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1 Introduction

Belief functions are one of the widely used formalisms for uncertainty representation and processing.
Belief functions enable representation of incomplete and uncertain knowledge, belief updating and
combination of evidence. Belief functions were originally introduced as a principal notion of Dempster-
Shafer Theory (DST) or the Mathematical Theory of Evidence [20].

For a combination of beliefs Dempster’s rule of combination is used in DST. Under strict proba-
bilistic assumptions, its results are correct and probabilistically interpretable for any couple of belief
functions. Nevertheless these assumptions are rarely fulfilled in real applications. It is not uncommon
to find examples where the assumptions are not fulfilled and where results of Dempster’s rule are
counter-intuitive, e.g. see [2, 3], thus a rule with more intuitive results is required in such situations.

Hence, a series of modifications of Dempster’s rule were suggested and alternative approaches were
created. The classical ones are the Dubois-Prade’s rule [15] and the Yager’s rule of belief combination
rule [24]. Others include a wide class of weighted operators [18], the Transferable Belief Model (TBM)
using the so called non-normalized Dempster’s rule [23], disjunctive (or dual Demspter’s) rule of
combination [14], combination ’per elements’ with its special case — minC combination, see [7], and
other combination rules. It is also necessary to mention the method for application of Dempster’s rule
in the case of partially reliable input beliefs [16].

The minC combination was originally presented in [4] and in its full version [7]. A motivation
and ideas of the minC combination are presented there. The actual combination is investigated and
presented only for three-element frames of discernment, nevertheless even this presentation is rather a
description of ideas how to compute the minC combination than a presentation of applicable formula(s)
for computing. An introduction of such formulas is a topic of the present contribution.

The minC combination has two basic steps: 1) a generalized level on so-called generalized frames of
discernment, which allows positive conflicting belief masses, 2) reallocation of these conflicting belief
masses to non-conflicting focal elements, i.e., a transformation of generalized results to classic frame
of discernment.

Necessary preliminaries are presented in Section 2. Section 3 briefly recalls the principal results of
[7].

A mathematical structure of generalized frames of discernment is analysed and formalized in
Section 4. A generalized schema for a computation of the minC combination is presented in Section
5. Section 6 brings a detail overview of conflicting belief masses redistribution among non-conflicting
focal elements. Final general formulas for computation of the minC combination are presented in
Section 7.

For examples of computation of the minC combination see Section 8. Section 9 presents a brief
comparison of the minC combination with other combination rules. Related works and approaches are
referred in Section 10. The section displays also an open problems for a future research. A concluding
Section 11 closes the contribution.

2 Preliminaries

2.1 Basic notions

Let us assume an exhaustive finite frame of discernment Ω = {ω1, ..., ωn}, whose elements are mutually
exclusive.

A basic belief assignment (bba) is a mapping m : P(Ω) −→ [0, 1], such that
∑

A⊆Ω m(A) = 1, the
values of bba are called basic belief masses (bbm).3 A belief function (BF) is a mapping Bel : P(Ω) −→
[0, 1], Bel(A) =

∑
∅6=X⊆A m(X), belief function Bel uniquely corresponds to bba m and vice-versa.

P(Ω) is often denoted also by 2Ω. A focal element is a subset X of the frame of discernment Ω, such
that m(X) > 0. If a focal element is a one-element subset of Ω we are referring to a singleton.

3m(∅) = 0 is often assumed in accordance with Shafer’s definition [20]. A classical counter example is Smets’
Transferable Belief Model (TBM) which admits positive m(∅) as it assumes m(∅) ≥ 0.
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Dempster’s (conjunctive) rule of combination ⊕ is given as
(m1 ⊕m2)(A) =

∑
X∩Y =A Km1(X)m2(Y ) for A 6= ∅, where K = 1

1−κ , κ =
∑

X∩Y =∅m1(X)m2(Y ),
and (m1 ⊕m2)(∅) = 0, see [20]; putting K = 1 and (m1 ⊕m2)(∅) = κ we obtain the non-normalized
conjunctive rule of combination ∩©, see e. g. [23].

Yager’s rule of combination Y©, see [24], is given as
(m1 Y©m2)(A) =

∑
X,Y⊆Θ, X∩Y =A m1(X)m2(Y ) for ∅ 6= A ⊂ Θ,

(m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +
∑

X,Y⊆Θ, X∩Y =∅m1(X)m2(Y ), and
(m1 Y©m2)(∅) = 0;

Dubois-Prade’s rule of combination DP© is given as
(m1DP©m2)(A) =

∑
X,Y⊆Θ, X∩Y =A m1(X)m2(Y ) +

∑
X,Y⊆Θ, X∩Y =∅,X∪Y =A m1(X)m2(Y ) for ∅ 6= A ⊆

Θ, and (m1DP©m2)(∅) = 0, see [15].
We say that two basic belief masses are conflicting if they are assigned to disjoint focal elements,

m1(X) is conflicting with m2(Y ) for X, Y ⊂ Ω whenever X ∩Y = ∅. Two belief functions represented
by bba’s m1,m2 are in full conflict / contradiction if it holds that

∑
X∩Y =∅m1(X)m2(Y ) = 1, i.e.

whenever
∑

X∩Y 6=∅m1(X)m2(Y ) = 0.
An algebra L = (L,∧,∨) is called a lattice if L 6= ∅ and ∧, ∨ are two binary operations on L

with the following properties: x ∧ x = x, x ∨ x = x (idempontency), x ∧ y = y ∧ x, x ∨ y = y ∨ x
(commutativity), (x∧ y)∧ z = x∧ (y∧ z), (x∨ y)∨ z = x∨ (y ∨ z) (associativity), and x∧ (y∨x) = x,
x ∨ (y ∧ x) = x (absorption).
If the operations ∧, ∨ satisfy also distributivity, i.e. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) =
(x ∨ y) ∧ (x ∨ z) we speak about a distributive lattice.
If there are moreover minimal ⊥ and maximal > elements in L, i.e. if x ∧ ⊥ = ⊥ and x ∨ > = >,
and if for any x ∈ L exist x ∈ L such that x ∨ x = > and x ∧ x = ⊥, i.e. if a distributive lattice is
complementary, we speak about Boolean lattice.
We can equivalently write any element of X ∈ L in conjunctive normal form (CNF):
X =

∧
i=1,...,m(

∨
j=1,...,ki

Xij) for some m, k1, ..., km, Xij ∈ L , i.e. intersection of joins. Dually, X in
disjunctive normal form is join of intersections X =

∨
i=1,...,m(

∧
j=1,...,ki

Xij).

3 An idea of the minC combination

This section briefly present an idea of the minC (minimal conflict or minimal contradiction)4 combi-
nation from [7], thus it is possible to look at [7] for detail.

3.1 Introductory example

Let us assume two believers (belief agents, agents who have their own belief) and their beliefs. We do
not know where their beliefs come from or how they were constructed, and we are not interested in
such an information for our purposes. For the sake of simplicity we consider a three-element space of
discernment Ω = {A,B, C}. Let the beliefs of our agents be represented by the following basic belief
assignments: m1({A}) = a1 = 0.9, m1({C}) = c1 = 0.1 and m2({B}) = b2 = 0.9, m2({C}) = c2 =
0.1. Using the Dempster’s rule of combination we get m({C}) = 1, m(X) = 0 for {C} 6= X ⊂ Ω.

We obtain this result because the set {C} is the only consensus of both believers, i.e., only the
product c1 · c2 is assigned to a subset of Ω and the other ones produce a conflict (or contradiction)
which is normalized, i.e. assigned again to the same subset {C} of Ω in this case

This result is correct if both the input belief functions are fully reliable, correctly constructed from
probabilistically independent sources.

On the other hand if the above assumptions are not fulfilled, both the believers may be surprised
or disappointed with the resulting combined belief. The belief masses assigned to {C} by both of them
were small. Why then is the result of the combination m({C}) = 1, and m(X) = 0 for X 6= {C} ?
It is possible to explain such a belief combination result as “When two parties fight, the third one
prospers”.

4The term ”contradiction” is used in [4, 7], whereas we use ”conflict” here because it is more frequent in literature.
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Both believers put 0 to one of the elements, but it is not necessary to interpret that as an idea/belief
of an absolute exclusion of the element. Maybe the corresponding element is more acceptable (or
comparatively acceptable) than {C}. (0 is not considered by believers as a certain exclusion here.)

There are two different interpretations of such an example. The first interpretation of our example
is based on barely-distinguishable elements A and B. Let us not distinguish them now. In this situation
we obtain the following belief assignments on coarsened 2-element frame of discernment Ω′ = {AB,C}:
m′

1({AB}) = ab′1 = 0.9, m′
1({C}) = c′1 = 0.1 and m′

2({AB}) = ab′2 = 0.9, m′
2({C}) = c′2 = 0.1.

Thus, using Dempster’s rule, we get 81
82 assigned to {AB} and only 1

82 assigned to {C}, which is a
completely different result.

The second interpretation is based on a mistake or some kind of misbelief in some of the initial
beliefs (or in both of them). In this case the second result can actually be better than the original one,
even if it is not a completely correct belief (but it is natural because the misbelief was transferred).

