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Dostupný z http://www.nusl.cz/ntk/nusl-37198

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.
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Abstract:  The ubiquitous feature of  the nervous system of wide spread occurrence of 

complex dynamics behaviour is treated. The cardinal question concerning the nature of 

generators of such complex behaviour, namely if it is ad hoc random or deterministic but 

strongly non-linear, is analyzed. It is proved analytically that the discrete dynamics of single 

neurons with the sigmoidal transfer function is potentially chaotic. As the by-product the 

functional gain-threshold mechanism in neurons is derived. This allows for the new 

interpretations of famous experiments by Miyashita on squirell monkeys.  Then it is shown 

that the continuous dynamics of the neural circuits of two-three neurons are endowed with the 

potentiality of chaotic firing, too. Finally, it will be argued that the classical dogma of 

stochastic, or the ad hoc random neural coding can be taken as the limiting case of  presenting 

new approach of deterministic or chaotic paradigm.  
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                                                           INTRODUCTION 

 

Chaodynamics, as far as the authors’ knowledge in this direction extends was 

introduced by himself (Andrey, 1986) (See, e.g., Nunez Yepez, 1989 for the citation of 

Andrey, 1986.) in analogy to other branches of science like thermodynamics, et cetera.  It 

presents a paradigm of modern nonlinear science in general. Let us mention that one of the 

most famous proponents of theory of deterministic chaos, David Ruelle, has coined a name of 

chaology. But it seems this is going more to philosophy as to the adequate branch of nonlinear 

science. It is well accepted now that for a dynamic system to be chaotic a non-linearity is 

required to guarantee a sensitive dependence upon initial conditions and a dissipativity to 

guarantee a boundedness of trajectories on the attractor. It is called here the chaotic strange 

attractor in the appropriate phase space of the treated system. This makes solutions very 

complicated allowing for a description of this complexity of behavior of the real system under 

the treatment. 

A human brain seems to be the most complex functional structure in the known 

universe. It is not surprising it fulfills the above mentioned conditions, namely the 

nonlinearity and dissipativity. It is rather natural as the human brain possesses necessary 

conditions for a realization of human mind.  A part of this complexity lies in the diversity of 

nerve cells, which Santiago Ramón y Cajal, the father of modern brain science, described as 

“the mysterious butterflies of the poul, the beating of whose wings may some day – who 

knows? – clarify the secret of mental life”. This has been very prophetic statement which can 

be put into an analogy to the celebrating “butterfly effect” by the Ed. Lorenz, the father of 

modern chaodynamics. 
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There have been intensive attempts to study and understand more deeply some basic 

problems in neural systems on different levels during the last years (Arbib, 2003; Kandel, 

2000; Koch, 1999; Guastello, 2004; Freeman, 2000). Specifically, concerning the main 

branches of neurodynamics and chaos one should mention the work on the integrate & fire 

model, synchronization and chaos (Hopfield, 1994; Kuramoto, 1991; Mirollo & Strogaz, 

1990), seminal papers on calcium oscillations, stochastic resonance, bifurcations (Hindmarsh 

& Rose, 1984; Nikolov, 2004; Dhmala, et al., 2004; Falke, et al., 2000)  and finally the 

attempts to apply chaos to the EEG rhytms (Basar, 1990; Kantz & Schreiber, 1995; Nunez, 

1995;  Lehnertz, et al., 2002). Alas, a progress seems to be rather slow and not adequate to the 

energy and interests put in.  So far in the field of neuroscience one has not been able to 

formulate  rigorously some fundamental universal laws like in physics. The main ideas and 

their formulations are rather of phenomenological origin and character. But as Galileo said the 

“book of Nature is written in the language of mathematics”. To proceed along these lines one 

needs to look for some general ideas connected to the dynamics of basic processes in such 

neural systems. By other words, to solve basic problems, so to speak, from the first principles. 

One will find such a novel approach can be very successful and even surprisingly 

proliferative.  

