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Abstract:

Geometry of probability distributions [1] continues by an introduction of new data characteristics, estimated
in accordance with geometry of the assumed model, and by a short study of their properties.
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1 Introduction

It was shown in [1] that any continuous probability distribution with arbitrary interval support X ∈ R
can be characterized, besides the distribution function F (x) and density f(x), by its Johnson score
S(x) ([1], Definition 1), information function S2(x) and weight function S′(x) = dS(x)/dx. Instead of
the usual moments, we have the Johnson score moments

ESk =
∫

X
Sk(x)f(x) dx, k = 1, 2, ... (1.1)

It was shown that ES = 0 and it can be shown that ESk < ∞ if ES2 < ∞. The last condition is
equivalent to the usual regularity requirements. As a ’center’ of the distribution can be taken the
Johnson mean x∗ : S(x) = 0 and as a measure of variability of values around x∗ the Johnson variance
ω2 = (I∗)−1 where I∗ = ES2 is the mean information. If we introduce for x1, x2 ∈ X a Johnson
difference

d̃(x1, x2) = ω[S(x2)− S(x1)], (1.2)

we obtain in the sample space X a non-Euclidean Johnson distance d(x1, x2) = |d̃(x1, x2)|, which can
be used for the testing of hypotheses and determination of confidence intervals.

Densities, Johnson scores, Johnson means and Johnson variances of distributions discussed in this
paper are given for reference in Table 1. Apart from the normal distribution, the support of all other
distributions is X = (0,∞).

Table 1. Some distributions and their characteristics.

Distribution f(x) S(x) x∗ ω2

normal 1√
2πσ

e−
1
2 ( x−µ

σ )2
x−µ
σ2 µ σ2

lognormal β√
2πx

e−
1
2 log2( x

t )β β
t log(x/t)β t t2/β2

Weibull β
x (x

t )βe−( x
t )β β

t [(x/t)β − 1] t t2/β2

gamma γα

xΓ(α)x
αe−γx γ( x

α/γ − 1) α/γ α/γ2

inv. gamma γα

xΓ(α)x
−αe−γ/x α(1− γ/α

x ) γ/α γ2/α3

beta-prime 1
xB(p,q)

xp

(x+1)p+q
q
p

qx−p
x+1 p/q p(p+q+1)

q3

Fig.1 shows densities and Johnson scores of Weibull distributions with β = 1 (exponential distri-
bution), β = 2 (Rayleigh distribution) and β = 3 (Maxwell distribution). The densities are quickly
decreasing to zero showing low probability of large observed values. Johnson scores are sensitive to
large values; this sensitivity increases with increasing β. Johnson mean of all these distributions is
x∗ = 1. The usual means (denoted by stars) are near to x∗, and in the case β = 1 equal to x∗.
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Figure 1. Densities and Johnson scores of Weibull distributions.

Fig.2 shows densities and Johnson scores of inverse gamma distributions with γ = α = 0.6(1), 1 and
1.5(3). The densities decrease slowly to zero showing that in this case extremely large values can be
observed. Johnson scores of this ’heavy-tailed’ distributions are bounded in infinity, so that averages
1
n

∑
S(xi) containing large observed values are robust (the averages can be heavily influenced, however,

by observed values near zero, which occur with low probability). The means of distributions denoted
by 1 and 2 do not exist, the mean of distribution 3 is plotted by the star. The usual description of
distributions by the mean and variance in this quite regular case fails. However, all three distributions
have the same Johnson mean x∗ = 1, which seems to give a reasonable description of the position of
a distribution on the x-axis.
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Figure 2. Densities and Johnson scores of inverse gamma distributions.

Further reasons for our conviction that they are the Johnson characteristics, which are to be used
for the description of distributions instead of the usual mean and variance, can be found in [2].
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2 Treatment of the data

Consider parametric family {Fθ, θ ∈ Θ} supported by X ⊆ R with parameter θ = (θ1, ..., θm), Θ ⊆ Rm.
Let Xn = [x1, ...xn] be a random sample from Fθ0 (a realization of independent identically distributed
according to Fθ0 random variables X1, ...Xn) with unknown θ0. What can be said about θ0 and how
to characterize the data by a small number (two) values ?