The presented example is very simple illustrative one, for more complex examples see [3].

3.2 Looking for an associative combination of belief functions

In order to overcome the above problems it was looked for a new associative rule of combination. All
the problems come from processing / normalization of conflicting belief masses m1(X)m2(Y ) where
X∩Y = ∅. It is also the reason why the non-normalized Dempster’s rule is used in Smets’ Transferable
Belief Model (TBM), but this approach only postpones normalization from the credal level to the
decisional one, for detail see [7]. The proportionalized combination [3] makes a proportionalization of
m1(X)m2(Y ) among X,Y , and X ∪ Y , unfortunately, it is not associative.

The minC approach generalizes both the above approaches: similarly to TBM, positive conflicting
bbm’s are allowed in its internal level, but different types of conflicts are distinguished as in the
proportionalized combination.

The result is an associative combination of generalized basic belief assignments on a generalized
frame of discernment which includes also so-called conflicting sets. After a combination conflicting
belief masses are proportionalized among subsets of Ω. Such a proportionalization breaks associa-
tivity, hence we have to make all the combination on the generalized level at first, and perform a
proportionalization after it, in the end of a combination process. Moreover, it is recommended to keep
also the internal generalized results to be prepared for a possible combination with another new input
bba.

3.3 Conflict and potential conflicts

A conflict (contradiction) between two or more disjunctive subsets of a frame of discernment is denoted
with symbol ×. A basic idea of the minC approach is that conflict X × Y between sets X and Y is
different from conflict X × Z between X and Z and both of them are different from Y × Z and from
conflict X × Y × Z among all X, Y and Z, when three of more belief functions are combined, for
different disjoint sets X,Y, Z ⊂ Ω. Not to have an infinite set of different conflicts, classes or types
of conflicts are defined in [4, 7]. It was investigated which conflicts are in the same type and which
ones are in different types there. The investigation of conflicts was performed and presented on three-
element frame of discernment Ω = {A,B, C} in [4, 7]. We have to note, that there is only one type
of conflict × on the belief functions defined on a two-element frame of discernment, × corresponds to
m(∅) there; hence the generalized level of minC combination fully coincides with the (non-normalized)
conjunctive rule there.

When looking for an associative combination, the problems appeared also when multiples of bba’s
m1(X)m2(Y ) were assigned to X ∩ Y for X, Y such that X ∩ Y 6= ∅ & X 6⊂ Y & Y 6⊂ X. There
is no problem when two FB’s are combined, but problems arise when three or more FB’s should
be associatively step-wise combined. To overcome these problems, a potential conflict (potential
contradiction) X×Y was defined for X, Y ∈ Ω, where X ∩Y 6= ∅ & X 6⊂ Y & Y 6⊂ X. If disjunctivity
of conflicting sets should be underlined, we refer to pure conflicts.

As an example of a potential conflict we can present {A,B} × {B, C}, which is not a conflict in
the case of combination of two beliefs ({A,B} ∩ {B, C} = {B} 6= ∅), but it can cause a conflict in
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a later combination with another belief, e.g. real conflict {A,B} × {B,C} × {A,C} because there is
{A,B} ∩ {B, C} ∩ {A,C} = ∅ which is different from B ×AC.

For easier handling of conflicts a consideration of conflicts per elements is defined and used in
the minC approach: a conflict {A} × {B, C} is considered as a two-element set {A × B, A × C}
of elementary contradictions of singletons. In general X × Y is considered as a set of elementary
conflicts {x1 × y1, ..., x1 × ys, ..., xr × y1, ..., xr × ys} for X = {x1, ..., xr} ⊆ Ω, Y = {y1, ..., ys} ⊆ Ω.
As consideration conflicts per elements is used both for pure and potential conflicts, trivial conflicts
ωi × ωi appear in set expressions of potential conflicts X × Y for ωi from X ∩ Y . Trivial conflicts are
not conflicts in fact as belief mass of singleton is not in conflict with itself, thus we can unify ω × ω
with ω for any ω ∈ Ω, and consequently also ωi×ωi× ...×ωi with ωi and ωi×ωj ×ωj × ...×ωj with
ωi × ωj in general.

Using the consideration of conflicts per elements we can observe that pure conflicts are sets of
(non-trivial) elementary conflicts, potential conflicts are sets of both trivial and non-trivial elementary
conflicts, i.e. both elements of Ω and trivial conflicts between/among them.

Because of the assumption of commutativity and associativity of a final combination rule, also a
relation of conflict should be commutative and associative. Thus ωi×ωj is assumed to be equivalent to
ωj×ωi, i.e. they are conflicts of the same type: ωi×ωj ∼ ωj×ωi, and (ωi×ωj)×ωk ∼ ωi×(ωj×ωk) ∼
ωi×ωj×ωk. Consequently we obtain e.g. ω1×ω2×ω2×ω1 ∼ ω1×ω2 6∼ ω1×ω2×ω3, etc. for elementary
conflicts; and {ω1} × {ω2} × {ω2} × {ω1} ∼ {ω1} × {ω2} ∼ {ω2} × {ω1} ∼ {ω1} × {ω1, ω2} × {ω2} 6∼
{ω1} × {ω2, ω3} 6∼ {ω1} × {ω2} × {ω3}, etc., for conflicts in general.

It is time to present the last but the principal assumption for conflicts, which appears in the name
minC combination: to decrease a number of conflicting belief masses and to decrease a number of types
of (non-elementary) conflicts only minimal conflicts with respect to conflictness of included elementary
conflicts are considered, where ωi <c ωi × ωj <c ωi × ωj × ωk, etc. I.e. non-conflicting elements are
preferred to elementary conflicts which include them and ’shorter’ elementary conflict are preferred
to ’longer’ ones in which the ’shorter’ ones are included. Thus we obtain e.g. {ω1, ω2} × {ω1, ω2} =
{ω1 × ω1, ω1 × ω2, ω2 × ω1, ω2 × ω2} ∼ {ω1, ω1 × ω2, ω2} ∼ {ω1, ω2} as non-conflicting ω1 and ω2 (i.e.,
trivial conflicts) are less conflicting than ω1 × ω2. Analogously we obtain X ∼ X ×X for any X ⊆ Ω
as it was assumed. And the same holds also for any pure or potential conflict X.

3.4 Generalized level of minC combination

Equivalence of conflicts and its classes — types of conflicts, i.e., generalized frame of discernment
generated from three-element classic frame Ω = {A,B, C}, were found in [4, 7], and rules were
established to determine to which element of the generalized frame multiples of generalized bbm’s
should be assigned when generalized bba is combined with classical one or when two generalized bba’s
are combined. There are the following 8 types of conflicts A × B, A × C, B × C, A × BC, B ×
AC, C×AB, ×, ¤, and the following 3 types of potential conflicts ¤A, ¤B, ¤C, where A×B is an
abbreviation for {A}×{B} = {A×B}, A×BC is an abbreviation for {A}×{B, C} = {A×B, A×C},
× is an abbreviation for A×B×C, ¤ is an abbreviation for AB×AC×BC ∼ {A×B, A×C, B×C},
¤A is an abbreviation for AB ×AC ∼ {A,B × C}, etc.

Rules for assigning of multiples of gbbm’s are presented in several lemmata and summarized in
tables there. We recall the table for combination of a generalized basic belief assignment with a classic
one, see Table 3.1, for a table for combination of two generalized bba’s see [4, 7].

A final value m(A) of the generalized bba m is obtained as a sum of all multiples corresponding
to cells in the table which contains A. For example we can compute:
m(X) =

∑
U∩V =X,
U⊆V∨V⊆U

m1(U)·m2(V )+(m1(X)·m2(¤X)+m1(¤X)·m2(X)), where X, U, V ⊆ Ω, |X| =
1;
m(X) =

∑
U∩V =X,
U⊆V∨V⊆U

m1(U) ·m2(V ), where X, U, V ⊆ Ω, |X| > 1;

m(¤X) =
∑

U∩V =X,
U 6⊆V &V 6⊆U

m1(U)·m2(V )+
∑

X⊂U (m1(U)·m2(¤X)+m1(¤X)·m2(U))+m1(¤X)·m2(¤X),

where X, U, V ⊆ Ω, |X| = 1; etc.
Specially,
m({A}) =

∑
U∩V ={A},
U⊆V∨V⊆U

m1(U)·m2(V )+(m1({A})·m2(¤A)+m1(¤A)·m2({A})) = m1({A})·m2({A})+
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Table 3.1: The table of combination of a generalized bba with a classical one on Ω = {A, B,C}.
{A} {B} {C} {B,C} {A,C} {A,B} {A,B,C}

{A} {A} A×B A× C A×BC {A} {A} {A}
{B} A×B {B} B × C {B} B ×AC {B} {B}
{C} A× C B × C {C} {C} {C} C ×AB {C}
{B, C} A×BC {B} {C} {B,C} ¤C ¤B {B,C}
{A,C} {A} B ×AC {C} ¤C {A,C} ¤A {A, C}
{A,B} {A} {B} C ×AB ¤B ¤A {A,B} {A,B}
{A,B, C} {A} {B} {C} {B,C} {A,C} {A,B} {A,B,C}