In the paper, the ubiquitous feature of nervous system namely that of wide spread 

occurrence of complex dynamics behaviour will be treated from the point of view of 

theoretical as well as experimental descriptions. Here the cardinal question remains open 

concerning the nature of generators of such complex behavioural patterns of firing neurons, 

single ones or in populations. One speaks about a neuronal computing (Koch, 1999) or neural 

coding problem (Rieke, et al., 1997).  Then the cardinal question is as mentioned above if a 

nature of generators behind neural coding problem is of ad hoc random or deterministic but 

highly nonlinear dynamics origination.  
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In this context, it has been believed and accepted till now the idea that a neural firing 

should depend mostly on the averaged frequencies of long train of incoming pulses (simple 

presynaptic Action Potentialss) not on their exact timing. This is called also the firing rates 

model or the stochastic parading of neural coding. It assumes the ad hoc random dynamics  

with a Poissonian statistical distribution (Rieke et al., 1997). It has been called also the dogma 

of neural coding. 

But with an advent of paradigm of new nonlinear science, namely the deterministic 

chaos, it has been natural to ask about a potentiality of  chaotic dynamics in neuronal systems 

in general. This important point will be discussed  in more details later. The question has been 

answered in a very positive and promising way. Namely, it will be shown for the first time 

analytically here that the biologically originated sigmoidal transfer function form of neurons 

is sufficient to generate chaotic firings of such single neurons. Then from a shape of firing 

spikes one can deduce to encode neural information not amplitudes of spikes but their timing 

should play the fundamental role. One speaks about time – encoding information (Hopfield, 

1995).  So instead of before mentioned stochastic paradigm of neural coding one has the 

dynamic (timing) paradigm. This new paradigm of neural coding is rather recent and brings 

no problems into the game of neural coding, at all. Just opposite – it allows to exploit 

intensively methods of chaodynamics. Explicitly speaking it means that one applies method 

of chaodynamics to the time mappings constructed of famous inter-spike-intervals (ISIs).  

Besides the discrete dynamics of single neurons with the potentiality of chaotic 

behaviour and some by-products, we will address the answer to the question concerning a 

potentiality of chaotic behaviour in the case of continuous dynamics, too. Namely our effort 

will be concentrated on the minimal possible number of neurons to generate such chaotic 

dynamics. 
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POTENTIALITY OF COMPLEX BEHAVIOUR IN SINGLE NEURONS 

 
 

The ubiquitous feature of the nervous system is the widespread occurence of 

complex dynamic behaviours, as mentioned above. Examples range from the spike trains of 

single neurons to the fluctuating potentials of thousands of neurons measured from the surface 

of the scalp by the electoencephaloghram (EEG) (Amit, 1999; Elbert et al., 1994; McKenna et 

al.,1992; Milton, 1996; Barbi and Chillemi, 1998). 

To begin with it is natural to start at the level of single neurons. Chaotic behavior 

has been identified experimentally in single neurons at different situations. It was observed 

that the repetitive firing of  action potentials (APs) in sinusoidal current stimulated squid giant 

axons can be chaotic (Matsumoto, et al., 1982). Later on it was shown that the spontaneous 

activity of some simian cortical neurons in the precentral gyri of anesthetized squirel monkeys 

(Rapp, et al., 1985) is chaotic. And finally, by the inter-spike-intervals (ISIs) measurements 

on the sciatic nerve of adult male SD and using methods of chaodynamics  the chaotic 

dynamics in the neural information process was discovered (Gong, et al., 1999).  

On the other side it has been shown in many numerical simulations that there is 

chaos in the neuron models, too. Namely, responses of model neurons as simple as Caianello 

(1961), and Nagumo and Sato (1972) possess chaotic behaviour. The refractory function 

model, due to a past firing that decreases exponentially with time, can also be chaotic (Aihara, 

et al., 1990). It has been shown numerically that solutions of the Hodkin-Huxley equations 

(Hodgkin and Huxley, 1952) with the periodic stimulation   are not always periodic and can 

be understood as deterministic chaos (Aihara et al., 1990; Matsumoto et al., 1987). 

The neurodynamics based on a non-monotone response function for single neurons 

has been described (Morita, 1993; Yoshizawa, et al.,1993). Such neurons also can behave 

 5



chaotically (Shuai, et al., 1996). There are other models of single neurons possessing the 

chaotic dynamics (Pasemann, 1997; Shilnikov & Rulkov, 2004). 

The dynamics of single neurons plays a very important role in recent approaches to 

artificial neural networks. Model neurons with complicated dynamics are the composer 

elements of artificial neural networks. Such neural networks are called chaotic neural 

networks (Aihara, et al., 1990; Bondarenko, 1994).  