A solution of this basic statistical problem consists of three steps:
i/ choosing an ’inference function’ Q and treat the data Xn as

Qn = [Q(x1), ..., Q(xn)],

ii/ making some averages based on Qn,
iii/ study the properties of the estimates.

The still used inference function of the approach which we will call the ’naive statistics’ is the
identity function Q(x) = x. The distance among data is thus Euclidean, the ’center’ of the data
is the sample mean and the dispersion of values around it the sample variance. However, their
theoretical counterparts, the mean EX and variance EX2 − (EX)2, may not exist for some (heavy-
tailed) distributions. In such cases (in Table 1: the inverse gamma and the beta-prime distribution)
this approach does not offer any reasonable characteristics of the data.

The inference function of classical statistics is the vector of partial scores for parameters,

Q(x) =
(

∂

∂θ1
log f(x; θ), ...,

∂

∂θm
log f(x; θ)

)
.

The maximum likelihood method uses Q in a system of m equations for components of θ, giving the
’best’ estimate of Fθ0 . However, the problem of simple characteristics of the ’center’ and variability of
the data still remains.

The inference function of the robust statistics is Q(x) = ψ(x) where ψ (so called ’psi-function’) is a
suitable bounded function, suppressing the influence of large observations. The ψ−function prescribes
a finite distance in the sample space, dR(x1, x2) = c|ψ(x2) − ψ(x1)| where c = (Eψ′)−1, and offers
simple characteristics of the ’center’ and variability of the data. The drawback of this approach is the
lack of the connection of the ψ−function with properties of the assumed distribution F .

On the base of the account given in [1] we suggest to use as the inference function the Johnson
score. Our ’treated’ data are thus [S(x1), ..., S(xn)].

3 Basic Johnson characteristics of the data

Unlike the usual moments, the sample versions of Johnson score moments cannot be determined
without an assumption about the underlying distribution family. On the other hand, by substituting
the empirical distribution function into (1.1), the resulting system of equations

1
n

n∑

i=1

Sk(xi; θ) = ESk(θ), k = 1, ...,m (3.1)

appears to be an alternative to the system of the maximum likelihood equations. The estimates θ̂n

from (3.1) are shown (Fabián, 2001) to be asymptotically normally distributed with mean θ0 and
a certain variance σ2, i.e., AN(θ0, σ

2). They can have slightly large variances than the maximum
likelihood estimates, but they are robust ’if the situation demands it’ (the heavy tailed distribution
have bounded Johnson scores).

The first or the first two equations of system (3.1) give for particular distributions simple estimates
of the Johnson mean or of both Johnson characteristics. Let us call the estimate x̂∗n and ω̂2

n of x∗

and ω2 based on observations x1, ..., xn the sample Johnson mean and sample Johnson variance,
respectively
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For some particular distributions, the first equation of the system (3.1) can be written in the form

n∑

i=1

S(xi; x̂∗n) = 0. (3.2)

Proposition 1 Sample x̂∗n determined from (3.2) is AN(x∗, ω2).

Proof. Random variables S(X) have zero mean ES = 0 and finite variance ES2 so that x̂∗n is
AN(x∗, 1/ES2) according to the Lindeberg-Lévy central limit theorem. ω2 = 1/ES2 from the defini-
tion.

This is a nice result saying that the sample Johnson mean has normal distribution for any consid-
ered distribution, including distributions for which the Central limit theorem cannot be applied, and
that its variance attains the Cramér-Rao lower bound.

Proposition 2
√

nd̃(x∗, x̂∗n) is AN(0, 1).

Outline of the proof. The delta method theorem says that if q is AN(q0, ω
2) then ϕ(q) is AN(ϕ(q0), [ϕ′(q0)]2ω2).

By this theorem and Proposition 1, S(x̂∗n) − S(x∗) is AN(0, [S′(x∗)]2ω2). It can be shown that
ES′ = ES2 so that

√
nd̃(x̂∗n, x∗) is AN(0, ω2(ES2)2ω2) = AN(0, 1).