A×B A×B A×B × A×B A×B A×B A×B
A× C A× C × A× C A× C A× C A× C A× C
B × C × B × C B × C B × C B × C B × C B × C

A×BC A×BC A×B A× C A×BC A×BC A×BC A×BC
B ×AC A×B B ×AC B × C B ×AC B ×AC B ×AC B ×AC
C ×AB A× C B × C C ×AB C ×AB C ×AB C ×AB C ×AB
× × × × × × × ×
¤ A×BC B ×AC C ×AB ¤ ¤ ¤ ¤

¤A {A} B ×AC C ×AB ¤ ¤A ¤A ¤A
¤B A×BC {B} C ×AB ¤B ¤ ¤B ¤B
¤C A×BC B ×AC {C} ¤C ¤C ¤ ¤C

m1({A}) ·m2({A,B}) + m1({A}) ·m2({A, C}) + m1({A}) ·m2({A,B,C}) + m1({A,B}) ·m2({A}) +
m1({A,C}) ·m2({A}) + m1({A,B, C}) ·m2({A}) + m1({A}) ·m2(¤A) +
m1(¤A) ·m2({A}),
m(¤A) =

∑
U∩V ={A},
U 6⊆V &V 6⊆U

m1(U) ·m2(V ) +
∑
{A}⊂U (m1(U) ·m2(¤A) + m1(¤A) ·m2(U)) +

m1(¤A) ·m2(¤A) = m1({A,B}) ·m2({A,C}) + m1({A, C}) ·m2({A, B}) + m1(¤A) ·m2({A,B}) +
m1(¤A) ·m2({A,C}) + m1(¤A) ·m2({A, B,C}) + m1({A,B}) ·m2(¤A) + m1({A,C}) ·m2(¤A) +
m1({A,B, C}) ·m2(¤A) + m1(¤A) ·m2(¤A), etc.

Unfortunately there is neither general formula for computing m(A) for arbitrary A from the gen-
eralized frame nor any formula nor table for combination of generalized basic belief assignments
generated from more-element frames of discernment in [4] nor in [7]. Formulation of such formulas is
a principal part of this paper, see Sections 5 and 7.

3.5 Final results of the minC combination

As it was already mentioned, reallocation of the conflicting masses to non-conflicting focal elements
is the final step of the minC combination. This step is very easy for potential conflicts which are
simply relocated to their non-conflicting parts (to the sets of their trivial elementary conflicts). A
proportionalization of pure conflicts follows it. Three proportionalizations are very briefly presented
in [4] and [7]. We do not recalled them here because a presentation of different proportionalizations
(and distributions more generally) is presented in Section 6 in more detail. The basis of a present new
presentation of the minC combination is an analysis and description of a mathematical structure of
generalized frames of discernment, see the next section.

The generalized level of minC combination gives non-negative weights to all elements of a gener-
alized frame of discernment, i.e., also to types of conflicts and types of potential conflicts.

The generalized level of minC combination is associative and commutative operation and it com-
mutes also with coarsening of frame of discernment.

Unfortunately proportionalizations of conflicting belief masses break associativity of the minC
combination. Hence all the input bba’s must be combined on the generalized level at first, and a
proportionalization may not be performed before finishing of the generalized level combination. Thus
it is useful to keep both the final proportionalized results and the working generalized level ones,
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because of to be prepared for possible additional source of belief, which we possibly need to combine
together with the present input beliefs, i.e., with the present result of the combination respectively.

4 Structure of generalized frame of discernment

Let us look for a mathematical structure of minC generalized frame of discernment Ωg generated by
Ω = {ω1, ..., ωn}. In the previous section we have recalled the special case of a generalized frame of
discernment generated by classic 3-element frame of discernment Ω = {ω1, ..., ω3} = {a, b, c}. The
table shows us to which element of Ωg should be assigned multiples m1(X)m2(Y ) on generalized level
for any X, Y ∈ Ωg. Thus the table defines a mapping t : Ωg × Ωg −→ Ωg for |Ω| = 3.

What are general properties of mapping t ? t should be:
– idempotent – as we want to assign m1(X)m2(X) back to X
– commutative – as we want to obtain commutative combination, thus also m1(X)m2(Y ) and
m1(Y )m2(X) should be assigned to the same t(X, Y ) = t(Y, X)
– associative – the property follows again from desired property of a final combination rule.

What are the elements of Ωg ?
1) X ⊆ Ω, i.e., sets of elements {ωX1, ..., ωXkX

},
2) pure conflicts: X×Y for X∩Y = ∅, i.e. e.g, {ωi, ωj} or more generally {ωX11×...×ωX1kX1 , ωX21×
...× ωX2kX2 , ...., ωXm1 × ...× ωXmkXm

}, i.e., sets of non-trivial elementary conflicts,
3) potential conflicts X ∪ Y , where X ⊂ Ω and Y is a pure conflict, i.e.: {ωX1, ..., ωXkX

, ωX11 ×
... × ωX1kX1 , ωX21 × ... × ωX2kX2 , ...., ωXm1 × ... × ωXmkXm

}, i.e. set of both trivial and non-trivial
elementary conflicts.
Thus the elements of the generalized frame of discernment are constructed from elements of Ω using
sets (grouping several elements together) and of idempotent, commutative and associative operation
t.

We can show that the minC generalized frame of discernment, i.e., a structure of pure and potential
conflicts, forms a distributive lattice L(Ω) = (L(Ω),∧,∨), where operation meet ∧ coincides with the
above operation t, i.e. X ∧ Y = t(X,Y ), e.g. {ωi} ∧ {ωj} = t({ωi}, {ωj}) = {ωi} × {ωj} = {ωi × ωj}
for 0 ≤ i 6= j ≤ n,
and operation join ∨ performs creation of sets of elements of Ω, i.e. for example, {ωi}∨{ωj} = {ωi, ωj})
for 0 ≤ i 6= j ≤ n.

In full generality we have:
X ∨ Y = {w | w ∈ X or w ∈ Y and (¬∃w′)(w′ ∈ X ∪ Y, w′ ≤c w)},
X ∧ Y = {w | w ∈ X ∩ Y or [w = ωw1 × ωw2 × ... × ωwkw , where (∃x ∈ X)(x ≤c w), (∃y ∈ Y )(y ≤c

w) and (¬∃w′ ≤c w)((∃x ∈ X)(x ≤c w′), (∃y ∈ Y )(y ≤c w′))]}, i.e., meet X ∧ Y contains w ∈ X ∩ Y
and elementary conflicts of elements from X with elements from Y , where only minimal conflict w.r.t.
to ≤c are considered.
Where it is further defined: x× x = x, y × x = x× y, and w1 = x11 × x12 × ...× x1k1 ≤c x21 × x22 ×
...× x2k2 = w2 iff (∀x1k)(∃x2m)(x1k = x2m), i.e., w1 is less conflicting than w2 or w1 is subconflict of
elementary conflict w2 (w2 contains all elements from w1 + possibly some other(s)). Thus any trivial
conflict ωi × ωi is ≤c-less than any elementary conflict which contain ωi, i.e. non-conflicting elements
(trivial conflicts) are preferred in ∧.

We can notice that ∨ coincides with ∪ when it is applied to non-conflicting arguments (i.e. to
arguments which are sets of trivial elementary conflicts): when all w ∈ X are non-conflicting, i.e.,
w = ωi for some i, there cannot be any less conflicting element in X ∪Y , hence w ∈ X → w ∈ X ∨Y ,
and similarly for w ∈ Y . In general X ∨ Y is X ∪ Y from where all non-minimal conflicts w.r.t. ≤c

are removed.
We can also notice that ∧ coincides with ∩ when if X ⊆ Y or Y ⊆ X:

let X ⊆ Y , w ∈ X be also in X ∩ Y = X, as we suppose only minimal conflicts in X, all w ∈ X are
also in X ∧ Y (neither any elementary conflict w′ ∈ X nor any w′′ ∈ Y can be less conflicting than
w), thus no element of X is removed; and for any wxy = ωx1 × ... × ωxm × ωy1 × ... × ωyk

we have
wx = ωx1 × ...× ωxm ≤c wxy, where wx is already in X = X ∩ Y .

Note that we really need to distinguish between operations ∧ and ∩, because {ωi} ∩ {ωj} = ∅
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whereas {ωi}∧{ωj} = {ωi×ωj} 6= ∅. When identifying ∧ and ∩ we put all the conflicts together into
one class and we obtain the non-normalized Dempster’s rule.

We have already shown reflexivity, commutativity and associativity of ∧ (as properties of t( , )),
the same holds also for ∨;
reflexivity: X ∨ Y = {w |w ∈ X and ¬(∃w′)(w′ ∈ X, w′ <c w)} = X, because we suppose only ≤c

minimal elementary conflicts in X;
commutativity: X ∨ Y = {w | (w ∈ X or w ∈ Y ) and ¬(∃w′) (w′ ∈ X ∪ Y, w′ <c w)} = {w | (w ∈
Y or w ∈ X) and ¬(∃w′) (w′ ∈ Y ∪X)w′ <c w)} = Y ∨X;
associativity: (X ∨ Y ) ∨ V = X ∨ (Y ∨ V ), analogically.

