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1 Introduction

Radial-basis function (RBF) networks with Gaussian computational units are known to be able to
approximate with an arbitrary accuracy all continuous and all L2-functions on compact subsets of Rd

[9, 18, 19, 20, 21]. In such approximations, the number n of RBF units plays the role of a measure of
model complexity and its size determines the feasibility of network implementation.

Several authors investigated rates of approximation by Gaussian RBF networks with fixed width.
Girosi and Anzellotti [8] derived an asymptotic upper bound of the form O(1/

√
n) on approximation

error measured by the supremum norm for band-limited functions with continuous derivatives up to
the order r with r > d/2, where d is the number of variables [8, p. 106]. Using results from statistical
learning theory, Girosi [6] extended these bounds to more general classes of kernels. For Gaussians of
varying widths, Kon, Raphael, and Williams [12, Cor. 3] obtained bounds on a wighted L∞-distance
from the target function to a linear combination of Gaussians.

In this paper, we also investigate approximation of smooth functions by Gaussian RBF networks
with varying widths, but consider Lebesgue measure L2-distance. We derive upper bounds on rates of
approximation in terms of the Bessel and Sobolev norms of the functions to be approximated. Bessel
norms are defined in terms of convolution with the Bessel potential kernel, while Sobolev norms use
integrals of partial derivatives. Both norms are equivalent but the ratios between them also depend
on the number of variables d.

Our estimates hold for all numbers n of hidden units and all degrees r > d/2 of Bessel potentials
and are of the form n−1/2 times the Bessel norm ‖f‖L1,r of the function f to be approximated times
a factor k(r, d). For a fixed c > 0 and the degree rd = d/2+ c, k(rd, d) decreases to zero exponentially
fast. We also derive estimates in terms of L2 Bessel and Sobolev norms. Our results show that
reasonably smooth functions can be approximated quite efficiently by Gaussian radial-basis networks;
a preliminary version of our results appeared in [11].

The paper is organized as follows. In Section 2, some concepts, notations and auxiliary results for
investigation of approximation by Gaussian RBF networks are introduced. In Section 3, upper bounds
on rates of approximation of Bessel potentials by linear combinations of scaled Gaussians are derived
in terms of variation norms obtained from integral representations of Bessel potentials and their
Fourier transforms. In Section 4, for functions representable as convolutions with Bessel potentials,
upper bounds are derived in terms of Bessel potential norms. These bounds are then combined
with estimates of variational norms from the previous section to obtain bounds for approximation
by Gaussian RBFs in terms of Bessel norms. In Section 5, relationship between Sobolev and Bessel
norms is used to obtain bounds in terms of Sobolev norms.

2 Approximation by Gaussian RBF networks

For Ω ⊆ Rd, L2(Ω) denotes the space of real-valued functions on Ω with norm ‖f‖L2(Ω) =
(∫ |f(x)|2dx

)1/2.
Two functions are identified if they differ only on a set of Lebesgue-measure zero. When Ω = Rd, we
omit it in the notation.

For nonzero f ∈ L2, fo = f/‖f‖L2 denotes the normalization of f ; for convenience, we put 0o = 0.
For F ⊂ L2, F |Ω denotes the set of functions from F restricted to Ω, F̂ the set of Fourier transforms
of functions in F , and F o the set of their normalizations. For n ≥ 1, define

spannF :=

{
n∑

i=1

wifi | fi ∈ F,wi ∈ R
}

.

In this paper, we investigate accuracy measured by L2-norm with respect to Lebesgue measure λ
in approximation by Gaussian radial-basis-function networks.

A Gaussian radial-basis-function unit with d inputs computes all scaled and translated Gaussian
functions on Rd. For b > 0, let γb : Rd → R denote the Gaussian function of width b defined by

γb(x) = e−b‖x‖2 .
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A simple calculation shows that
‖γb‖L2 = (π/2b)d/4. (2.1)

Indeed, ‖γb‖2L2 =
∫
Rd

(
e−b‖x‖2

)2

dx =
∫
Rd e−2b‖x‖2dx. Setting y = (

√
2b)x and dx = (2b)−d/2dy, we

get ‖γb‖2L2 = (2b)−d/2
∫
Rd e−‖y‖

2
dy =

(
π
2b

)d/2.
Let

G0 = {γb | b > 0}
denote the set of the Gaussians centered at 0 with varying widths. For τy the translation operator
defined for any y ∈ Rd and any f on Rd as (τyf)(x) = f(x− y), let

