(ω)) ∧ πi(ω))

)
. (5.18)

What obviously suffices is to prove this inequality for each ωS ∈ ΩS in particular, hence, to prove
that for each ωS ∈ Ω the relation

πS(ωS) ∧ (1− πS(ωS)) =

(∧

i∈S

πi(ωS(i))

)
∧

(
1−

∧

i∈S

πi(ωS(i))

)

≤
∨

i∈I

( ∨

ω∈Ω

(πi(ω) ∧ (1− πi(ω)))

)
(5.19)

holds. Due to Lemma 5.2 we obtain that

(∧

i∈S

πi(ωS(i))

)
∧

(
1−

∧

i∈S

πS
i (ωS(i))

)
=

=

(∧

i∈S

πi(ωS(i))

)
∧

(∨

i∈S

(1− πi(ωS(i))

)
≤

≤
∨

i∈S

[πi(ωS(i)) ∧ (1− πi(ωS(i)))] ≤

≤
∨

ω∈Ω

(∨

i∈S

(πi(ω) ∧ (1− πi(ω)))

)
=

=
∨

i∈S

( ∨

ω∈Ω

(πi(ω) ∧ (1− πi(ω)))

)
=

∨

i∈S

I(πi). (5.20)

The inequality inverse to (5.17) as well as whole the assertion are proved. 2

Theorem 5.1 extends the result from [8], where the equality (5.10) was proved only for possibilisti-
cally independent products of finite or countable sequences of possibilistic distributions, i.e., for finite
or countable parametric set S, in our notation, and the main idea of the proof consisted in an appli-
cation of the principle of mathematical induction. However, this proof technique can be more of less
routinely applied to the case of non-numerical (in particular, lattice-valued) possibilistic distributions
and their possibilistically independent products supposing that the complete lattice in question meets
certain condition. On the other side, in the proof of Theorem 5.1 as introduced above we applied
some specific properties of the structure 〈[0, 1],≤〉 of real numbers, namely the fact that the supremum
of each nonempty A ⊂ [0, 1] can be reached when restricting ourselves to an appropriate countable
subset A0 of A.
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6 Conclusions

Keeping in mind the fact that within the framework of the standard probability and information theory
the notion of entropy defines an important characteristic of probability distributions and measures,
our aim and goal throughout this paper was to propose and analyze an alternative idea of entropy
definable in the case when the uncertainty phenomenon entering our formal model, and degrees of
uncertainty in particular, are defined, quantified and processed by the tools offered by possibilistic
distributions and measures. For this sake we have defined a possibilistic variant of the alternative
version of probabilistic entropy function resulting when replacing the logarithmic function log(1/p(ω))
by the function 1 − p(ω), hence, we define possibilistic entropy of a possibilitic distribution function
as the possibilistic expected value (defined by Sugeno integral) of the value 1 − π(ω), ω ∈ Ω, where
π(ω) defines a real-valued possibilistic distribution over the space Ω.

The possibilistic entropy has been proved to conserve two important properties of probabilistic
entropy functions. First, the possibilistic distributions with the minimum (i.e., zero, in our case)
entropy value are just those when the realiation of the random (in the possibilistic sense) sample does
not bring any new information, hence, it is like the case of degenerated probability distribution with
one result occurring with the probability one, i.e., beyond any doubts. However, we must keep in mind
the interpretation according to which the occurrence of any result with possibility degree one also does
not bring any new information. On the other side, when applying the idea of possibilistic decision
function under the bayesian setting, we may conclude that in the case when no specification of the
actual apriori possibilistic distribution is at hand, the hypothesis of the apriori possibilistic distribution
with the maximum possibilistic entropy value is rational and reasonable as this hypothesis minimizes,
from the worst-case point of view, the possibilistically expected loss related to the decision making in
question (remember the analogous role of uniform probability distribution over finite state spaces in
bayesian statistical decision functions).

Second, the possibilistic entropy functions as defined in this paper copy also the additivity prop-
erty of entropies for statistically independent products of two or more probability distributions just
with additivity replaced by maxitivity. Hence, combining two or more possibilistic distributions in
possibilistically independent way into one possibilistic distribution, the possibilistic entropy of the
resulting distribution is identical with the supremum value of the possibilistic entropies defined by
particular distributions. The result is valid also for the independent product of an infinite system of
possibilistic distributions.

As far as some future research is concerned, at least the two following directions seem to be worth
being pursued. First, we could investigate other decreasing (or at least nonincreasing) functions taking
[0, 1] into [0, 1] and replacing the function 1 − x applied in our approach. Second, we could try to
propose a lattice-valued entropy function defined by lattice-valued possibilistic measures. A serious
problem consists in the fact that our approach takes substantial profit of the specific properties of the
complement operation 1 − x in [0, 1] so that its more or less formal application to the complements
defined in the boolean or residual sense, definable in complete lattices, does not lead to sophisticated
enough results, so that a new and qualitatively different idea seems to be highly desirable.

The list of references introduced below deserves perhaps a very short comment. Elementary ideas
dealing with information and entropy quantification and processing can be found in [5], one of the
earliest monographs on information theory. Decision making under probabilistically quantified and
processed uncertainty, which served as an inspiration and a challenge for our alternative possibilistic
approach, was conceived by [9] and [1]. Elementary ideas and results on possibilistic measures can be
found in [3], their detailed mathematical formalization including the notion of Sugeno integral, impor-
tant for our purposes, are analyzed in [2]. References [4] and [6] are of surveyal character, emphasizing
the philosophical and methodological aspects of various mathematical models for uncertainty quan-
tification and processing, as well as the mutual relations among the corresponding notions, properties
and the achieved results. An attempt to propose a possibilistic variant of the theory of decision mak-
ing under uncertainty is presented in [7]. The author believes that all these references could be of
use for a reader attempting to penetrate more deeply into the problems touched and perhaps at least
partially solved in this paper.
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