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2007
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Abstract:

A scalar inference function introduced in Fabián (2001) is generalized for a larger class of continuous distributions.
Its first two moments are used for introduction of measures of the central tendency and the variability of the
distribution. The number of examples shows that the new measures are plausible for continuous distribution, even
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formulas without need to estimate the parameters.
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1. INTRODUCTION
Let F be a distribution function of a continuous probability distribution with density

f(x)
{

> 0 if x ∈ X
= 0 if x ∈ R�X

where X ⊆ R is an open interval support. The commonly used numerical characteristics of F are the
moments

νk =
∫

X
xk dF (x), k = 1, 2, ... (0.1)

Particularly, the mean ν1 is taken as a measure of the central tendency of F and variance σ2 = ν2 − ν2
1 as

a measure of the variability of the values around the mean. However, for many simple and frequently used
distributions the integrals (0.1) are infinite (c.f. Kendall and Stuart, 1977). An often quoted example is
the Cauchy distribution, but there is a large amount of heavy-tailed parametric distributions with support
X = (0,∞), for which (0.1) converge in a limited range of parameters only. The admissible range of
parameters can be slightly extended when using L-moments, the expectations of certain linear combinations
of order statistics (Hosking, 1990). However, L-moments are defined for random variables whose mean does
exist so that the problem of characterizing the central tendency and variability of heavy-tailed distributions
still remains. The sample mean and sample variance (or, in the case of L-moments, the sample mean and
one half of the Gini’s mean difference statistics) of data samples taken from these distributions characterize
neither their ’center’ nor the dispersion.

Let m be an integer and Θ ⊂ Rm a space of parameters and Fθ, θ ∈ Θ a parametric distribution
with density fθ(x) = dFθ(x)/dx. Neither moments nor the L-moments can be used for the estimation of
parameters of heavy-tailed distributions since it is usually unknown whether the values of the parameters
to be estimated lie in the admissible range. On the other hand, the structure of the vector of parameters
of parametric families is the consequence of historical development and, quite often, it do not contain any
component which could characterize a ’center’ and/or the variability of the distribution. The classical
inference function, the vector of partial likelihood scores

U(θ) =
[

∂

∂θ1
log fθ(x), ...,

∂

∂θm
log fθ(x)

]
,

is a good tool for estimating the parameters from the observed data, but too complicated to offer simple
characteristics of their central tendency and variability.

We find that central tendency and dispersion of a large class of continuous distributions can be char-
acterized by the first two moments of a scalar inference function, which we call Johnson score. A main
component of Johnson score is the core function, introduced by Fabián (2001) and briefly re-introduced (in
a more appropriate notation) in the next section. In the rest we show that the first two moments of the
Johnson score exist and provide a meaningful description of distributions, and that their sample versions
provide a meaningful description of the observed data.

2. CORE FUNCTION
Let G be distribution with support R and density g continuously differentiable according to the variable

and regular in the sense that ∫ ∞

−∞

(g′(y))2

g(y)
dx < ∞. (0.2)

By relation

Q(y) = −g′(y)
g(y)

(0.3)

is defined the score function of G with properties

EQ = 0 (0.4)
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and, by (0.2), EQ2 < ∞.
Let Θ = R×Θm−1 and Gµ be a set of distributions Gµ for which θ = (µ, θ̃) where µ ∈ R is the location

parameter and θ̃ ∈ Θm−1. The location parameter is the most important parameter of Gµ ≡ G(µ,θ̃) expressing
its central tendency. Let the density of Gµ be

gµ(y) = g(y − µ).

The score function of Gµ,

Qµ(y) = − 1
g(y − µ)

dg(y − µ)
dy

=
∂

∂µ
log gµ(y),

is equal to the likelihood score for location. For distributions with ’full support’ R the score function Q(y)
appears to be a suitable scalar inference function, describing the sensitivity of a construction of the ’central
point’ to the value y.