G =
{
τyγb | y ∈ Rd, b > 0

}

denote the set of all translations of the Gaussians with varying widths.
We investigate rates of approximation by networks with n Gaussian RBF units and one linear

output unit, which compute functions from the set spannG.
We utilize properties of the Fourier transform of the Gaussian function. The d-dimensional Fourier

transform is the operator F on L2 ∩ L1 given by

F(f)(s) = f̂(s) =
1

(2π)d/2

∫

Rd

eix·sf(x) dx , (2.2)

where · denotes the Euclidean inner product on Rd.
For every b > 0,

γ̂b(x) = (2b)−d/2γ1/4b(x) (2.3)

(cf.[24, p. 43]). Thus

spannG0 = spannĜ0. (2.4)

Plancherel’s identity [24, p. 31] asserts that Fourier transform is an isometry on L2, i.e., for all
f ∈ L2

‖f‖L2 = ‖f̂‖L2 , (2.5)

and directly by (2.1) we have

‖γb‖L2 =
( π

2b

)d/4

= ‖γ̂b‖L2 . (2.6)

In a normed linear space (X , ‖.‖X ), for f ∈ X and A ⊂ X ,

‖f −A‖X = inf
g∈A

‖f − g‖X

denotes the distance from f to A. The following proposition shows that in estimating rates of approx-
imation by linear combinations of scaled Gaussians centered at 0, one can switch between a function
and its Fourier transform.

Proposition 1 For all positive integers d, n and all f ∈ L2,
‖f − spannG0‖L2 = ‖f − spannĜ0‖L2 = ‖f̂ − spannĜ0‖L2 = ‖f̂ − spannG0‖L2 .

Proof. Using (2.5) and (2.4), respectively, we get ‖f − spannG0‖L2 = ‖f̂ − spannĜ0‖L2 = ‖f −
spannĜ0‖L2 = ‖f̂ − spannG0‖L2 . 2

To derive our estimates, we use a result on approximation by convex combinations of n elements
of a bounded subset of a Hilbert space derived by Maurey [22], Jones [10] and Barron [2, 3]. Let F be
a bounded subset of a Hilbert space (H, ‖.‖H), and uconvnF = { 1

n

∑n
i=1 fi | fi ∈ F} denote the set

of n-fold convex combinations of elements of F with all coefficients equal. By Maurey-Jones-Barron’s
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result [3, p. 934], for every function h in cl conv (F ∪−F ), i.e., in the closure of the symmetric convex
hull of F , we have

‖h− uconvnF‖H ≤ n−1/2sF , (2.7)
where sF = supf∈F ‖f‖H. The bound (2.7) implies an estimate of the distance from spannF holding
for any function from H. The estimate is formulated in terms of a norm tailored to F , called F -
variation, which was introduced in [13] as an extension of “variation with respect to half-spaces”
defined in [2].

For any bounded subset F of any normed linear space (X , ‖.‖X ), F -variation is defined as the
Minkowski functional of the closed convex symmetric hull of F (where closure is taken with respect
to the norm ‖.‖X ). The variational norm with respect to F in X is denoted by ‖.‖F,X , i.e.,

‖h‖F,X = inf
{
c > 0 | c−1h ∈ cl conv (F ∪ −F )

}
. (2.8)

Note that F -variation can be infinite (when the set on the right-hand side is empty) and that it
depends on the ambient space norm. When we consider variation with respect to the L2-norm, we
omit L2 in the notation of variational norm.

Maurey-Jones-Barron’s estimate (2.7) implies that for any bounded subset F of a Hilbert space
(H, ‖.‖H) and all positive integers n

‖h− spannF‖H ≤ n−1/2‖h‖F o,H. (2.9)

(see[14]). To apply the upper bound (2.9) to approximation by Gaussian RBFs we take advantage of
properties of variational norms given in the remainder of this section.

From the definitions, if ψ is any linear isometry of (X , ‖.‖X ), then for any f ∈ X , ‖f‖F,X =
‖ψ(f)‖ψ(F ),X . In particular,

‖f‖Go
0,X = ‖f̂‖Go

0,X (2.10)
Variations with respect to two subsets satisfy the following inequality [16, Proposition 3(iii)].