This is another nice result saying that the approximate (1−α)% confidence intervals for the sample
Johnson mean can be determined from a simple condition

√
n|d̃(x∗, x̂∗n)| ≤ uα/2, (3.3)

where d̃ is given by (1.2) and uα/2 is the (α/2)-th quantile of the normal distribution (uα/2 = 1.96 for
α = 5).

Definition 1 Let X,Y be random variables supported by X and Y, respectively, with joint distribution
F , marginal distributions with Johnson scores SX , SY and Johnson information I∗X , I∗Y . Let f be the
joint density of (X, Y ). Value

i∗XY =
1√

I∗XI∗Y

∫

X

∫

Y
SX(x)SY (y)f(x, y) dxdy

will be called a Johnson mutual information of X and Y .

Obviously, |i∗XY | ≤ 1 according the Cauchy-Schwartz inequality. Having sample (xi, yi), i = 1, ..., n,
taken from (X, Y ), the sample Johnson mutual information is

î∗XY =

n∑
i=1

SX(xi)SY (yi)

(
n∑

i=1

S2
X(xi)

n∑
i=1

S2
Y (yi)

)1/2
. (3.4)

(3.4) can serve as an empirical measure of the association between X and Y .

4 Examples

In this section we show examples of statistical procedures which take into account the particular
geometry in the sample space of the assumed distribution.

Normal distribution. Johnson score of the normal distribution is S(x) = x−µ
σ2 , x∗ = µ and I∗ =

ES2 = 1/σ2. The sample Johnson mean and sample Johnson variance are the usual mean and variance;
other statistics are the usual statistics. The Johnson mutual information is the usual correlation
coefficient.
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On the other hand, from our point of view, the use of the data without ’treatment’ is equivalent
to the implicit assumption of the normal distribution.

In the rest of this section we denote λn = 1.96/
√

n.

Lognormal distribution. The first two equations (3.1) are

β

n∑

i=1

log
(xi

t

)
= 0

β2
n∑

i=1

log2
(xi

t

)
= 1

from which x̂∗n = t̂n = 1
n

n∑
i=1

log xi, β̂2
n = n/

n∑
i=1

log2(xi/t̂n) and (ω̂n)2 = t̂2n/β̂2
n. Since by (1.2)

d̃(x∗, x̂∗n) = β log(x∗/x̂∗n), the 95% confidence interval for the Johnson mean is, according to (3.3),

x̂∗ne−λn/β̂n ≤ x∗ ≤ x̂∗neλn/β̂n.

Weibull distribution. The first two equations (3.1) are

n∑

i=1

[(xi/t)β − 1] = 0

n∑

i=1

[(xi/t)β − 1]2 = 1

which are to be solved iteratively. For a constant β, the sample Johnson mean x̂∗n = t̂n = (n−1
∑n

i=1 xβ
i )1/β

is the β-th mean. By (1.2), d̃(x∗, x̂∗n) = (x∗/x̂∗n)β̂n − 1 so that the 95% confidence interval for x∗ is

x̂∗n(1− λn)1/β̂n ≤ x∗ ≤ x̂∗n(1 + λn)1/β̂n .

Gamma distribution. The first two equations (3.1) are

n∑

i=1

(γxi − α) = 0

n∑

i=1

(γxi − α)2 = nα

from which x̂∗n = α/γ = n−1
∑n

i=1 xi = x̄ and ω̂2
n = α/γ2 = n−1

∑n
i=1 x2

i − x̄2. Johnson mean
and Johnson variance are thus equal to the normal mean and normal variance. Since d̃(x∗, x̂∗n) =√

α(x∗/x̂∗n)− 1 and
√

α = x̄/ω̂n, the 95% confidence interval for x∗ is

x̄− λnωn ≤ x∗ ≤ x̄ + λnωn.

For distribution with linear Johnson score we obtained the usual symmetrical confidence interval.