However, the score function cannot be considered to be an inference function of distributions with support
X 6= R (with ’partial support’). For instance, the score function of exponential distribution Q(x) = 1 and
of uniform distribution Q(x) = 0. It may be thought that a suitable scalar inference function could be the
likelihood score for the most important parameter, but this is not a good idea since it is not clear which
of the parameters, if any, of distributions with partial support could represent a measure of their central
tendency.

Based on the fifty-year-old idea of Johnson (1949), Fabián (2001) suggested to view any distribution F
with partial support X = (a, b) as transformed ’prototype’, that is, as if it is in form

F (x) = G(η(x)), x ∈ X , (0.5)

where G is supported by R (a prototype) and η−1 : R → (a, b) is a suitable mapping. It appeared that
for many model distributions suits the inverse of the Johnson transformation (Johnson, 1949) adapted for
arbitrary support interval,

η(x) =





x when (a, b) = R
log(x− a) when −∞ < a < b = ∞
log (x− a)

(b− x) when −∞ < a < b < ∞
log(b− x) when −∞ = a < b < ∞.

(0.6)

An interesting characteristic of F was shown to be the transformed score function of the prototype,

T (x) = Q(η(x)), x ∈ X , (0.7)

termed the core function. From (0.7) and relation

f(x) = g(η(x))η′(x), (0.8)

following from (0.5), a formula

T (x) =
1

f(x)
d

dx

(
− 1

η′(x)
f(x)

)
(0.9)

was derived showing that the core function can be determined without reference to its prototype by a special
type of differentiating the density according to the variable.

An unusual feature of the core function is that it is ’support-dependent’, since η(x) is specific for a
given support. It follows from (0.7) and (0.6) that core functions of distributions with the most frequently
encountered supports are

T (x) =





−f ′(x)/f(x) when X = R
−1− xf ′(x)/f(x) when X = (0,∞)

−1 + 2x− x(1− x)f ′(x)/f(x) when X = (0, 1).
(0.10)
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To show the sense of the core function in a particular case, let us consider a prototype Gµ ∈ Gµ trans-
formed to X = (0,∞). By (0.8), the density of Fµ(x) = Gµ(η(x)) is fµ(x) = g(η(x)− µ)η′(x). By setting

t = η−1(µ), (0.11)

fµ can be written as
fη(t)(x) = g(u)η′(x)

where u = η(x)− η(t). Writing ft instead of fη(t),

∂

∂t
log ft(x) =

g′(u)
g(u)

∂u

∂t
,

so that
1

η′(t)
∂

∂t
log ft(x) = Q(u).

However, Tt(x) = Q(u) is the core function of Ft ≡ Fη(t).
The ’Johnson image’ of the location of the prototype (0.11) will be called a Johnson parameter and

considered as expressing the central tendency of the transformed distribution. Function

S(x) = η′(t)Tt(x) (0.12)

is the likelihood score of the transformed distribution for its most important parameter and, perhaps, could
be a suitable scalar inference function of distributions with partial support.
EXAMPLE 1

Gµ with support R and density g(y − µ) = ey−µe−ey−µ

is the prototype of distribution with density

ft(x) = g(log x− log t)
1
x

=
1
t
e−

x
t ,

the exponential distribution. By (0.9), the core function of the induced distribution is

Tt(x) =
1

ft(x)
d

dx
(−xft(x)) =

x

t
− 1,

and S(x) = t−1Tt(x) is the likelihood score for t, obtained by a special type of differentiating the density
according to the variable.