The rest is to prove absorption and distributivity of operations ∧ and ∨.
X ∧ (X ∨ Y ): w ∈ X ∧ (X ∨ Y ) iff w ∈ X ∩ (X ∨ Y ) or w = ωx1 × ... × ωxm

× ωy1 × ... × ωyk
, thus

iff w ∈ X ∩ (X ∪ Y ) possibly without some non-minimal elementary conflict(s) (from ∨) and possibly
with some other elementary conflict(s) (from ∧); X ∩ (X ∪Y ) = X, there in no <c elementary conflict
in X ∨ Y , thus nothing is removed, and all elementary conflicts w = ωx1 × ...× ωxm

× ωy1 × ...× ωyk

are already in X, hence X ∧ (X ∨ Y ) = X.
X ∨ (X ∧ Y ): w ∈ X ∨ (X ∧ Y ) iff w ∈ X ∪ (X ∧ Y ) possibly without some non-minimal elementary
conflict(s), thus iff w ∈ X ∪ (X ∩ Y ) possibly without some non-minimal elementary conflict(s) and
possibly with some other(s) w = ωx1× ...×ωxm×ωy1× ...×ωyk

; X∪(X∩Y ) = X, elementary conflicts
possibly added from X ∧ Y cannot be minimal in X, thus they are immediately removed, there is no
≤c elementary conflict in X ∧Y than in X, hence nothing from X is removed, X ∨ (X ∧Y ) = X, and
absorption is proved.

Distributivity: X ∧ (Y ∨Z): w ∈ X ∧ (Y ∨Z) iff w ∈ X ∩ (Y ∪Z) where non-minimal elementary
conflicts from Y ∪ Z are removed and minimal elementary conflicts ωx1 × ... × ωxi × ωy1 × ... × ωyj

and ωx1 × ... × ωxk
× ωz1 × ... × ωzl

are added; (X ∧ Y ) ∨ (X ∧ Z): w ∈ (X ∧ Y ) ∨ (X ∧ Z) iff
w ∈ (X∩Y )∪(X∪Z) = X∩(Y ∪Z) where minimal elementary conflicts ωx1× ...×ωxi×ωy1× ...×ωyj

are added to X ∩ Y and ωx1 × ...× ωxk
× ωz1 × ...× ωzl

are added to X ∩ Z and finally non-minimal
elementary conflicts from (X∧Y )∪(X∧Z) are removed, i.e., elementary conflicts wXY ∈ X∧Y , such
that there exists wXZ ∈ X ∧Z, wXZ <c wXY , and elementary conflicts wXZ ∈ X ∧Z, such that there
exists wXY ∈ X ∧ Y, wXY <c wXZ are removed; there is X ∩ (Y ∪Z) = (X ∩ Y )∪ (X ∩Z), the same
elementary conflicts are added in both the cases, thus it remains to show that same elementary conflict
are removed in both the cases. If elementary conflict w which is not minimal in Y ∪ Z appears in
(X∧Y )∪(X∧Z) it can be minimal there only if it differs from the corresponding minimal elementary
conflict with some ωis from X hence it is among elementary conflicts added to X ∩ (Y ∨ Z) i.e. it is
returned to X∩(Y ∪Z). On the other side if elementary conflict w is non-minimal in (X∧Y )∪(X∧Z)
it is either non-minimal also in Y ∪ Z or it is some of conflicts added to (X ∩ Y ) ∪ (X ∩ Z), hence it
is also added back to X ∩ (Y ∪ Z). Hence the same elementary conflicts are added and removed in
both the cases and we have proved X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z).
A proof of the second equality X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z) is analogous.

Thus we have verified that ∧ and ∨ satisfy all the properties of lattice operations meet and join,
hence L(Ω) = (L(Ω),∧,∨) is really a distributive lattice. Thus the following statement holds.

Statement 1 MinC generalized frame of discernment generated by classic Shaferian frame of dis-
cernment Ω forms a distributive lattice L(Ω) = (Ω,∧,∨), where operations ∧ and ∨ are defined as it
is above.

We can notice that the absorption property corresponds with elimination of non-minimal conflicts
in the minC combination, let e.g. X = {ω1}, Y = {ω2}. From equation X ∨ (X ∧ Y ) = X we
have {ω1} ∨ ({ω1} ∧ {ω2}) = {ω1, ω1 × ω2} = {ω1}, and from equation X ∧ (X ∨ Y ) = X we obtain
{ω1} ∧ ({ω1} ∨ {ω2}) = {ω1} × {ω1, ω2} = {ω1, ω1 × ω2} = {ω1}. Similarly, we can notice that
the distributivity equation (X ∨ Y ) ∧ (X ∨ Z) = X ∨ (Y ∧ Z) corresponds with arising of potential
conflict in the minC combination, see e.g. ({ω1} ∨ {ω2}) ∧ ({ω1} ∨ {ω3}) = {ω1, ω2} × {ω1, ω3} =
{ω1, ω1 × ω3, ω2 × ω1, ω2 × ω3} = {ω1, ω2 × ω3} = {ω1} ∨ ({ω2} ∧ {ω3}). Of course also the other
distributivity equation X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z) is in accordance with minC combination:
{ω1} ∧ ({ω2} ∨ {ω2}) = {ω1} × {ω2, ω3} = {ω1 × ω2, ω1 × ω3} = ({ω1} ∧ {ω2}) ∨ ({ω1} ∧ {ω3}).
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Hence all the properties of lattice operations either correspond to some properties of the minC
combinations or they are simply in accordance with the minC combination.

The above results correspond with an observation from [21] that a minC generalized frame of
discernment generated by classic 3-element frame Ω corresponds with a DSm hyper-power set DΘ, i.e.
with Dedekind lattice (Θ,∩,∪) generated by 3-element frame Θ. But we must pay attention that it
can be θi ∩ θj 6= 0 for i 6= j in DSm theory in general, as overlapping of elements is allowed in there,
whereas it is always ωi ∩ωj = 0 for i 6= j in our classic approach. Hence we really need an extra meet
operation ∧ different from intersection ∩ here, as it is already mentioned above.

We have to mention that the elementary conflict ordering ≤c is a partial reverse of lattice ordering
≤ defined as x ≤ y iff x ∧ y = x or dually as x ≤ y iff x ∨ y = y, see e.g. x ∧ y ∧ z ≤ x ∧ y as
(x∧y∧z)∧ (x∧y) = x∧y∧z whereas x∧y∧z = x×y×z ≥c x×y = x∧y, there is no ≤c ordering of
sets of elementary conflicts thus {x, y} and {x, y, z} are ≤c-non-comparable whereas x∨ y ≤ x∨ y∨ z,
and similarly x∧y∧w ≤ (x∧y)∨(v∧w) for ≤c-non-comparable sets of elementary conflicts {x×y×w}
and {x× y, v × w}.

5 General schema of minC combination

We can present a general schema of minC combination now. m0 is computed on L(Ω), such that
m1(X)m2(Y ) should be allocated to t(X, Y ) = X ∧ Y . L(Ω) is closed with respect to ∧ thus there is
no problem with empty set, hence we can simply use a generalization of non-normalized conjunction
rule to L(Ω):

m0(A) =
∑

X,Y ∈L(Ω), X∧Y =A

m1(X)m2(Y )

for all A ∈ L(Ω).
It is obvious that m0 is commutative, associative, and non-idempotent operation. It holds neu-

trality of the vacuous belief function VBF as X ∧ (ω1 ∨ ... ∨ ωn) = X for any X ∈ L(Ω).
Hence we have a simple and effective expression of minC on the generalized level. The rest is

expression of potential conflicts relocation and of proportionalization of pure conflicts.