As mentioned above there is   the numerical evidence for chaotic behavior in 

biologically motivated neuron models. But such models are often rather artificially 

constructed in a sense just to possess appropriate solutions. To escape from a tautology of the 

known self-contained contradictory paradigm in biology in general, one  needs an analogy to 

physics to describe and to attack the problem from the first principles. To proceed in this 

spirit a generalized McCulloch-Pitts like neuron model (McCulloch and Pitts, 1943) with 

biologically derived sigmoidal response function (Eeckman and Freeman, 1986) will be 

introduced. Then it will be shown for the first time analytically that such biologically based 

sigmoidal transfer function is sufficient for  single neuron to generate  chaotic dynamics in the 

rather natural manner. But this is principally in agreement with above presented experimental 

and numerical findings. Let us mention in advance that as a by-product of our analytical 

treatment the novel functional dependence between two cardinal parameters of sigmoidal 

transfer function native to every neuron in the brain, namely the threshold and steepness, is 

earned. When translating from pure technical matters to the adequate biological meaning of 

these parameters, one can speak about the gain-threshold mechanism in neurons. This 

surprising and in fact an astonishing result will be discussed in more details later on. And as it 

would be, the treatment from the first principles allows one to shed new light on some good, 

and old open problems of biology.   
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Chaotic Dynamics in a Single Neurons with the Sigmoidal  Transfer Function –                 

Analytical Proof 

 
A standard neuron model is a simple threshold element transforming a weighted 

summation of the inputs into the output through a nonlinear transfer function with a threshold. 

In what follows, we will use a generalization of classical McCulloch-Pitts neuron model 

(McCulloch & Pitts, 1943), in which instead of the unit step function the sigmoidal transfer 

function will be exploited. Then for the i-th neuron dynamics,  

( )( ) ,
1

1
ie

tgy nii λξξ −+
==  (1) 

holds, where 

( ) ( ) .injij
j

iini txwht θθξ −=−= ∑                                        (2) 

Here  is the output of the i-th neuron at the discrete time ; g is the sigmoidal 

transfer function with a slope  

)( 1+ni ty 1+nt

λ ;θ  is the threshold of the i-th neuron;  (for ijw ji ≠ ) is the 

connection weight with which the firing of the j-th neuron affects the i-th neuron and hi (tn) is 

the local field of i-th neuron at the discrete time tn. Here i, j = 1, 2,…, N is the number of 

neurons. One can speak about the input dynamics - Eq. (2) and the output dynamics - Eq. (1).  

Now a transition from the discrete time dynamics Eq. (1) and Eq. (2) to a 

continuous time dynamics can be easily made (Andrey, 1991). Denote 1−−=∆ nn ttt   and 

suppose << 1. Then from (Eq. 2) we have  t∆ ( ) ( )( ) ( ) ( )( )nininini tt
t

tt
t

ξξξξ −
∆

−=−
∆ −− 11

11   and 

in the limit, where  we get for the input dynamics ,0→∆ t

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−−= −
i

ni
i

y
Et

dt
d

1ξα
ξ  (3) 

where 
t∆

=
1α   is a parameter and E is the Hopfield-like energy function 
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( ).
2
1

iiijij
ij

yyxwE θ−−= ∑  
(4) 

Analogously, from Eq. (1) the time continuous output dynamics Eq. (5),  

( )( ).ii
i gy

dt
dy

ξα −−=  
   (5) 

Here we are especially interested in the output dynamics as we are looking for the 

potentiality of chaotic responses in such neurons. To this end we exploit properties of the 

sigmoidal  transfer function. Namely, from Eq. (1) one gets directly 

( ),1 ii
i

i yy
d
dy

−= λ
ξ

 (6) 

which is a Ricatti-like equation.  