However, the preceding conclusion does not hold generally since the density of distribution G with support
R need not have the location parameter so that the transformed distribution need not have the Johnson
parameter.
EXAMPLE 2

Distribution Gp,q with support X = R and density

gp,q(y) =
1

B(p, q)
epy

(ey + 1)p+q
(0.13)

where B is the beta function, in (Johnson, Kotz and Ballakrishnan, 1995) called a generalized logistic
distribution of the fourth type, has parameters p > 0, q > 0, neither of which is a location. Its score function
is Q(y) = (qey − p)/(ey + 1). Gp,q is the prototype of distribution transformed to X = (0,∞) with density

fp,q(x) =
1

xB(p, q)
xp

(x + 1)p+q , (0.14)

which is the standard form of Pearson type VI distribution, sometimes called the beta-prime distribution
(Johnson, Kotz and Ballakrishnan, 1995). None of the parameters p and q is the Johnson parameter. By
(0.10), its core function is

T (x) = −1− x
f ′p,q(x)
fp,q(x)

=
qx− p

x + 1
. (0.15)

3



Our task is to generalize (0.12) for distributions without the Johnson parameter. The solution is given
by Definition 1 in the next section.

3. JOHNSON SCORE, JOHNSON MEAN AND JOHNSON VARIANCE
We realized that t (the ’Johnson image’ of the location of the prototype) in term η′(t) at (0.12) is for a

given Ft the value of the Johnson parameter for which Tt(t) = 0. We thus generalize (0.12) by replacing t
by the zero of the core function, i.e., by the ’Johnson image’ of the mode of the prototype distribution.

Definition 1 Let F be distribution with interval support X ⊆ R and density f continuously differentiable
according to the variable. Let η : X → R be given by (0.6), T (x) be core function (0.9) and the solution x∗

of equation
T (x) = 0 (0.16)

be unique. Function
S(x) = η′(x∗)T (x) (0.17)

will be called the Johnson score of distribution F.

Due to (0.7), the solution of (0.16) is unique if the prototype G is unimodal. In cases of multimodal
distributions, x∗ could be the ’Johnson image’ of the coordinate of the ’most important peak’ of the density
of the prototype - we do not follow this line here. Johnson score is either the usual score function for
distributions supported by R or the likelihood score for the Johnson parameter for distributions with this
parameter or a new function in other cases. A meaning of this new function is similar as in previous cases:
for a given x ∈ X , the value S(x) describes the sensitivity of the construction of the measure of central
tendency x∗ of F to the value x.
EXAMPLE 3

By (0.15), Johnson mean of the beta-prime distribution is x∗ = p/q, by (0.6 η′(x∗) = 1/x∗ and the
Johnson score is

S(x) =
1
x∗

T (x) =
q

p

qx− p

x + 1
. (0.18)

Definition 2 For integer k and random variable X with distribution F and Johnson score S we define the
k-th Johnson score moment by

ESk =
∫

X
Sk(x) dF (x). (0.19)

In the present paper we study only the first two moments (0.19).

Proposition 1 Let F with Johnson score S have prototype G with score function Q. Then ESk = (η′(x∗))kEQk.

Proof. By (0.17), ESk = (η′(x∗))kET k. By (0.7), (0.8) and (0.3),

ET k =
∫ b

a

T k(x)f(x) dx =
∫ b

a

Qk(η(x))g(η(x))η′(x) dx

=
∫ ∞

−∞
Qk(y)g(y) dy = EQk.

2

Since η′(x∗) > 0, by Proposition 1 and (0.2)-(0.4), ES = 0 and ES2 < ∞. The solution x∗ of

S(x∗) = 0 (0.20)

will be called a Johnson mean. Definition 1 thus assigns to any F with differentiable density a number
characterizing its central tendency. Johnson score is thus the score for Johnson mean, which may or may
not be a parameter of F .
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Due to (0.12), for any Ft with Johnson parameter, the mean square of the Johnson score is the Fisher
information for this parameter. Cover and Thomas (1991, p.494) termed the value EQ2 the Fisher informa-
tion of a distribution, but they in fact consider only distributions supported by R. The value ES2 generalizes
their concept for any regular continuous F .

Definition 3 Let the assumptions of Definition 1 hold for distribution F with Johnson score S. The value

ω2 = (ES2)−1 (0.21)

will be called a Johnson variance and its square root ω a Johnson deviation of distribution F.

Note that for distributions with support X = (0,∞) by Proposition 1, ES2 = η′(x∗)ET 2 and by (0.6),
η′(x∗) = 1/x∗ so that ω2 = (x∗)2/ET 2.