Lemma 1 Let F, H be nonempty, nonzero subsets of a normed linear space (X , ‖.‖X ) and sH,F :=
suph∈H ‖h‖F . Then for every f ∈ X ,

‖f‖F,X ≤ sH,F ‖f‖H,X .

The next lemma states that the variation of the limit of a sequence of functions is bounded by the
limit of variations (see [15, Lemma 7.2]).

Lemma 2 Let F be a nonempty bounded subset of a normed linear space (X , ‖·‖X ), h ∈ X , {hi} ⊂ X
be such that limi→∞ ‖hi − h‖X = 0, for all i, bi = ‖hi‖F,X < ∞ and there exist limi→∞ bi = b. Then
‖h‖F,X ≤ b.

Variation with respect to a parameterized family of functions can be estimated for functions which
can be represented by a suitable integral formula, where integration is respect to the parameter. Let
Ω ⊆ Rd, φ : Ω× Y → R, and

Fφ := {φ(., y) : Ω → R | y ∈ Y }.
If for all y ∈ Y , φ(., y) ∈ L2(Ω), then we denote by Φ : Y → L2 the mapping defined as Φ(y) =
φ(., y) : x 7→ φ(x, y).

Theorem 1 Let d, p be positive integers, Ω ⊆ Rd, Y ⊆ Rp be open, w ∈ L1(Y ), φ : Ω × Y → R be
such that Φ(Y ) is a bounded subset of L2(Ω). If w and Φ are continuous on Y except on a closed
subset of measure zero and if for almost all x ∈ Ω,

f(x) =
∫

w(y)φ(x, y)dy,

then ‖f ||Fφ
≤ ‖w‖L1(Y ).

The theorem can be proved by an argument using Bochner integrals (cf Girosi and Anzellotti [7])
together with the limit property of variational norms given in Lemma 2. It guarantees that if f can
be represented as a neural network with a continuum of hidden units computing functions from Fφ,
then the Fφ-variational norm of f is bounded by the L1-norm of the weight function.
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3 Approximation of Bessel potentials by Gaussian RBFs

In this section, we estimate rates of approximation by spannG for certain special functions, called
Bessel potentials, which are defined by means of their Fourier transforms. For r > 0, the Bessel
potential of order r, denoted by βr, is the function on Rd with Fourier transform

β̂r(s) = (1 + ‖s‖2)−r/2 .

To estimate Go
0-variations of βr and β̂r, we use Theorem 1 with representations of these two functions

as integrals of scaled Guassians.
For r > 0, it is known [23, p. 132] that βr is non-negative, radial, exponentially decreasing at

infinity, analytic except at the origin, and belongs to L1. It can be expressed by the integral formula
(see [17, p. 296] or [23])

βr(x) = c1(r, d)
∫ ∞

0

e−t/(4π) t−d/2+r/2−1e−(π/t)‖x‖2 dt, (3.1)

where
c1(r, d) = (2π)d/2(4π)−r/2/Γ(r/2)

and Γ(z) =
∫∞
0

tz−1e−t dt is the Gamma function. The factor (2π)d/2 occurs since our choice of Fourier
transform (2.2) includes the factor (2π)−d/2. Combining (3.1) with (2.1), we get a representation of
the Bessel potential as an integral of normalized scaled Gaussians.

Proposition 2 For every r > 0, d a positive integer, and x ∈ Rd

βr(x) =
∫ ∞

0

vr(t)γo
π/t(x) dt ,

where vr(t) = c1(r, d) 2−d/4 e−t/4π t−d/4+r/2−1 .

The next proposition estimates Go
0-variation of βr.

Proposition 3 For d a positive integer and r > d/2,

‖βr‖Go ≤ ‖βr‖Go
0
≤

∫ ∞

0

vr(t) dt = k(r, d),

where k(r, d) = (π/2)d/4Γ(r/2−d/4)
Γ(r/2) .

Proof. As Go
0 ⊂ Go, we get ‖βr‖Go ≤ ‖βr‖Go

0
. To estimate ‖βr‖Go

0
, we apply Theorem 1 with w = vr,

φ(x, y) = φ(x, t) = γo
π/t(x), Y = (0,∞), Y0 = ∅, and Ω = Rd to the integral representation from

Proposition 2, getting

‖βr‖Go
0
≤

∫ ∞

0

vr(t) dt = c1(r, d) 2−d/4

∫ ∞

0

e−t/(4π) t−d/4+r/2−1 dt .