To analyse the output dynamics of the i-th neuron take the Taylor expansion of the 

output variable yi in time,  

(7) ( ) ( ) ( ) ,.......1 +∆+=++=+ t
dt

d
d
dy

tyd
d
dy

tyty i

i

i
nii

i

i
nini

ξ
ξ

ξ
ξ

 

where again we assume << 1. After substistuting from Eq. (3) and Eq. (6) into 

Eq. (7), neglecting terms with    ( )  one gets after some elementary calculations, 

suprisingly  

nn ttt −=∆ +1

,2, ≥∆ kt k

( ) ( ) ( ) ( )( ),141 nnnn tytaytyty −+=+    (8) 

where the parameter 

  (9) ( ) ( )( ).
4 1 nn tta ξξλ

−= +  

depends upon the steepness of the sigmoidal transfer function and also upon the dynamics of 

gradient of local fields. That makes the dynamics very complex. 
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For the sake of simplicity we have omitted the index i, as the analysis is performed for the i-th 

neuron. For the same reason we can put ( ) nn yty ≡   and ( ) .nnt ξξ ≡   Then Eq. (8) can be 

written in the form  

 (10) ( ),141 nnnn yayyy −+=+  

 where 

(11)( ).
4 1 nna ξξλ

−= +  

Introducing the substitution  

(12),
2
414 aayz nn

+
−=  

into Eq. (10) one gets an equivalent form of logistic equation for z's, namely  

(13),2
1 nn zcz −=+  

where 
4
14 2 −= ac  is the parameter and the α is determined by Eq. (11). 

Note that the logistic map Eq. (13), on the interval (-1; 1), where c varies in the 

interval [0; 2), coincides with the more accustomed logistic map Eq. (14) 

(14) ( ),11 nnn xbxx −=+  

mapping the interval  ⎟
⎠
⎞

⎜
⎝
⎛ −

4
,

4
1 bb   into itself when 2 < b ≤ 4. Under the coordinate change  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+×⎟

⎠
⎞

⎜
⎝
⎛ −=

2
1

2
1

4
zbx   with the parameter identification  ,

24

2 bbc −=  both families Eq. (13) 

and Eq. (14) coincide (Collet and Eckmann, 1980).  

It is well known that the quadratic maps Eq. (13) and Eq. (14) can exhibit chaotic 

behavior. It means there exists some critical value of parameter ccrit in Eq. (13) or bcrit in Eq. 

(14) such that for  c≥  ccrit or b≥ bcrit solutions of Eq. (13) or Eq. (14) can be chaotic. For Eq. 

(13) then one has ccrit = 1.8284, or for Eq. (14) then bcrit = 3.8284 (Collet and Eckmann, 
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1980). From this it immediatelly follows for the neurons to fire chaotically some restrictions 

are layed upon the stability conditions through the steepness of sigmoid as well as dynamics 

of local fields, as mentioned above. This may have naturally interesting biological 

consequences. 

So far we have been able to show for the first time analytically that the output 

dynamics, or firing patterns, of the generalized McCulloch-Pitts like model of single neuron 

with the sigmoidal transfer function contains inherently deterministic chaos. In other words, 

chaotic behavior is natural in such neuronal dynamics.  

 

Some Consequences of Single Neuron Complex Dynamics 

 

The output dynamics described at the first approximation by the logistic equation- 

Eq. (13) is much more complex as it may appear at the first sight. Namely the parameter c, 

from Eq. (2) and Eq. (9), is in general the function  

( ).,, ncc θλ=  (15) 

That means the firing pattern of the neuron depends crucially upon the basic characteristics of 

the sigmoidal transfer function, namely the threshold  Θ   and the slope λ . As already 

mentioned  represents the threshold (bias) and from the biological point of view is a 

measure of sensitivity. So if Θ  increases then the sensitivity decreases and vice versa. On the 

other hand the parameter 

Θ

λ  presents  the steepness of sigmoidal transfer function and from 

the biological point of view this is connected with the excitability (Andrey, 1997). We will 

not go to details here but only mention case of onset of chaos in Eq. (13). For this special case 

it follows immediately from Eq. (2) and Eq. (9)  

                          ,
4

critcrit

crit
crit h θ

α
λ

−
=       (16) 
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where 
4
1

2
1

+= critcrit ca   and  = 1.8284 (Collet and Eckmann, 1980). Surprisingly 

enough at the onset of potential chaotic behavior we have a functional dependence between 

basic characteristics of neuronal dynamics, namely 

critc

( )Θ=λλ  (Andrey, 1997). Put it in the 

biological language the Eq. (16) can be translated as the gain-threshold mechanism working 

on an onset of chaotic firings of such neurons. The discrete dynamics result of  Eq. (16) 

prescribed in the continuous form simply describes that there should exist an exponencial 

dependence between the steepness (biologically the excitation or irritation) and the threshold- 

bias  (the sensitivity) of  the sigmoidal transfer function. 