By (0.20) and (0.21) we define alternative measures of the central tendency and variability of continuous
distributions.

To make clear the role of the modified Johnson transformation (0.6) in Definition 1, it is to say that,
principally, a use of any (strictly monotonous continuous) mapping ξ : X → R leads, by using the procedure
described above, to a ’central point’ x∗ξ = ξ−1(mode of G) which exists, and to a corresponding ’ξ-score’ of
distribution F with respect to x∗ξ . Johnson transformation yields ’central points’ and ’ξ-scores’, which are
for many currently used distributions expressed by simple formulas. There are other supporting reasons for
choosing the mapping (0.6):

i/ (0.6) is the only transformation under which the prototype of the lognormal distribution is a normal
distribution,

ii/ the ’η-score’ of the uniform distribution is linear (see the next section).

4. EXAMPLES
Here we present expressions for the Johnson mean and Johnson variance of some frequently used distri-

butions and show that they can serve as plausible measures of central tendency and dispersion of the values
around the Johnson mean not only of distributions, the mean and the variance of which may not exist, but
of distributions having regular mean and variance as well.

Johnson mean and Johnson variance of distributions from Gµ (i.e., with support X = R and location µ)
is x∗ = µ and the reciprocal Fisher information for µ. As an example, normal distribution N(µ, s) has score
function Q(x) = (x− µ)/s2 and ω2 = 1/EQ2 = s2, so that its Johnson mean and Johnson variance are the
mean and variance. As a less trivial example, consider a generalized Student distribution with density

fµ,s,ν(x) =
λλ/2

sB(1/2, λ/2)
1

(λ + ξ2)
λ+1
2

(0.22)

where ξ = (x − µ)/s (particularly, fµ,s,1 is the Cauchy distribution, having neither a mean nor variance
and f0,1,n the Student distribution with n degrees of freedom). Its mean ν1 = 0 exist if n > 1 and variance
σ2 = n/(n−2) if n > 2, which is particularly in the case of the mean difficult to understand. The distribution
has score function Q(x) = λ+1

s
ξ

λ+ξ2 so that the Johnson mean x∗ = µ and the Johnson variance

ω2 =
1

EQ2
=

λ + 3
λ + 1

s2.

Fig.1 shows densities of distributions (0.22) with µ = 0, λ = 1, 1.5, 3 and with s such that ω2 = 3 for all three
distributions. Variances of distributions with λ = 1 and λ = 1.5 do not exist, variance of the distribution
with λ = 3 equals to the Johnson variance.
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−6 0 6
0

0.3

3 

1 

Figure 1. Densities of generalized Student distributions with Johnson variance ω2 = 3. 1: λ = 1, 3: λ = 3,

without number: λ = 1.5.

A generalized logistic distribution with density gp,q given by (0.13) has the second score moment

EQ2 =
pq

p + q + 1
. (0.23)

By (0.23), distribution gk,k with k = (1 + π/
√

3)/π2 has Johnson deviation ω = 1/(EQ2)1/2 = π/
√

3. In
Fig.2, gk,k is compared with g1,1, the standard deviation of which is σ = π/

√
3 as well as with density of

the standard normal distribution with σ = π/
√

3. It is apparent that it is the Johnson variance and not the
variance of the generalized logistic distribution, which corresponds to the variance of the normal distribution.

−6 0 6
0

0.3

Figure 2. Densities of the generalized logistic distribution with ω = π/
√

3 (full line) and σ = π/
√

3 (dashed line),

and the density of the standard normal with σ = π/
√

3 (dotted line).

Distributions with support X = (0,∞) and Johnson parameter t have Johnson mean x∗ = t, Johnson
score S(x) = t−1Tt(x) equal to the likelihood score for t and Johnson variance

ω2 =
t2

c2ET 2
,

where c = 1/s is the reciprocal scale of the prototype. Some examples are given in Table 1.