Potential conflict relocation. If we combine only 2 belief functions, i.e. m0 is computed directly
from two classic FB’s, the situation is quite simple: mi(W ) = 0 for W ∈ L(Ω)\P(Ω) and potential
conflicts arise just for X,Y ⊂ Ω, such that X ∩ Y 6= 0, X 6⊆ Y, Y 6⊆ X, hence we can simply relocate
m0(X × Y ) to X ∩ Y . Thus we can write m1(A) = m0(A) +

∑
X∩Y =A, X 6⊆Y Y 6⊆X m1(X)m2(Y ) =∑

X∩Y =A m1(X)m2(Y ) for any ∅ 6= A ∈ P(Ω).
To keep as much as associativity as possible in a combination process, we have to compute all

combinations on the generalized level before potential conflict relocation. When processing more than
two input belief functions, let us say k, we cannot use mi values as here m0 is combination of mk

with a result of generalized combination of the other k − 1 inputs (or more generally a combination
of results of generalized combinations of 0 < m < 1 and k−m inputs). Thus we have to compute m1

directly from m0.
If a relocated potential conflict P arise as P1×...×Ps = P1∧...∧Ps for Pi ⊆ Ω we can relocate m(P )

to P1 ∩ ...∩Ps analogically to the previous case. We can express any Pi as {ωi1, ..., ωisi}, and it holds
that P1 ∩ ... ∩ Ps 6= ∅, otherwise P would be a pure conflict. As we can rewrite any expression of any
element of L(Ω) to conjunctive normal form, we can use the above idea for any potential conflict X in
the following way. We express P in conjunctive normal form CNF (P ) = P1∧P2∧ ...∧Pk and relocate
m(P ) to P1 ∩ P2 ∩ ... ∩ Pk. For simplification of formulas we define

⋂
X as

⋂
X = X1 ∩X2 ∩ ...∩Xk

for any X ∈ L(Ω), where X1 ∧X2 ∧ ... ∧Xk is CNF (X).
Hence we can express m1 as it follows:

m1(A) = m0(A) +
∑

X 6=A, X∈L(Ω),
⋂

X=A m0(X) =
∑

X∈L(Ω),
⋂

X=A m0(X), for all ∅ 6= A ∈ P(Ω).
We have

∑
X∈P(Ω) m1(X) ≤ 1 as gbbm’s of pure conflict have not yet been assigned to elements

of P(Ω). We can set m1(A) = 0 for any A ∈ L(Ω)\P(Ω) such that
⋂

A 6= ∅, because its gbbm has
already been relocated to

⋂
A ∈ P(Ω). Nothing is done with pure conflict in this step, thus we can

write m1(A) = m0(A) for A such that
⋂

A = ∅. Hence we obtain
∑

X∈L(Ω) m1(X) = 1.
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Final classic bba m we obtain after proportionalization of gbbm’s of pure conflicts:

m(A) = m1(A) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

prop(A,X)m0(X)

=
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

prop(A,X)m0(X)

for all ∅ 6= A ∈ P(Ω), where prop(A,X)m0(X) is a proportion of gbbm of pure conflict X which should
be assigned to A, and

⋃
X is defined as

⋃
X = X1∪X2∪ ...∪Xk, where CNF (X) = X1∧X2∧ ...∧Xk.

m(∅) = 0 (= m0(∅) = m1(∅)).
It holds that

∑
X∈P(Ω) m1(X) = 1: it was

∑
X∈L(Ω) m0(X) = 1, all A ∈ L(Ω)\P(Ω) such that⋂

A 6= ∅ has been relocated to elements of P(Ω) already in gbba m1, and all such that
⋂

A = ∅ have
been proportionalized among elements of P(Ω) within construction of the final bba m. Thus m is a
correctly defined classic bba defined on P(Ω).

When considering various proportionalizations of conflicting belief masses, the minC combination
is a family of different rules in fact. Every particular one is given by its corresponding proportional-
ization.

There are several different proportionalizations suggested in [4, 5, 7, 8], we will discuss them in
the following section.

6 Distribution of pure conflicts

As we already have a simple expression for both the generalized level of minC combination and the
potential conflicts relocation, we can concentrate ourselves to proportionalization and to reallocation
of conflicting belief mass in general. An original simple idea of proportionalization was used in the
proportionalized rule of combination [3]. m1(X)m2(Y ) is distributed among X, Y, X∪Y in proportion
of m ∩©(X),m ∩©(Y ) and m ∩©(X ∪ Y ). This idea was included also among several proportionalizations
published in the original papers about minC combination [4, 7] and in the paper about combination
per elements [5]. Let us make an overview of all these proportionalizations together with conflict
reallocation in classic combination rules. As the conflict reallocation in the classic rules is computed
from input belief masses and similarly proportionalizations in [4, 7] was presented only for a case of
combination of two belief functions, we suppose that m0 is a result of combination of 2 FB’s now.
Thus there is a one-to-one correspondence between type of pure conflict and a couple of subsets of
the frame of discernment.

Let us distribute bbm m0(X × Y ) of a pure conflict X × Y of two sets X, Y ⊂ Ω, i.e. X ∩ Y = ∅.
There are at least 10 following variants of conflict distribution:

(d0) Yager’s approach: whole m0(X × Y ) is simply relocated to Ω,

(d1) Demspter-Shafer approach: m0(X × Y ) is distributed (normalized, proportionalized) among all
W ⊆ Ω,

(d2) m0(X × Y ) is proportionalized among all singletons {ωi}, where ωi ∈ Ω,

(d3) Dubois-Prade approach: whole m0(X × Y ) is relocated to X ∪ Y , see also (1) in [5],

(d4) m0(X × Y ) is proportionalized among singletons {ωi}, where ωi ∈ X ∪ Y , see (0) in [5],

(d5) m0(X × Y ) is proportionalized between X and Y , see (2) in [5],

(d6) m0(X × Y ) is proportionalized among X, Y and X ∪ Y , see (a) in [4, 7],

(d7) m0(X × Y ) is proportionalized among all W ∈ P(X) ∪ P(Y ), see (3) in [5],

(d8) m0(X × Y ) is proportionalized among all W ∈ P(X ∪ Y ), see (c) in [4, 7] and (4) in [5],
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(d9) m0(X × Y ) is proportionalized among all sets {ωi}, {ωj}, {ωi, ωj}, where ωi ∈ X,ωj ∈ Y , see
(b) in [4, 7].

All these distributions is easily generalizable to the case n-ary combination, where basic belief
mass m1(X1)m2(X2)...mn(Xn) of conflict X1 × ... ×Xn should be distributed. As it was mentioned
above we have a different situation in reallocation of pure conflict in the minC combination as it is
binary operation and we have to distribute m0(X) of pure conflict not knowing the original input
bbm’s. E.g. pure conflicts X1 = {ω1, ω2, ω3, ω4} × {ω3, ω4} × {ω5, ω6}, X2 = {ω3, ω4} × {ω5, ω6},
and X3 = {ω3, ω4} × {ω5, ω6, ω7, ω8} are equivalent, they have the same CNF (ω3 ∨ ω4) ∧ (ω5 ∨ ω6),
and we cannot recognize from which input bbm’s it has been arised. We can reformulate the above
distributions (d0) – (d9) as it follows:

(d0) whole m0(X) is simply relocated to Ω, as before,

(d1) Demspter-Shafer approach: m0(X) is distributed (normalized, proportionalized) among all W ⊆
Ω, as before,

(d2) m0(X) is proportionalized among all singletons {ωi}, where ωi ∈ Ω, as before,

(d3) whole m0(X) is relocated to
⋃

X, see (1) in [5],

(d4) m0(X) is proportionalized among singletons {ωi}, where ωi ∈
⋃

X, see (0) in [5],

(d5) m0(X) is proportionalized among Xi, where CNF (X) = X1 ∧ ... ∧Xk, see (2) in [5],

(d6) m0(X) is proportionalized among W ∈ P(C(X)), where C(X) = {X1, ..., Xk} such that
CNF (X) = X1 ∧ ... ∧Xk,

(d7) m0(X) is proportionalized among all W ∈ ⋃k
1 P(Xi), where Xi ∈ C(X), see (3) in [5],

(d8) m0(X) is proportionalized among all W ∈ P(
⋃k

1 Xi), where Xi ∈ C(X), see (4) in [5],

(d9) (d9) has a generalization for n-ary combination, but there is no reasonable generalization of (d9)
when m0(X) should be proportionalized without knowledge of all the original individual input
belief masses.

ad (d1): we have to note that (d0) differs from Yager’s approach here, as a conflicting bmm
combined with any bbm’s is conflicting again a the resulting multiple of bbm’s is relocated to Ω here,
whereas conflicting multiple of two elements is immediately relocate to Ω and after to any bbm which
comes with another input bba.
ad (d3): we have to note that similarly (d3) differs from Dubois-Prade approach here. Let us asume
e.g. conflicts X1, X2, X3 from the above example.

⋃
X1 =

⋃
X2 =

⋃
X3 as CNF (X1) = CNF (X2) =

CNF (X3), hence m0(Xi) is always relocated to {ω3, ω4, ω5, ω6} = ω3 ∨ω4 ∨ω5 ∨ω6, whereas m0(X1)
should be located to {ω1, ω2, ω3, ω4, ω5, ω6} and m0(X3) should be relocated to {ω3, ω4, ω5, ω6, ω7, ω8}
with the n-ary Dubois-Prade rule.

We can reformulate the distributions (d0) – (d4) as it follows:
distr0(Ω, X) = 1, distr0(A, X) = 0 for A 6= Ω,
prop1(A,X) = m1(A)∑

∩W 6=∅ m0(W ) , for ∅ 6= A ∈ P(Ω), ∅ 6= W ∈ P(Ω),

prop2({ωi}, X) = m1({ωi})∑n
1 m0({ωi}) , distr2(A,X) = 0 for |A| > 1,

distr3(
⋃

X, X) = 1, distr2(A,X) = 0 for A 6= ⋃
X,

prop4({ω}, X) = m1({ω})∑
ω′∈∪X m0({ω′}) , distr4(A,X) = 0 otherwise.