Now, it is well known (Khodorov, 1974) that the threshold Θ can vary   as the strengh 

of the stimulating current is changed. Besides, it is observed that the minimum slope λmin is 

needed to increase the current stimulation in time (Scott, 1977). Below this minimal slope no 

action potential is observed at any level of stimulating current. But it seems the biological 

reality is even more sophisticated. On the one hand, with  increasing a threshold Θ the 

sensitivity naturally decreases. On the other hand, with increasing arousal the gain λ of 

neurons rises as well. This input-dependent increase in gain seems essential for the formation 

of bursts, as indicated by Freeman (1991). This is understandable if one realizes that the λ 

determines the stability conditions of the firing process. Indeed, the first derivation of transfer 

function g is proportional to the λ as it is seen from eqs. (1) and (6). Technically speaking, the 

λ plays the important role in the Lyapunov stability analysis of the whole process. 

Biologically, the meaning of  λ will be discussed later on. 

Let us mention that the logistic equation (13) is different from  standard one, 

exploited, e.g., commonly in physics or in population dynamics. In fact one has the very 

complex logistic equation with the other complicated nonlinear dynamic equation nested in it 

through the dynamic parameter c of the form (15) and (16) (Andrey, 2000; 2001; 2002) . 
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 The existence of the above mentioned gain-threshold mechanism in single neurons in 

the equation (16) is a great challenge for the experimental neuroscience. Surprisingly, there 

are some at least indirect evidences for such a mechanism in the physiology of perception. 

Namely, the relation between input (wave density) and output (pulse density) at trigger zones 

in populations of neurons are sigmoid curves with the slope increasing with an arousal 

(Freeman, 1991; Wright & Liley, 1996; Liljestrnöm, 1991). There is one hot candidate even 

on a single neuron level. This is a series of remarkable experiments by Miyashita and his 

coworkers (1988, 1991). Spiking rates emitted by a given neuron in the anterior ventral 

temporal cortex of a monkey (macaca fuscata) as a function of time were recorded. The 

enhanced activity correlated with abstract feature recognition was observed sustaining for 

some finite time following the removal of the stimulus. In analyzing these experimental 

results one can deduce at least qualitatively  from the graph of the firing rates dependence 

upon input currents for different conditions (values of thresholds, in fact) there  should exist  a 

functional gain-threshold dependence in this case. (Andrey, 1993; Amit, 1993).  (As the 

lambda-theta mechanism is not the main ingradient of the paper more recent findings will be 

published elsewhere.) 

 It is worth mentioning about the implementation of  the gain-threshold  mechanism 

into the natural sigmoidal transfer function leads immediately  already at the first 

approximation to the non-monotone transfer function with a typical cubic non-linearity 

(Andrey & Erzan, 2002). So one gets rather naturally here what many people have been 

constructing ad hoc in the rather dubious manner in the attempt to increase the capacity of 

adequate associative memories (Morita, 1993). 

 Another positive message is that one can build up novel type neural networks of 

neurons with such gain-threshold mechanism. The natural way is to call them the λ-Θ neural 

networks. Such networks have been tested on many numerical simulations and it was shown 
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that such networks possess the fascinating behavior and properties (Andrey, 2000a). (It has 

been an effort to make patents of them.) 

 

The Minimal Neuronal System with Continuous Dynamics Possessing Chaotic 

Behaviour 

 

One can summarize that single neurons have the strong potentiality of complex chaotic 

behavior. But the dynamics of single neurons plays a very important role in recent approaches 

to artificial neural networks. Model neurons possessing complicated dynamics can be 

composing elements of artificial neural networks. Such neural networks are then called the 

chaotic neural networks (Aihara, 1990). In such case it was shown numerically that chaotic 

behavior in biologically motivated neuron models and neural networks built of such neurons 

can be caused also by a time delay due to a refractoriness.  