Table I: Core function, Johnson mean and Johnson variance of distributions on (0,∞) with Johnson
parameter.

Distribution f(x) T (x) x∗ ω2

lognormal c√
2πx

e−
1
2 log2( x

t )c

c log(x
t )c t t2/c2

hyperbolic 1
2K0(α)xe−

α
2 ( x

t + t
x ) α

2 (x
t − t

x ) t K(α)t2

Weibull c
x (x

t )ce−( x
t )c

c((x
t )c − 1) t t2/c2

Fréchet c
x ( t

x )ce−( t
x )c

c(1− (
t
x

)c)) t t2/c2

log-logistic c
x

(x/t)c

((x/t)c+1)2 c (x/t)c−1
(x/t)c+1 t 3t2/c2

K(α) = (K2(α)
K0(α) − 1), Kν is the McDonald function.
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Fig.3 shows densities and Johnson scores of Weibull distributions with c = 1 (exponential distribution),
c = 2 (Rayleigh distribution) and c = 3 (Maxwell distribution). Johnson mean of all these distributions is
x∗ = 1. The means (denoted by stars) are near, in case c = 1 equal to x∗.

0 1 2.5
0

1.4

0 1 2.5
−5

0

10

3 
1 

2 

1 

2 
3 

Figure 3. Densities and Johnson scores of Weibull distributions with t = 1, c = 1, 2, 3. The means ν1(c) are

denoted by stars, ν1(1) = 1, ν1(2) = 0.885, ν1(3) = 0.893.

Fig.4 shows densities of Fréchet distributions with various Johnson means. The variability of values
around the Johnson mean is apparently similar to all four distributions. Actually, they have the same
Johnson variance ω2 = 1.

0 4 8
0

0.7

1 

2 3 
4 

Figure 4. Densities of Fréchet distributions, t = 1, 2, 3, 4, ω = 1.

Examples of distributions with support (0,∞) without the Johnson parameter are given in Table 2.

Table II. Core function, Johnson mean and Johnson variance of distributions (0,∞) without Johnson
parameter.

Distribution f(x) T (x) x∗ ω2

gamma γα

xΓ(α)x
αe−γx γx− α α/γ α/γ2

inverse gamma γα

xΓ(α)x
−αe−γ/x α− γ/x γ/α γ2/α3

beta-prime 1
B(p,q)

xp−1

(x+1)p+q
qx−p
x+1 p/q p(p+q+1)

q3

Fisher-Snedecor (p/q)p

B(p,q)
xp−1

( p
q x+1)p+q

q(x−1)
x+q/p 1 p+q+1

pq

Burr XII kcxc−1

(xc+1)k+1
kxc−1
xc+1 ( 1

k )1/c k+2
c2k1+2/c

Γ is the gamma function, B the beta function.

Due to the linear core function, the Johnson mean and Johnson variance of the gamma distribution are
equal to the mean and variance.
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Fig.5 shows densities and Johnson scores of Burr XII distributions. All the plotted distributions have
Johnson mean x∗ = 1 and equal Johnson variances as well. The means, given by ν1(c) = kB(1+1/c, k−1/c)
for ck > 1 are denoted in Fig.5 by stars for k = 1. ν(1) does not exist and other two means do not provide
a reasonable description of the central tendency of the plotted distributions as well. vskip2mm

0 1 2.5
0

1

0 1 2.5
−1

0

1

1 

3 2 

3 

1 

Figure 5. Densities and Johnson scores of Burr XII distributions with k = 1, c = 1, 2, 3. The means ν1(c) are

denoted by stars, ν1(1) does not exist.

The mean ν1 = p/(q − 1) and variance

σ2 =
p(p + q + 1)

(q − 1)2(q − 2)

of the beta-prime distribution do not exist if q ≤ 1 and q ≤ 2, respectively. The Johnson mean and Johnson
variance in Table 2 look like the mean and variance ’with corrected denominator’.