As it was mentioned in [5] proportionalization prop4 given by distribution (d4) is too sensitive
to bbm’s of singleton, if nothing is assigned to singletons in m1, i.e., if nothing is assigned do sin-
gletons and to potential conflicts containing just one non-conflicting element in m0 m(X) cannot be
proportionalized, thus this proportionalization is not very useful, the same holds also for prop2 corre-
sponding to distribution (d2). Distributions (d0) and (d3) relocate whole bbm of the conflict to one
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subset of Ω thus they are not proportionalizations in fact, on the other hand they are simple from
the computational point of view. Proportionalization prop1 corresponding to (d1) in normalization in
fact, thus it enables only another expression for Dempster’s rule. Hence the distributions (d0) – (d5)
are not very interesting from the point of view of minC which idea is based on proportionalization of
different types of conflicts. Nevertheless we can all of them use in the minC combination, it is enough
to generalize our general schema in the following way

m(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

distr(A,X)m0(X)

for all ∅ 6= A ∈ P(Ω), where distr(A,X) is either an expression for proportionalization or another
reallocation of conflicting bbm m0(X). m(∅) = 0.

6.1 Proportionalization of pure conflicts

Let us turn our attention to more prospective distributions (d5) – (d8) now. In all of them m0(X) is
proportionalized among some sets Wi from P(

⋃
X) according their bbm’s m1(Wi), if all these bbm’s

are equal to zero, i.e., if proportionalization ratio is equal to ”0
0”, we have to define how allocate same

portions of m0(X) to sets Wi. There are 2 ways how to do it: 1) divide m0(X) by the number w of
sets Wi and relocate m0(X)

w to every Wi or 2) assign whole m0(X) to union of the sets Wi, i.e. all
the subsets of the union obtain 0 bbm, i.e., the same (zero) portion of m0(X), and whole m0(X) is
a part of plausibility of whole

⋃
X and all its subsets. According to the way of solving proportions

” 0
0” we distinguish 2 variants of all proportionalizations(d5) – (d8). Similarly we can solve ”0

0” also
in (d2) and (d4), where we divide m0(X) by n or by |⋃ X| respectively, or we relocate whole m0(X)
to Ω or to

⋃
X. On the other hand we do not solve ” 0

0” for prop1 as it is the only distribution which
keeps associativity of non-normalized conjunctive rule, and ”0

0” arises in the case of prop1 only for
input beliefs which are in full conflict. Hence we do not make any definition breaking associativity of
combination using prop1.

prop5i(A,X) = m1(A)∑
W∈C(X) m1(W ) , for A ∈ C(X), where

∑
W∈C(X) m1(W ) > 0,

prop5i(A,X) = 0, for A /∈ C(X), where
∑

W∈C(X) m1(W ) > 0,
prop51(A,X) = 1

|C(X)| , for A ∈ C(X),
∑

W∈C(X) m1(W ) = 0,
prop51(A,X) = 0, for A /∈ C(X),

∑
W∈C(X) m1(W ) = 0,

prop52(C(X), X) = 1, where
∑

W∈C(X) m1(W ) = 0,
prop52(A,X) = 0, for A 6= C(X),

∑
W∈C(X) m1(W ) = 0,

prop6i(A,X) = m1(A)∑
W∈P(C(X)) m1(W ) , for A ∈ P(C(X)), where

∑
W∈P(C(X)) m1(W ) > 0,

prop6i(A,X) = 0, for A /∈ P(C(X)), where
∑

W∈P(C(X)) m1(W ) > 0,
prop61(A,X) = 1

|P(C(X))| , for A ∈ P(C(X)),
∑

W∈P(C(X)) m1(W ) = 0,
prop61(A,X) = 0, for A /∈ P(C(X)),

∑
W∈P(C(X)) m1(W ) = 0,

prop62(P(C(X)), X) = 1, where
∑

W∈P(C(X)) m1(W ) = 0,
prop62(A,X) = 0, for A 6= P(C(X)),

∑
W∈P(C(X)) m1(W ) = 0,

prop7i(A,X) = m1(A)∑
W∈⋃k

1 P(Xi)
m1(W ) , for A ∈ ⋃k

1 P(Xi), where Xi ∈ C(X) and
∑

W∈⋃k
1 P(Xi)

m1(W ) >

0,
prop7i(A,X) = 0, for A /∈ ⋃k

1 P(Xi), where Xi ∈ C(X) and
∑

W∈⋃k
1 P(Xi)

m1(W ) > 0,

prop71(A,X) = 1
|⋃k

1 P(Xi)| , for A ∈ ⋃k
1 P(Xi), where Xi ∈ C(X) and

∑
W∈⋃k

1 P(Xi)
m1(W ) = 0,

prop71(A,X) = 0, for A /∈ ⋃k
1 P(Xi), where Xi ∈ C(X) and

∑
W∈⋃k

1 P(Xi)
m1(W ) = 0,

prop72(
⋃k

1 P(Xi), X) = 1, where Xi ∈ C(X) and
∑

W∈⋃k
1 P(Xi)

m1(W ) = 0,

prop72(A,X) = 0, for A 6= ⋃k
1 P(Xi), where Xi ∈ C(X) and

∑
W∈⋃k

1 P(Xi)
m1(W ) = 0,

11



prop8i(A,X) = m1(A)∑
W∈P(

⋃
X) m1(W ) , for A ∈ P(

⋃
X), where

∑
W∈P(

⋃
X) m1(W ) > 0,

prop8i(A,X) = 0, for A /∈ P(
⋃

X), where
∑

W∈P(
⋃

X) m1(W ) > 0,

prop81(A,X) = 1
|P(

⋃
X)| , for A ∈ ⋃k

1 P(Xi), where
∑

W∈⋃k
1 P(Xi)

m1(W ) = 0,
prop81(A,X) = 0, for A /∈ ⋃

X, where
∑

W∈⋃k
1 P(Xi)

m1(W ) = 0,
prop82(P(

⋃
X), X) = 1, where

∑
W∈P(

⋃
X) m1(W ) = 0,

prop82(A,X) = 0, for A 6= ⋃
X, where

∑
W∈P(

⋃
X) m1(W ) = 0,

Using the above proportionalizations we have 8 different variants of minC combination for i =
5, 6, 7, 8, j = 1, 2. We can express them with a general formula as it follows:

m(A) = m1(A) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

propij(A,X) m0(X)

=
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

propij(A,X)m0(X)

for all ∅ 6= A ∈ P(Ω),
m(∅) = 0.

Proportionalizations prop6j correspond with the original idea of proportionalization of a conflict
U × V among U, V , and U ∪ V when just two beliefs are combined. Proportionalizations prop5j

proportionalize the same conflict only among Uand V . Proportionalizations prop7j distribute conflict
X among subsets of Wi ∈ C(X) and prop8j among all subsets of

⋃
X.

Distribution 1) of m0(X) in the case of ” 0
0” ratio to k same pieces more corresponds to the original

idea of proportionalization as all the corresponding set obtain the same part of m0(X).
Let us note that distribution 2) of m0(X) in the case of ” 0

0” (i.e. relocation of whole m0(X)) is the
same for all proportionalizations prop42, ....., prop82. We have: P(X) = {Y |Y ⊆ X} =

⋃
Y⊆X Y = X

and X = X1∧....∧Xk. Further C(X) = {X1, ..., Xk} = X1∪...∪Xk =
⋃

X, P(C(X)) = C(X) =
⋃

X,⋃P(Xi) =
⋃

Xi = C(X) =
⋃

X, P(
⋃

X) =
⋃

X, and
⋃

ωi∈∪X{ωi} =
⋃

X. This relocation of m0

to the only set corresponds to the fact that all m0(W ) are zero for the sets W among which m0(X)
should be redistributed, thus we distribute also same zero proportions of m0(X) to these sets and
the ’remaining’ whole m0(X) is assigned to

⋃
X as we have no other reason to distribute it to less

subsets.

7 Final formulas for minC combination

The proportionalizations prop6j and prop8j are more favourable to the others. They also correspond
to proportionalizations (a) and (c) in the original papers [4, 7] about the minC combination. Thus,
we present the minC combination rule parameterized with prop61 and prop82 for example of the final
formulas for the minC combination. Let us substitute prop61 and prop82 for propij to the general
schema of the minC combination:

mij(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

propij(A,X)m0(X)

for all ∅ 6= A ∈ P(Ω),
mij(∅) = 0.

For proportionalization prop61 we obtain:

m61(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

prop61(A,X) m0(X)

12



for all ∅ 6= A ∈ P(Ω),
m61(∅) = 0.

Using the formulas for proportinalization prop61 we obtain the following:

m61(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

m1(A)∑
W∈P(C(X)) m1(W )

m0(X)

for A ∈ P(C(X)), where
∑

W∈P(C(X)) m1(W ) > 0,

m61(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

1
|P(C(X))| m

0(X)

for A ∈ P(C(X)),
∑

W∈P(C(X)) m1(W ) = 0,

m61(A) =
∑

X∈L(Ω)⋂
X=A

m0(X)

for A /∈ P(C(X)),
m61(∅) = 0.

For proportionalization prop82 we obtain:

m82(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

prop82(A,X) m0(X)

for all ∅ 6= A ∈ P(Ω),
m82(∅) = 0.