To estimate this integral, replace the variable t with u = t/4π obtaining ‖βr‖Go
0
≤ (4π)−d/4+r/2 c1(r, d)

2−d/4
∫∞
0

u−d/4+r/2−1 e−u du. Hence, by the definition of the Gamma function, one has

‖βr‖Go
0

≤ c1(r, d) 2−d/4(4π)−d/4+r/2Γ(r/2− d/4)

= (2π)d/2(4π)−r/22−d/4(4π)−d/4+r/2Γ(r/2− d/4)/Γ(r/2)

=
(π/2)d/4Γ(r/2− d/4)

Γ(r/2)
= k(r, d) .

2

The Fourier transform of the Bessel potential can also be expressed as an integral of normalized
scaled Gaussians.
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Proposition 4 For every r > 0, d a positive integer, and s ∈ Rd

β̂r(s) =
∫ ∞

0

wr(t)γo
t (s) dt ,

where wr(t) = (π/2t)d/4 tr/2−1 e−t/Γ(r/2).

Proof. First we show that β̂r(s) = I/Γ(r/2), where

I =
∫ ∞

0

tr/2−1 e−t e−t‖s‖2 dt.

Indeed, putting u = t(1 + ‖s‖2), so dt = du(1 + ‖s‖2)−1, we get

I = (1 + ‖s‖2)−r/2

∫ ∞

0

ur/2−1 e−u du = β̂r(s)Γ(r/2).

By (2.1) ‖γt‖L2 = (π/2t)d/4, so β̂r(s) =
∫∞
0

(π/2t)d/4 tr/2−1 e−t/Γ(r/2) γo
t (s)dt. 2

The next proposition gives an upper bound on Go
0-variation of β̂r.

Proposition 5 For d a positive integer and r > d/2,

‖β̂r‖Go ≤ ‖β̂r‖Go
0
≤

∫ ∞

0

wr(t)dt = k(r, d),

where k(r, d) = (π/2)d/4Γ(r/2−d/4)
Γ(r/2) .

Proof. A straightforward calculation shows that the L1-norm of the weighting function wr is the
same as the L1-norm of the weighting function vr and the upper bound follows from Theorem 1 as in
Proposition 3 but with φ(x, y) = φ(x, t) = γo

t (x). 2

Because the Fourier transform is an isometry on L2, by (2.10) the functions βr and β̂r have the
same variation with respect to Go

0. Propositions 3 and 5 give the same upper bound k(r, d) on this
number. If for some fixed c > 0, rd = d/2 + c, then k(rd, d) → 0 exponentially fast as d →∞.

An application of (2.9) with Propositions 3 or 5 shows the following result:

Theorem 2 For d, n positive integers and r > d/2
‖βr − spann G0‖L2 = ‖β̂r − spann G0‖L2 ≤ k(r, d) n−1/2 .

As above, for c > 0 and d large enough, The theorem shows that the Bessel potential of order
rd = d/2 + c can be well-approximated by a network with just one Gaussian unit; hence, βrd

is close
in L2-norm to a multiple of some d-dimensional Gaussian centered at the origin.

4 Approximation of smooth functions by Gaussian RBFs

In this section we estimate rates of approximation by Gaussian RBF for functions in the Bessel
potential spaces. To obtain the estimates we first derive upper bounds on variation with respect to
the set of translated Bessel potentials and then combine them with the estimates of G0-variation of
Bessel potentials from the previous section.

Let h ∗ g denote the convolution of two functions h and g,

(h ∗ g)(x) =
∫

Rd

h(y)g(x− y)dy.

For d a positive integer, r > d/2, and q ∈ [1,∞], the Bessel potential space (with respect to Rd) [23,
pp.134-136] denoted by (Lq,r, ‖.‖Lq,r) is defined as

Lq,r := {f | f = w ∗ βr, w ∈ Lq}
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and
‖f‖Lq,r := ‖w‖Lq for f = w ∗ βr.