Fig.6 shows standard deviation and Johnson deviation of the beta-prime distribution as functions of 1/q.
Whereas σ blows up at 1/q = 1/2, ω is comparable with the simulated median absolute deviation (Hampel
et al., 1986), plotted by the dotted curve.

2.5
0 

4.5

1/q 

3 

2 

1 

Figure 6. Deviances of the beta-prime distribution. 1 - σ, 2 - ω, 3 - simulated MAD.

Let us examine a more complex case. The Pareto distribution has support X = (a,∞) and density

f(x) = cac/xc+1. (0.24)

Its mean ν1 = ca/(c − 1) and variance σ2 = ca2/(c− 1)2(c− 2) do not exist when c ≤ 1 and c ≤ 2,
respectively. By (0.6), η′(x) = 1/(x− a) so that by (0.9) the core function is

T (x) = −1− (x− a)
f ′(x)
f(x)

= (c + 1)
x− a

x
− 1. (0.25)
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The Johnson mean is thus
x∗ = a(c + 1)/c. (0.26)

Since ET 2 = c/(c + 2), ES2 = (x∗ − a)2c/(c + 2) and the Johnson variance is ω2 = a2(c + 2)/c3. The
generalized Pareto distribution (Hosking and Wallis, 1987) has density

f(x) = k−1(1− cx/k)1/c−1, c 6= 0,

and f(x) = k−1e−x/k when c = 0.
If c < 0, the support of the distribution is X = (0,∞) so that the core function is

T (x) = 1− xf ′(x)/f(x) =
x/k − 1
−cx/k + 1

,

Johnson mean x∗ = k, ET 2 = 1/(−2c + 1) and ω2 = k2(1− 2c).
If c > 0, the support of the distribution is X = (0, b) where b = k/c. Since by (0.6) η′(x) = b/[x(b− x)],

by (0.9)

T (x) =
1

bf(x)
d

dx
[−x(b− x)f(x)] =

x

k/(c + 1)
− 1

so that x∗ = k/(c + 1). Since ET 2 = 1/(2c + 1),

ω2 =
b

[x∗(b− x∗)]2ET 2
=

k2(1 + 2c)
(c + 1)4

. (0.27)

In Fig.7 we compare (0.27) for k = 1 with the standard deviation σ = k/[(1 + c)
√

1 + 2c] for c > − 1
2

(Johnson, Kotz and Ballakrishnan, 1995) and with 2l2 where l2 = k/[(1 + c)(2 + c)] if c > −1 is, by Hosking
(1990), the 2-nd L-moment. Whereas both ’empirical moments’ are increasing to infinity when c approaches
to the boundary of the range of validity of the formulas, Johnson deviation increases linearly, behaving like
a scale parameter.

−1.5 −1 −0.5 0

1

10

3 

2 

1 

0 3 6
0

1

3 

1 

Figure 7. Deviances of the generalized Pareto distribution. 1 - σ, 2 - 2λ2, 3 - ω.

To the end, consider the beta distribution with support X = (0, 1) and density fp,q(x) = 1
B(p,q)x

p−1(1−
x)q−1, which has common prototype (0.13) with the beta-prime distribution. By (0.10), the core function of
the beta distribution is

T (x) = −1 + 2x− x(1− x)
[
p− 1

x
− q − 1

1− x

]
= (p + q)x− p,

from which x∗ = p/(p + q). The Johnson score of the beta distribution is thus a linear function bounded on
the support and Johnson score of the uniform distribution on (0, 1) is S(x) = 2x− 1. The Johnson mean of
the beta distribution is equal to the mean. By (0.23) and Proposition 1, the Johnson variance

ω2 =
[(x∗(1− x∗)]2

EQ2
=

pq(p + q + 1)
(p + q)4
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is different from the variance σ2 = pq/[(p + q + 1)(p + q)2]. If p = q → 0, σ2 → 1/4, whereas ω2 grows to
infinity, giving a large ’weight’ to observations from the ends of the support of U-shaped beta distributions.