Inverse gamma distribution. The first two equations (3.1) are

n∑

i=1

(α− γ/xi) = 0

n∑

i=1

(α− γ/xi)2 = nα
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from which x̂∗n = γ/α = n/
∑n

i=1 1/xi = x̄H , which is the harmonic mean, and

ω̂2
n = x̄2

H

x̄2
H − x̄2H

x̄2H

where x̄2H = n/
n∑

i=1

1/x2
i . Since d̃(x∗, x̂∗n) =

√
α(1 − x̄H/x∗) and

√
α = x̄H ω̂n, the 95% confidence

interval for x∗ is
x̄H

1 + λn/x̄H ω̂n
≤ x∗ ≤ x̄H

1− λn/x̄H ω̂n
.

Beta-prime distribution. The first two equations (3.1) are

n∑

i=1

qxi − p

xi + 1
= 0

n∑

i=1

(
qxi − p

xi + 1

)2

=
pq

p + q + 1
. (4.1)

As x∗ = p/q, from the first equation we obtain

x̂∗n =

∑n
i=1

xi
1 + xi∑n

i=1
1

1 + xi

. (4.2)

Multiplying (4.1) by 1/pq, substituting p = x̂nq and using formula for ω2 from Table 1, we have

ω̂2
n =

ρ̂nx̂∗n(1 + x̂∗n)2

(ρ̂n − 1)2

where x̂∗n is given by (4.2) and

n

ρ̂n
=

1
x̂∗n

n∑

i=1

x2
i

(xi + 1)2
− 2

n∑

i=1

xi

(xi + 1)2
+ x̂∗n

n∑

i=1

1
(xi + 1)2

.

Condition (3.3) is

qω̂n

∣∣∣∣
x∗ − x̂∗n
x∗ + 1

∣∣∣∣ ≤ λn

so that the 95% confidence interval for x∗ is

x̂n − τ̂n

1 + τ̂n
≤ x∗ ≤ x̂n − τ̂n

1− τ̂n

where τ̂n = λn/q̂ω̂n and q̂ is to be determined from the system x̂∗n = p/q, ω̂2
n = p(p + q + 1)/q3. For

example, if p̂ = q̂ = 1, the 95% confidence interval for x̂∗n = 1 and n = 50 is (0.72, 1.38).

5 Simulations

Example 1. The sample Johnson mean and sample Johnson deviance (the square root of variance)
of samples of length 50 generated from distributions listed in the first column of Table 1 and with
parameters determined by values x∗ = 1 and ω = 1.118 were determined for various assumed families
listed in the first row of Table 2. The presented values are the average values after 5ooo experiments.

Table 2. Comparison of the estimated Johnson characteristics.
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x̂∗5000 gamma Weibull lognorm. beta-pr. inv.gam
gamma 1.000 0.94 0.60 0.49 0.12
Weibull 1.06 1.005 0.64 0.53 0.15
lognormal 1.66 1.66 1.010 1.01 0.63
beta-prime 2.00 1.77 1.01 1.008 0.54
inv.gamma 84.4 4.71 1.70 2.13 1.022

ω̂5000

gamma 1.094 1.06 0.81 0.72 0.31
Weibull 1.17 1.108 0.83 0.75 0.39
lognormal 2.04 1.62 1.082 1.09 0.74
beta-prime 3.52 2.00 1.11 1.113 0.82
inv.gamma 187. 8.52 2.32 3.23 1.117

It is apparent from Table 2 that erroneous assumptions often lead to unacceptable estimates
(note, however, the similar results obtained under assumptions of the lognormal and beta-prime
distributions). Estimating the Johnson mean and Johnson variance, it is easy to compare mean
characteristics of the data from distributions parametrized by arbitrary ways.

Example 2. In the left part of Fig.3 we plot samples (xi, yi)i=1,...,12 from random vector (X, Y ),
where Y = 0.35X +0.65Z and where X and Z are independent random variables with inverse gamma
distribution. In the right part are the corresponding samples [SX(xi; θ̂X), SY (yi; θ̂Y )] computed under
the right assumption. θ̂X , θ̂Y are the estimated values of the parameters.

Figure 3.

Making different assumptions on underlying marginal distributions we obtained the following values
of î∗XY :

fX , fY gamma Weibull lognormal beta-prime inv.gamma
î∗XY -0.08 -0.01 0.29 0.40 0.53

It is apparent that for the estimation of the degree of the association of random variables, the
assumption on the underlying distribution is substantial.
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