Since the Fourier transform (2.2) of a convolution is (2π)d/2 times the product of the transforms, we
have ŵ = (2π)−d/2f̂/β̂r. Thus w = (2π)−d/2(f̂/β̂r)ˇ is uniquely determined by f and so the Bessel
potential norm is well-defined.

For τy the translation operator (τyf)(x) = f(x− y) let

Gβr = {τyβr | y ∈ Rd}

denote the set of translates of the Bessel potential of order r. For r > d/2, βr belongs to L2; since
translation does not change the L2-norm, Gβr ⊂ L2.

The L2-norm of βr can be calculated by switching to β̂r and using Plancherel’s equality (2.5). For
every r > d/2

‖βr‖L2 = ‖β̂r‖L2 = λ(r, d) := πd/4

(
Γ(r − d/2)

Γ(r)

)1/2

. (4.1)

Indeed, using radial symmetry ‖β̂r‖2L2 =
∫
Rd(1 + ‖x‖2)−rdx = ωdI, where ωd := 2πd/2/Γ(d/2) is

the area of the unit sphere in Rd [5, p. 303] and I =
∫∞
0

(1 + ρ2)−rρd−1dρ. Substituting σ = ρ2, one
gets dρ = (1/2)σ−1/2dσ; hence,

I = (1/2)
∫ ∞

0

σd/2−1

(1 + σ)r
dσ =

Γ(d/2)Γ(r − d/2)
2Γ(r)

(see [4, p. 60] for the last equality).
As all elements of Gβr have the same L2-norm equal to λ(r, d),

‖.‖Go
βr

= λ(r, d)‖.‖Gβr
. (4.2)

Functions in the Bessel potential space are convolutions with βr which are integral formulas. Thus
we get the following upper bound:

Proposition 6 Let d be a positive integer, r > d/2, w : Rd → R continuous except on a closed set
Z0 of measure zero, w ∈ L1, and f = w ∗ βr. Then
‖f‖Gβr

≤ ‖w‖L1 = ‖f‖L1,r .

Proof. The bounds follow from Theorem 1, applied to the integral formula f(x) =
∫

w(y)βr(x−y)dy =∫
w(y)λ(r, d)βo

r (x − y)dy combined with (4.2). Take Y = Rd, Y0 = Z0, let φ(x, y) = βo
r (x − y), and

let w(y)λ(r, d) be the weight function. The condition r > d/2 is needed to ensure that Gβr ⊂ L2. 2

For h : U → R, U a topological space, let supp h = cl {u ∈ U |h(u) 6= 0} .

Proposition 7 Let d be a positive integer, r > d/2, w ∈ L2 continuous except on a closed set of
measure zero, λ(supp w) = a < ∞, and f = w ∗ βr. Then

‖f‖Gβr
≤ a1/2‖f‖L2,r .

Proof. By the Cauchy-Schwartz inequality, ‖w‖L1 ≤ a1/2‖w‖L2 = a1/2‖f‖L2,r . But by Proposition
6, ‖f‖Gβr

≤ ‖w‖L1 . 2

These estimates of variations give an upper bound on rates of approximation by linear combinations
of n translates of the Bessel potential βr.
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Theorem 3 Let d, n be positive integers, r > d/2, w continuous except on a closed set of measure

zero, f = w ∗ βr, and λ(r, d) = πd/4
(

Γ(r−d/2)
Γ(r)

)1/2

.

(i) For w ∈ L1,
‖f − spannGβr

‖L2 ≤ (λ(r, d)‖f‖L1,r )n−1/2.

(ii) For w ∈ L2 with a = λ(suppw) < ∞,

‖f − spannGβr
‖L2 ≤

(
a1/2λ(r, d)‖f‖L2,r

)
n−1/2.

Proof. (i) By Proposition 6, (4.2), and (2.9).
(ii) As in Proposition 7, w ∈ L2 and supp(w) = a < ∞ implies w ∈ L1; the rest follows from
Proposition 7. 2

Composing estimates of variations with respect to sets of translated Bessel potentials and Gaus-
sians, we get an upper bound on rates of approximation by networks with n Gaussian RBF units for
functions from Bessel spaces.

Theorem 4 Let d, n be positive integers, r > d/2, w continuous except on a closed set of measure
zero, f = w ∗ βr, and k(r, d) = (π/2)d/4Γ(r/2−d/4)

Γ(r/2) .
(i) For w ∈ L1,

‖f − spannG‖L2 ≤ (k(r, d) ‖f‖L1,r )n−1/2.