ESTIMATES
Let X1, ..., Xn be random variables i.i.d. according to Fθ, θ ∈ Θ,Θ ⊂ Rm with unknown θ and x1, ..., xn

their observed values. The Johnson score of Fθ will be denoted by S(x; θ). Both the Johnson mean x∗ :
S(x∗, θ) = 0 and the Johnson variance ω2 = 1/ES2(θ) are functions of θ and can be constructed from
the maximum likelihood estimate θ̂ML of θ. In what follows AN means ’asymptotically normal’. Since
ES2(θ) > 0, numbers x̂∗ML = x∗(θ̂ML) and ω̂2

ML = ω2(θ̂ML) characterize the ’center’ and dispersion of the
sample. Their asymptotic behavior can be easily established by using delta method theorem, saying that
if θ̂ is AN(θ, σ2) and ϕ(θ) is differentiable at θ with ϕ′(θ) 6= 0, ϕ(θ̂) is AN(ϕ(θ), [ϕ′(θ)]2σ2) (Corollary to
Theorem A, Serfling, 1980, pp.122).
EXAMPLE 4

Let F be Pareto distribution (0.24) with a = 1 and ĉML be AN(c, σ2
c ). By (0.26), the Johnson mean is

x∗ = 1 + 1/c so that x̂∗ML is AN(1 + 1/ĉML, σ2
c/ĉ4

ML).
Unlike the usual moments or the L-moments, the sample versions of Johnson score moments cannot

be determined without an assumption about the underlying distribution family. On the other hand, by
substituting the empirical distribution function into (0.19), a system of equations

1
n

n∑

i=1

Sk(xi; θ) = ESk(θ), k = 1, ..., m, (0.28)

appears to be an alternative to the system of maximum likelihood equations for estimation of θ in the whole
range of parameters. The estimates θ̂n from (0.28) are the ’core moment estimates’ (Fabián, 2001), shown
to be consistent, asymptotically normal and, in cases of families with bounded core functions, robust and
with relative efficiencies near to one.

In the rest we show that the first or two first equations of system (0.28) give for particular distributions
simple estimates of the Johnson mean or of both Johnson characteristics. Let us call the estimate x̂∗n of
x∗ based on observations x1, ..., xn a sample Johnson mean and the estimate ω̂2

n of ω2 a sample Johnson
variance.
EXAMPLE 5

The sample Johnson mean of distributions with Johnson parameter is the maximum likelihood estimate
of this parameter. For the distributions from Table 1, x̂∗n of the lognormal distribution is the geometric
mean, x̂∗n in the case of the Weibull distribution with fixed c is the c-th mean (for exponential distribution
with c = 1 the arithmetic mean x̄) and in the case of the Fréchet distribution with a given c, x̂∗n = t̂n =
1/(n−1

∑n
i=1 1/xc

i )
1/c, which is for c = 1 the harmonic mean x̄H , say. The sample Johnson mean of the

hyperbolic distribution is x̂∗n = (x̄ + x̄H)1/2.
We obtain new results when considering distributions without the Johnson parameter. If the structure

of the parameters is such that x∗(θ) is only a function of one parameter or a function of the ratio of two
parameters, it is often possible to express x∗(θ) from the first equation of (0.28) uniquely as a function of
observed values. In such a case one can treat x∗ as a parameter and write S(x;x∗) instead of S(x; θ) so that
the first equation of (0.28) turns into

n∑

i=1

S(xi; x∗) = 0. (0.29)

Proposition 2 Let Fθ satisfy conditions of Definition 1 and let the first equation of (0.28) be written in
form (0.29). The solution x̂∗n of (0.29) is AN(x∗, ω2), where ω2 is given by (0.21).

Proof. x̂∗n is a consistent estimate of x∗ since S(x∗, x∗) = 0 and S is continuous. Random variables S(X)
have zero mean and finite variance so that x̂∗n is AN(x∗, 1/ES2) according to the Lindeberg-Lévy central
limit theorem. The assertion then follows from (0.21). 2
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EXAMPLE 6
The first equation of (0.28) for the gamma distribution is

n∑

i=1

(γxi − α) = 0.