Now an open question remains what are sufiicient conditions for a potentiality of 

chaotic behavior in a continuous dynamics case. Surprisingly, this question natural in its 

technical setting also has an adequate biological counterpart. Well, there is a wealth of 

anatomical, histochemical and physiological observations which indicate that neurons are 

incorporated into functional circuits, or modular units. Neural circuits composed of two-three 

neurons form the basic feedback mechanism involved in the regulation of neural activity. 

Examples of three  neurons circuits are the basic rythm generating circuits of, for example, 

central pattern generators and the recently proposed canonical circuit (Milton, 1996).  
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Two-Three Neurons Chaotic Systems 
 

In looking for a minimal continuous dynamics neural system, or better a neural 

circuit possessing a chaotic behavior, it is reasonable as mentioned above to take into 

consideration two or three neurons circuits. On the other hand, it is well known from the 

theory of deterministic chaos, or shortly from the chaodynamics (Andrey, 1986) that in the 

continuous dynamics case one needs at least three degrees of freedom for the system to 

behave chaotically, i.e., to possess a chaotic strange attractor.  

Let us have a neural circuit of three neurons interconnected via synapses. (The term 

neural network will be reserved for systems of more than three neurons.) Then dynamical 

variables are membrane potentials and one can express the rate of change of membrane 

potential of the neuron i;  i = 1; 2;3 by the current balance equation in the form  

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−+−= ∑

≠
iijij

ij
iiii txwgxx θτα

3

 (17)

where (17) describes the activation or output dynamics for all three neurons in the circuit 

(Andrey, 1991). 

Here,   
dt
dx

x i=
.

 is a time derivative of the activity variable xi, i = 1,2,3. The second 

term on the r.h.s.  of (17) represents currents induced by the activity of pre-synaptic neurons 

and the first term describes a leakage via the finite resistivity of the membrane with a 

threshold like mechanism. For a sake of simplicity one can introduce  

( ) iiiijij
ij

i htxw θθτξ −=−−=∑
≠

3

    (18)

( )ijij
ij

i txwh τ−= ∑
≠

3

 (19)

where hi is the value of local  field (a postsynaptic potential PSP) of the ith neuron, θi 

is a bias (threshold), τi  -  time delays expressing a refractoriness, wij are fixed (here) weights 
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between neurons i and j and as already mentioned xi; i = 1; 2; 3 represent presynaptic action 

potentials or activations of the given neuron by surrounding ones.  

To be complete one must specify  functions gi; i = 1; 2; 3: Well, gi are sigmoidal 

transfer (input-output) functions characterized by two parameters, a steepness lambda and 

already mentioned treshold theta , playing a role of shifting the sigmoid. So functions gi can 

be written explicitly in the form  

 ( ) 3,2,1;
1

1
=

+
= − i

e
g

iiii ξλξ    (20)

 

Let us mention that for a potentiality of chaotic behavior of (17), as it will be seen  

later,  parameters αi (we suppose αi  > 0) and mentioned main characteristics of any transfer  

function, namely the steepneses λi and threshold θi  will play a crucial role. It is worthwhile to 

mention that biologically λi  play the role of excitability and θi  that of sensitivity of neurons. 

The goal  is to bring a proof of possibility of chaotic dynamics of neuronal circuit 

described by (17). To achieve this it is suficient to take into account the simplest form of (17) 

as possible. For a sake of simplicity suppose  

(21)0321 〉=== αααα  

gggg === 321                                                      (22)

(23) 0321 === τττ  

i.e., the leakage is constant in all neurons (21), one does not take into account the 

refractoriness (23) and as it is biologically relevant that one takes the same transfer function 

for all three neurons in the circuit. Then (17) has a form  

 

( ) 3,2,1; =+−= igxx iiii ξα   (24) 

where 
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i
ij

jiji xw θξ −= ∑
≠

3

 (25)

( )
iie

g i ξλξ
+

=
1

1  (26) 

Let us now mention that in a case of τi ≠ 0 it was already shown (Aihara, et al., 

1990) that even a single neuron can behave chaotically.  