(ii) For w ∈ L2 and λ(suppw) = a < ∞,

‖f − spannG‖L2 ≤
(
k(r, d) a1/2 ‖f‖L2,r

)
n−1/2.

Proof. By (2.9), ‖f − spannG‖L2 ≤ ‖f‖Gon−1/2. By Lemma 1 with X = L2, F = Go,H = Gβr ,
using Proposition 3 and the fact that Go is closed under translations, we have

‖f‖Go ≤ sup{‖τy(βr)‖Go | y ∈ Rd}‖f‖Gβr
≤ k(r, d)‖f‖Gβr

.

Then the statements follow from the upper bounds on ‖f‖Gβr
given in Propositions 6 and 7, resp. 2

5 Upper bounds in terms of Sobolev norms

In this section, bounds on approximation by Gaussian RBFs are given in terms of Sobolev norms. Two
norms are equivalent if each is bounded by a multiple of the other. The equivalence between Sobolev
and Bessel potential norms is well-known (e.g., [24] or [1, p. 252]). As constants of equivalence were
not readily available, we derive one of them here in a special case.

Let r be a positive integer and let W 2,r denote the Sobolev space of functions with t-th order
partials in L2 for 0 ≤ t ≤ r [24] with corresponding norm

‖f‖W 2,r =


 ∑

|α|≤r

‖Dαf‖2L2




1/2

,

where α denotes a multi-index (i.e., a vector of non-negative integers), Dα denotes the corresponding
partial derivative operator, and |α| = α1 + · · ·+ αd.

Let d and r be positive integers, r > d/2, w ∈ L2, and f = w ∗ βr. Then

‖f‖L2,r ≤ (2π)−d/2(r!)1/2‖f‖W 2,r (5.1)
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Indeed, since f = w ∗ βr, f̂ = (2π)d/2ŵβ̂r and so

‖f‖L2,r = (2π)−d/2‖f̂/β̂r‖L2 = (2π)−d/2

(∫

Rd

|f̂(s)|2(1 + |s|2)rds

)1/2

.

Let
(

r
σ

)
denote the multinomial coefficient r!/σ1! . . . σt!. Note that (1 + |s|2)r =

∑
|σ|=r

(
r
σ

)|u2σ|, for
u ∈ Rd+1 defined by uj = sj , j = 1, . . . , d, ud+1 = 1, for σ = (σ1, . . . σd+1) ∈ Nd+1 a multi-index of
length d + 1, and |u2σ| = |u2σ1

1 · · ·u2σd+1
d+1 |. Hence, we have

∫

Rd

|f̂(s)|2(1 + |s|2)rds ≤ c(r, d)
∫

Rd

|f̂(s)|2
∑

|α|≤r

|s2α|ds,

where c(r, d) = max
{(

r
σ

) ∣∣ |σ| = r
}
. It follows from basic properties of the Fourier transform that the

integral on the right-hand side is the square of the Sobolev norm of f ; see, e.g., [24, p. 162]. Clearly,
c(r, d) ≤ r!, and equality holds if and only if r ≤ d. This establishes (5.1).

Thus the larger the dimension, the more the magnitudes of these two equivalent norms differ.
We can now estimate the rate of approximation by scaled and translated Gaussians in terms of the
Sobolev norm of the function to be approximated.

Theorem 5 Let d, n, r be positive integers, r > d/2, w continuous except on a closed set of measure
zero, and f = w ∗ βr.
For w ∈ L2 and λ(suppw) = a < ∞,

‖f − spannG‖L2 ≤
((π

8

)d/4 Γ(r/2− d/4)
Γ(r/2)

a1/2(r!)1/2

)
‖f‖W 2,rn−1/2.

Proof. Using Theorem 4.4(ii) and (5.1), the L2-distance from f to spannG is at most (k(r, d) a1/2

(2π)−d/2(r!)1/2‖f‖W 2,r )n−1/2, and the result follows. 2
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[14] Kůrková, V.: High-dimensional approximation and optimization by neural networks. Chapter 4
in Advances in Learning Theory: Methods, Models and Applications, J. Suykens et al., Eds., IOS
Press, Amsterdam (2003) 69–88
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