Using the formulas for proportinalization prop82 we obtain the following:

m82(A) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

m1(A)∑
W∈P(

⋃
X) m1(W )

m0(X)

for A ∈ P(
⋃

X), where
∑

W∈P(
⋃

X) m1(W ) > 0,

m82(P(
⋃

X)) =
∑

X∈L(Ω)⋂
X=A

m0(X) +
∑

X∈L(Ω)⋂
X=∅, A⊆⋃

X

m0(X)

where
∑

W∈P(
⋃

X) m1(W ) = 0,

m82(A) =
∑

X∈L(Ω)⋂
X=A

m0(X)

otherwise,
i.e., for A /∈ P(

⋃
X), and for A 6= ⋃

X, where
∑

W∈P(
⋃

X) m1(W ) = 0,
m82(∅) = 0.

Let us remember: m0(A) =
∑

X,Y ∈L(Ω), X∧Y =A m1(X)m2(Y ) for all A ∈ L(Ω), where mi are classic
or generalized bba’s. m1(A) =

∑
X∈L(Ω),

⋂
X=A m0(X), for all ∅ 6= A ∈ P(Ω), when computed from

gbba m0, or equivalently, m1(A) =
∑

X,Y ∈L(Ω), X∩Y =A m1(X)m2(Y ), for all ∅ 6= A ∈ P(Ω), when
computed from two classic or generalized bba’s mi.
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8 Examples

Let us show computation of minC combination on several examples. We will start with the well known
Zadeh’s example. Further we present minC results for Smets’ bomb example and one more example
which distinguishes different proportionalizations.

8.1 Zadeh’s example

Let us have two following input bba’s m1 and m2 on a frame Ω = {ω1, ω2, ω3}:
m1({ω1}) = 0.99, m1({ω2}) = 0, m1({ω3}) = 0.01,
m2({ω1}) = 0, m2({ω2}) = 0.99, m2({ω3}) = 0.01.
On the generalized level on L(Ω) we obtain
m0(ω1) = 0, m0(ω2) = 0, m0(ω3) = 0.0001,
m0(ω1 ∧ ω2) = 0.9801,m0(ω1 ∧ ω3) = 0.0099, m0(ω2 ∧ ω3) = 0.0099.
Because m0({ω3}) > 0 and {ω3} is the only non-conflicting focal, both m0(ω1∧ω3) and m0(ω2∧ω3) are
whole relocated to ω3 for any proportionalization propij , i = 5, ..., 8, j = 1, 2: as {ω3} ∈ C(ω1 ∧ω3) =
{{ω1}, {ω3}} =

⋃k
i=1 P(Xi) = P({ω1}) ∪ P({ω3}) = {{ω1}} ∪ {{ω3}} = {{ω1}, {ω3}} ⊂ P(C(ω1 ∧

ω3)) = {{ω1}, {ω3}, {ω1, ω3}} =
⋃

ω1 ∧ ω3, and analogically {ω3} ∈ C(ω2 ∧ ω3) =
⋃k

i=1 P(Xi) ⊂
P(C(ω2 ∧ ω3)) =

⋃
ω2 ∧ ω3.

As m0(X) = 0 for all X ∈ ⋃
ω1 ∧ω2, a proportionalization ratio is not defined (it is ”0

0”) for ω1 ∧ω2,
thus m0(ω1∧ω2) is either distributed in the same portions between {ω1}, {ω2} with propi1 with propi1

for i = 5, 7, or among {ω1}, {ω2}, {ω1, ω2} with propi1 for i = 6, 8, or it is whole relocated to {ω1, ω2}
with propi2 for i = 5, ..., 8.
Hence we obtain resulting:
mi1({ω1}) = 0.49005, mi1({ω2}) = 0.49005, mi1({ω1, ω2}) = 0, mi1({ω3}) = 0.0199, for i = 5, 7,
mi1({ω1}) = 0.3267, mi1({ω2}) = 0.3267, mi1({ω1, ω2}) = 0.3267, mi1({ω3}) = 0.0199, for i = 6, 8,
mi2({ω1}) = 0, mi2({ω2}) = 0, mi2({ω1, ω2}) = 0.9801, mi2({ω3}) = 0.0199, for i = 5, ..., 8
according to used proportionalization propij .

8.2 Smets’ bomb example

Let us have a frame Ω = {ω1, ω2, ω3} = {SmallBomb, BigBomb, FalseBomb} and two observers.
The first observer reports a small bomb, i.e. m1({ω1}) = 1, whereas the second reports a big bomb,
i.e. m2({ω2}) = 1.
On the generalized level we obtain m0(ω1∧ω2) = 1 and after redistribution of conflicting belief masses
we obtain resulting:
mi1({ω1}) = 0.5, mi1({ω2}) = 0.5, mi1({ω1, ω2}) = 0, using proportionalization propi1 for i = 5, 7,
or
mi1({ω1}) = 0.3333, mi1({ω2}) = 0.3333, mi1({ω1, ω2}) = 0.3333, using proportionalization propi1

for i = 6, 8, or
mi2({ω1}) = 0 mi2({ω2}) = 0, mi2({ω1, ω2}) = 1, using proportionalization propi2 for i = 5, 6, 7, 8.
mij(X) = 0 for all other X ∈ P(Ω) for all i = 5, ..., 8, j = 1, 2.
All the results correspond with our expectation that the observed object is a real bomb (not a false
bomb).

8.3 A new example

Let us have two input bba’s m1 and m2 on a frame Ω = {ω1, ω2, ω3} again:
m1({ω1}) = 0.5, m1({ω1, ω2}) = 0.3, m1({ω1, ω2, ω3}) = 0.2,
m2({ω3}) = 0.6, m2({ω1, ω2, ω3}) = 0.4.

On the generalized level on L(Ω) we obtain four non-conflicting focal elements:
m0(ω1) = 0.20, m0(ω3) = 0.12, m0(ω1 ∨ ω2) = 0.12, m0(ω1 ∨ ω2 ∨ ω3}) = 0.08,

14



and two conflicting focal elements m0(ω1 ∧ ω3) = 0.30, m0((ω1 ∨ ω2) ∧ ω3}) = 0.18, there are no
potential conflicts, thus m1(X) = m0(X).∑

X∈C(ω1∧ω3)
m1(X) = m0(ω1)+m0(ω3) > 0 and m1(ω1∨ω3) = m0(ω1∨ω3) = 0, hence m0(ω1∧ω3)

is proportionalized between {ω1} and {ω3} for any proportionalization propij for i = 5, ..., 8, j = 1, 2,
as zero portion of m0(ω1 ∧ ω3) is relocated to {ω1, ω3} with propij in this case5 .∑

X∈C((ω1∨ω2)∧ω3)
m1(X) = m0(ω1∨ω2)+m0(ω3) > 0 and m1(ω2) = m1(ω1∨ω3) = m1(ω2∨ω3) =

0, thus m0((ω1 ∨ ω2) ∧ ω3) is proportionalized:
between {ω1, ω2} and {ω3} in ratio 1 : 1 with proportionalization prop5j for j = 1, 2,
among {ω1, ω2}, {ω3} and {ω1, ω2, ω3} in ratio 3 : 3 : 2 with proportionalization prop6j for j = 1, 2,
among {ω1}, {ω1, ω2}, and {ω3} in ratio 5 : 3 : 3 with proportionalization prop7j for j = 1, 2,
or among {ω1}, {ω3} {ω1, ω2}, and {ω1, ω2, ω3} in ratio 5 : 3 : 3 : 2 with proportionalization prop8j

6

for j = 1, 2, respectively.
Thus we have m5j({ω1}) = 0.20 + 5

8 0.30, m5j({ω3}) = 0.12 + 3
8 0.30 + 1

2 0.18, m5j({ω1, ω2}) =
0.12+ 1

2 0.18, m5j({ω1, ω2, ω3}) = 0.08, for prop5j , and analogically for the other proportionalizations.
Hence we obtain resulting:

m5j({ω1}) = 0.3875, m5j({ω3}) = 0.3225, m5j({ω1, ω2}) = 0.2100, m5j({ω1, ω2, ω3}) = 0.0800,
m6j({ω1}) = 0.3875, m6j({ω3}) = 0.3000, m6j({ω1, ω2}) = 0.1875, m6j({ω1, ω2, ω3}) = 0.1250,
m7j({ω1}) ≈ 0.4693, m7j({ω3}) ≈ 0.2816, m8j({ω1, ω2}) ≈ 0.1692, m7j({ω1, ω2, ω3}) = 0.0800,
m8j({ω1}) ≈ 0.4567, m8j({ω3}) ≈ 0.2740, m8j({ω1, ω2}) ≈ 0.1615, m8j({ω1, ω2, ω3}) ≈ 0.1077,
mij({ω2}) = mij({ω1, ω3}) = mij({ω2, ω3}) = 0 for any i = 5, ..., 8, j = 1, 2.

We can notice that there is no difference between using proportionalizations propi1 and propi2 for
i = 5, ...6, in this example, it is due to the fact that

∑
X∈C(X) > 0 for all conflicting focal elements

X ∈ L(Ω).

For distinguishing of all 8 different proportionalizations propij for i = 5, ..., 8, j = 1, 2, we need a
more complicated example, we need to add at least another two elements to Ω.