Now a question is if the dynamical system (24) possesses a chaotic dynamics. Well, 

one has the system of three strongly nonlinear ordinary diferential equations, as the function g 

describing the sigmoidal transfer function is strongly nonlinear. The divergence of the flow of 

(24), can be easily calculated as follow: 

03
3

1

〈−=
∂
∂

=∑
=

α
i

i

x x
x

divX
i

 (27)

It is a negative constant so the dynamical systém  (24) is dissipative. Now it is 

enough to show that the lowest order approximation of  g,  i.e., the quadratic nonlinearity 

approximation will possess a chaotic dynamics. To realize this, one can subtract the Taylor 

series expansion till the quadratic nonlinearity of the function g in (26). In doing so, one gets 

the following equality 

( ) 22
2

2222
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8
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2
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1...

2
11
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⎠
⎞

⎜
⎝
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⎡ ±+−−=  (28)

so the dynamical system (24) has a form 
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8
7

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++−= ∑

≠
ijij

ij
iii xwxx θλα  (29)

To simplify the reasoning, one can put on pure biological basis 

λλλλ === 321  (30)

θθθθ === 321  (31)
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Besides, we do not consider a learning process here,  i.e., we do suppose that 

weights wij are fixed. Without loosing of generality  one can suppose that the weights are 

symmetrical  

3,2,1; == iww ijij   (32) 

This is done, e.g., for Hopfield like networks to guarantee a stability of memories. 

The dynamical system (29) can be written in the following explicite form: 
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7

θλα

θλα
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−+++−=

−+++−=

−+++−=

xwxwxx

xwxwxx

xwxwxx

 (33) 

So the simplest continuous in time nonlinear dynamics for a neuronal circuit of three 

neurons can be described by the dynamical system (33). Such system consists of three 

ordinary diferential equations of quadratic nonlinearity and the constant negative divergence 

of the flow. It can be easily shown that (33) is dynamically equivalent to the famous Lorenz 

system (Sparrow, 1982)  describing a deterministic nonperiodic flow of the homogenous layer 

of  liquid heated from bellow. But it is well known that the Lorenz system is the prototype of 

the system possessing a chaotic strange attractor. So one could apply all the machinery of 

chaos theory to perform the stability analysis of the dynamical system (33).  

Now, let us mention some important features of  (33). Commonly, in modeling 

neural networks, the value of  parameter α is considered equal to one. Then it is clear that the 

dynamics of (33) is fully characterized by the values of two main parameters of sigmoidal 

transfer function, namely a value of threshold θ, playing biologically the role of sensitivity 

and a value of steepness λ  playing the tole of excitability. It is also interesting to note that for 

a quality of dynamical behavior the role of  λ  is in a sense more important as θ.  One can 
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make some kind of scaling and to put  θ  = 0, and still (33) can possess a chaotic dynamics. So 

for α  = 1;  θ  = 0 we get of (33) 
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2
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 (34)

where we put for a simplicity 

33113

23223

12112

www
www
www

==
==
==

 (35)

in accordance with (32). This result is not surprising as it is known from the theory of neural 

networks that the parameter  λ  or steepness of sigmoidal transfer function determines in fact 

a shape of the first derivative of transfer function playing an important role in a learning 

process and the stability analysis (Andrey, 1991). Let us note that it has not been specified so 

far if the value of symmetrical weights (35) are positive or negative. In dependence upon a 

sign of the appropriate weight then the adequate part of the circuit can be exciatory or 

inhibitory. That finishes our analysis showing that above mentioned examples of three 

neuronal circuits, namely central patterns generators or the canonical circuit can be simulated 

by the dynamical systems of form (33) resp. (34) possessing a chaotic activation or output 

dynamics.  

 

Potential Applications of Chaotic Neural Circuits 

 
 

It has been shown here that the minimal continuous dynamics neuronal network 

possessing the chaotic behavior can be realized by the three neurons circuit simulated by the 

three  dimensional dynamical system (34) analogical to the famous Lorenz model of 
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hydrodynamics (Sparrow, 1982).  This partially answers a cardinal question about the 

origination of the complex behavior in our brain. The answer is that the neural circuits 

composed of three neurons can generate an observed complicated behavior by means of 

chaotic dynamics. But as was mentioned before neural circuits can be composed of two 

neurons, too.  

From neurobiology, one knows that such small two-three neurons circuits, in turn, 

are the basic building blocks to construct larger modular units, e.g., vertically oriented cortical 

columns in the neocortex (Milton, 1996). Thus, the study of the properties of neural circuits 

composed of two-three neurons is a first rational step towards the development of an  

understanding of the behavior of the neurons system upon the adequate level of hierarchy. 