Since x∗ = α/γ, x̂∗n = x̄. Similarly, the sample Johnson mean of the inverse gamma distribution is x̄H . From
the first equation of (0.28) for the beta-prime distribution,

n∑

i=1

qxi − p

xi + 1
= 0,

one obtains (since x∗ = p/q)

x̂∗n =

∑n
i=1

xi
1 + xi∑n

i=1
1

1 + xi

. (0.30)

By (0.25), the first equation of (0.28) for the Pareto distribution is

1
n

n∑

i=1

(1− a/xi) = 1/(c + 1)

so that by (0.26) x̂∗n = x̄H . The sample mean of the beta distribution is x̂∗n = x̄.
By Proposition 2, Johnson variance is a characteristic of the variability of the underlying distribution

and, simultaneously, the asymptotic variance of the estimate of the Johnson mean.
EXAMPLE 7

The sample Johnson variance of the lognormal distribution (Table 2) is ω̂2
n = x̂2

n/ĉ2 where, from the

second equation of (0.28), ĉ2 = n/
n∑

i=1

log2(xi/x̂∗n). The sample Johnson variance of the gamma distribution

is the sample variance. The second equation of (0.28) for the inverse gamma distribution is

1
n

n∑

i=1

(α− γ/xi)2 = α

so that

ω̂2
n = x̄2

H

x̄2
H − x̄2H

x̄2H

where x̄2H = n/
n∑

i=1

1/x2
i . The second equation of (0.28) for the beta-prime distribution is

1
n

n∑

i=1

(
qxi − p

xi + 1

)2

=
pq

p + q + 1
. (0.31)

Multiplying (0.31) by 1/pq, substituting p = qx̂∗n and using Table 2,

ω̂2
n =

ρ̂x̂∗n(1 + x̂∗n)2

(ρ̂− 1)2

where x̂∗n is given by (0.30) and

n

ρ̂
=

1
x̂∗n

n∑

i=1

x2
i

(xi + 1)2
− 2

n∑

i=1

xi

(xi + 1)2
+ x̂∗n

n∑

i=1

1
(xi + 1)2

.
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In a general case, however, it is to estimate the parameters and construct ω̂2
n = ω2(θ̂n).

In a simulation study, samples of length 100 were generated consecutively from each distribution listed
in rows of Table 3, each with values of θ giving x∗(θ) = 1 and ω2(θ) = 1.2. Both x∗ and ω were estimated
under the assumption of either distribution listed in headlines of columns in Table 3. The estimates were
obtained according to the simple formulas discussed above except for the Weibull distribution, for which
parameters were estimated by the maximum likelihood method. Table 3 summarizes average values of the
estimated Johnson means and the Johnson variances over 5000 samples.

Table III: Estimates of Johnson mean and Johnson deviance of some distributions. The true values are
x∗ = 1, ω = 1.118.

x̂∗ gamma Weibull lognormal beta-prime inv.gamma
gamma 1.000 0.94 0.60 0.49 0.12
Weibull 1.06 1.005 0.64 0.53 0.15
lognormal 1.66 1.66 1.01 1.010 0.63
beta-prime 2.00 1.77 1.008 1.01 0.54
inv.gamma 84.4 4.71 1.70 2.13 1.022

ω̂
gamma 1.094 1.06 0.81 0.72 0.31
Weibull 1.17 1.108 0.83 0.75 0.39
lognormal 2.04 1.62 1.082 1.09 0.74
beta-prime 3.52 2.00 1.11 1.113 0.82
inv.gamma 187. 8.52 2.32 3.23 1.117

It is apparent from Table 3 that erroneous assumptions often lead to unacceptable estimates (note,
however, the similar results obtained under assumptions of the lognormal and beta-prime distributions). By
the use of the estimates of the Johnson mean and Johnson variance, it is easy to compare the parametrized
by arbitrary ways.
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