9 A comparison with another combination rules

Let us start with a simple case of 2-element frame of discernment Ω2 = {ω1, ωn}. There is only one
type of conflict ω1 × ω2 on Ω2, thus the generalized level of minC coincides with the non-normalized
conjunctive (non-normalized Dempster’s) rule ∩© there. MinC with any proportionalization propij for
i = 1, 6− 8, j = 1, 2 for any set of input belief functions which are not in full conflict (contradiction),
i.e. m0({ω1 × ω2}) < 1, coincides with Dempster’s rule and with proportionalized combination from
[3]. Because the idea of proportionalizations of conflicts was only briefly sketched in [7], the problem
of fully conflicting belief functions is not discussed there at all. Dempster’s rule is not and it cannot
be defined for belief functions which are in full contradiction, whereas minC combination is defined
there, because it has to solve similarly contradictions which are not full, see e.g. Zadeh’s example.

On general n-element frame of discernment Ωn = {ω1, ..., ωn} the minC combination with propor-
tionalization proj1j for j = 1, 2 coincides with Dempster’s rule ⊕ for any set of inputs which are not
in full conflict.

The minC combination with proportionalization proj0j for j = 1, 2 for any two input belief func-
tions coincides with Yager’s rule Y©. It can differ from Y© when more input belief functions are combined,
as all combination is performed on the generalized level at first, and conflict mass is assigned to Ωn

in the end when all combination on the generalized level is already finished. It coincides with k-ary
Yager’s rule when k input belief functions is combined.

The minC combination with proportionalization proj3j for j = 1, 2 for any two input belief func-
tions coincides with Dubois-Prade’s rule DP©. Analogically to the case of prop0j , it can differ from DP©
when more input belief functions are combined, as all combination is performed on the generalized

5To strictly follow the formulas from the previous section, it would be more correct to say that m0(ω1 ∧ ω3) is
proportionalized among {ω1}, {ω3} and {ω1, ω3} in ratio 5 : 3 : 0 for proportionalizations propij for i = 6, 8, j = 1, 2.

6Let us note again that more correct it would be to say that m0((ω1 ∨ ω2) ∧ ω3) is proportionalized among {ω1},
{ω2}, {ω3} {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, and {ω1, ω2, ω3} in ratio 5 : 0 : 3 : 3 : 0 : 0 : 2 with proportionalization prop8j

for j = 1, 2.
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level and conflict mass is assigned to unions in the end when all combination on the generalized level
is already finished. It coincides neither with k-ary Dubois-Prade’s rule when k input belief functions
is combined, because

⋃
(
⋃k

i=1 Xi) ⊆
⋃k

i=1 Xi (not equal) in general, see also Section 6.
The minC combination with proportionalization proj6j for j = 1, 2 for any two input belief func-

tions coincides with the proportionalized combination from [3]. Analogically to the cases of prop0j

and prop3j , it can differ from the proportionalized combination when more input belief functions are
combined, as all combination is performed on the generalized level and conflict mass of pure conflicts
is proportionalized in the end when all combination on the generalized level is already finished.

It coincides neither with k-ary proportionalization rule when k input belief functions is combined,
because P(C(X1 ∪ ... ∪Xk)) ⊆ P(X1 ∪ ... ∪Xk) in general.

10 Related works

In this section we briefly mention another related approaches, namely approaches where a lattice
structure is used for combination of belief functions. We also briefly recall an atempt to simplify a
computation of the minC combination using coarsening and refinement.

We have to start with the already mentioned proportionalized combination [3] which was the
predecessor of the minC combination which uses a proportionalization of conflicts; it was defined on
the classic structure of the power set of a frame of discernment P(Ω). Beside it, we have to mention
also a combination ’per elements’ from [5]; unfortunately mathematical structure of this combination
has not been investigated till now.

Among lattice-based combinations we have to mention Besnard et al. approach [1] at first. Their
lattice propositional space 〈Ω,R〉 corresponds with a minC generalized frame of discernment. But its
motivation is a possibility to represent belief that two or more elements can appear simultaneously.
Moreover, to express that some elements are mutually exclusive, there is an exclusivity relation E on
Ω2. If ω1 and ω2 are mutually exclusive (i.e., (ω1, ω2) ∈ E) it holds that ω1 ∧ ω2 ≈ ⊥, where ⊥ is the
least element of R and ≈ is an equivalence relation, thus all conflicts are equivalent in this approach.
Belief functions, plausibility and commonality functions are defined on evidential structure 〈Ω,R, E〉.
As Besnard’s approach was developed from TBM approach it is allowed that belief mass of ⊥, i.e,
conflicting belief mass, is positive.

Thus even if the propositional space corresponds to the generalized frame of discernment Besnard
et al. approach is quite different. We have to remember that all elements are supposed to be mutually
exclusive in the minC approach, and that the lattice structure serves on working internal level for
distinguishing of different types of conflicts. No belief functions, plausibility nor commonality functions
are defined on a minC generalized frame of discernment. Belief masses of conflicts are supposed to be
0, thus a proportionalization of conflicting masses is used in the minC approach to redistribute them
among non-conflicting elements, i.e., among elements of P(Ω).

Further we have to mention DSm (Dezert-Smarandache of Demspter-Shafer modified) theory. DSm
approach is based on an assumption that elements of the frame of discernment can be overlapping,
it is analogous to simultaneous appearance of elements from Ω. The lattice structure DΩ is called
Dedekind lattice or hyper-power set of Ω in DSm theory. A structure, where all its elements can
be mutually overlapping, is called the free DSm model and it corresponds to Besnard’s propositional
space. There are allowed so called exclusivity constraints in DSm approach which defines which
elements are mutually exclusive; a set of these constraints corresponds to exclusivity relation E in
Besnard’s evidential structure. A DSm model with constraints is called hybrid DSm model and it
corresponds with Besnard’s evidential structure.

Independently developed DSm approach is very close to Besnard’s approach, but not the same as
it is developed from the classic Dempster-Shafer theory, where m(∅) = 0, where ∅ is the least element
of the hyper-power set DΩ, this differs Besnard and DSm approaches. DSm theory is more general,
more elaborated, it allows e.g. a situation with concurrent appearance of any two elements but three
or more elements cannot appear simultaneously, i.e., the expressivity of DSm constraints is higher
than that of Besnard’s exclusivity relation on Ω2. Moreover the non-existential constraints are used in
DSm theory for total exclusion of some elements from Ω during combination, this enables the so-called
dynamic fusion. To by-pass non-associativity, n-ary combination rules are used in DSm theory. A
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detail comparison of these very similar but different approaches would be an interesting task for a
future research.

Even if assumptions of the minC approach and of DSm theory are completely different the minC
generalized frame of discernment coincides with DSm hyper-power set (DSm free model). And DSm
classic rule for combination of belief functions defined on the free DSm model coincides with compu-
tation of m0 on the minC generalized level. A comparison of the minC combination with the DSm
hybrid (DSmH) rule on Shafer’s DSm model has been published in [21], see Chapter 10 [8].

Generalization of minC to DSm hyper-power sets, i.e. a combination of two lattice-based ap-
proaches is just under development, see [11].

All of the combinations using lattice-based structure have high computing complexity in general,
because the size of a lattice generated from Ω rapidly increases with n = |Ω|. Therefore an idea of
coarsening of input belief functions to simple 2-element frames, computation of generalized level of the
minC combination there, and refinement of results back to the original n-element frame of discernment
was investigated in [6], see also [9]. This idea is based on commutation of the generalized level of minC
combination with refinement/coarsening and on simplicity of the combination on 2-element frames. It
was proved in [6] that a belief function Bel on n-element frame Ω of discernment uniquely correspond
to a set of 2n−1−1 belief functions on 2-element frames constructed by coarsening of Ω (by splitting of
Ω to two complementary parts). We can apply the same idea of splitting of a frame of discernment also
to minC generalized frames of discernment L(Ω), unfortunately such an expression of a generalized
basic belief assignment on n-element frame using generalized assignments on 2-element splitted frames
is not 1 to 1 in the case of minC generalized frames, and no procedure how to reconstruct resulting
generalized bba from those splitted ones has not been found for general belief functions.

A question of determination of a class of belief functions to which the above idea of refine-
ment/coarsening is applicable is a still open problem for a future research. Another open problem is
determination of a special class of belief functions where a complexity of the minC do not increase so
rapidly as it does in a general case.

11 Conclusion

A mathematical structure of the minC combination has been analysed in this contribution. It is
a lattice based structure. Based on it, formulas for computing of the minC combination has been
introduced. The new formulas express the minC combination for belief functions defined on arbitrary
finite frame of discernment. When considering various proportionalizations of conflicting belief masses,
the minC combination is a family of different rules.

An analysis of particular proportionalizations and more general redistributions of conflicting belief
masses has been presented.

Beside the analysis and new presentation of the minC combination, several important related
approaches is mentioned and their principal properties are compared.

The presented results can serve as a basis for more particular comparisons of alternative approaches:
of the minC combination, DSm hybrid rule, Proportional Conflict Redistribution (PCR) rule, and of
other rules from alternative approaches.
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