On the other hand, one of the consequences of results presented here is a strong 

suspiction that one cannot apply the methods of chaos to phenomenological EEG signal 

directly, as the behavior of thousands of interacting neurons recorded by EEG can have a very 

wide spectrum of complex, qualitatively and quantitatively different dynamical patterns of 

behavior.  

 

CONCLUSIONS AND FUTURE OUTLOOKS 
 
 

The human brain seems to be the most complex structure in the known Universe. 

Remarkably precise connections among more than one hundred bilions of neurons in our 

brain account for all properties of humand mind. This is of course connected to the classical 

mind-body problem. But this is closely related to one of the most exciting problems of today´s 

science, namely that of consciousness. As F. G. Crick says in the Foreword to the new book 

on consciousness by Ch. Koch (2004): “Consciousness is the major unsolved problem in 

Biology.“ 
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In fact, there is even no present consensus on the general nature of the solution. How 

do philosophers call “qualia“ arise from the concerted actions of nerve cells, glial cells and 

their associated molecules? Can qualia be explained by what we now know of modern 

science, or is some quite different kind of explanation needed? And how to approach this 

seemingly intractable problem? 

In the past few years there has been an enormous interest in the study of 

consciousness with an enormous flood of books and papers about consciousness, and 

neuroscience in general (Koch, 2004; Dyan & Abbot, 2001; Wilson & Keil, 1999). One of the 

novel approaches is to try first to find the neuronal correlates of consciousness, often called 

the NCC (Koch, 2004). But this seems to be a very hard task, too. The more specific problem 

is a problem of awareness the subset of which is a problem of selective attention. Here the 

threshold of neuronal transfer function plays the important role.  Namely, there have been 

attempts to exploit the variable threshold as a model for selective attention in associative 

neural networks (Wang & Ross, 1991). In such the case the network can acieve the analogy of 

selective attention by purposefully changing its neuronal threshold in a prescribed manner. By 

other words one can improve recall in associative memories by dynamic thresholds (Wang, 

1994). But neurophysiological aspects related to a variable neuronal threshold remain still 

open. 

In the paper presented here the approach belongs to this direction. One starts, so to 

speak, from the first principles. And obtained results not only cover well known descriptions 

of neuronal systems in our case, but go further allowing for new qualities, mechanisms and 

laws. E.g., before the paradigm of chaos was known it had been commonly used to consider 

the brain as a noisy processor in which statistical phenomena or stochastic mechanisms lead 

to generate the organized behaviour. In this context the answer to the cardinal question on the 

possible origination of very complex spiking patterns of firing neurons has been found. It has 
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been shown for the first time analytically that the sigmoidal transfer function of neurons is 

sufficient for neurons to fire chaotically. But one knows from the chaodynamics that such 

behaviour is in a statistical sense equivalent to the ad hoc random generating processes. Even 

more, such stochastic process can be viewed  as asymptotics to adequate deterministic chaos.  

This finding brings automatically a new sight upon the cardinal problem of neural 

coding, too. There are two extreme views on this problem. One espouses a systematic 

organization when a simple stimulus features and complex events are encoded by the activity 

of single neurons. A contrasting view exposes a fully distributed representation that encodes 

each item by distinct spatio-temporal activity patterns of homogenous arrays of neurons. 

These opposing views may in fact be reconcilable in our brain. In our case the proved 

potentiality of very complex dynamics of single neurons sheds a new light on the mentioned 

problem of neural coding. The classical dogma of stochastic, or ad hoc random coding can be 

taken as the limiting case to the new, complementary deterministic, or chaotic paradigm. 

This view is then supported and strengthened by the construction of  continuous 

minimal two-three neuronal circuits possessing the chaotic dynamics, too. This can have some 

physiological applications as mentioned above. 

As the by-product of our derivation the novel functional dependence between main 

characteristics of every biological sigmoidal transfer function has been earned. In biological 

language, it means there should exist the gain-threshold (or lambda-theta in our notation) 

mechanism in neurons. This mechanism presents rather new quality of potential complex 

behaviour of single neurons, too. It could be a good candidate for above mentioned new 

approach “to try first to find the neuronal correlates of consciousness” (Koch, 2004). 
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