

Silica-Alumina Supported Catalysts in Hydrodesulfurization of 4,6-Dimethyldibenzothiophene and 1-Benzotiophene Parallel with Hydrodeoxygenation of Octanoic Acid.

Gulková, Daniela 2017

Dostupný z http://www.nusl.cz/ntk/nusl-369607

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).

Datum stažení: 24.08.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz.

SILICA-ALUMINA SUPPORTED CATALYSTS IN HYDRODESULFURIZATION OF 4,6-DIMETHYLDIBENZOTHIOPHENE AND HYDRODESULFURIZATION OF 1-BENZOTHIOPHENE PARALLEL WITH HYDRODEOXYGENATION OF OCTANOIC ACID

Daniela Gulková, Zdeněk Vít, Luděk Kaluža

Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135/2, 165 02 Prague 6-Suchdol, Czech Republic

Mesoporous silica-aluminas (MSA) containing 2-25 wt.% Al₂O₃ were studied as supports of Pd-Pt (0.10-1.50 wt.%) and CoMo (16.3 wt.%) catalysts and were compared with reference commercial catalyst CoMo/Al₂O₃. Transformation of 4,6dimethyldibenzothiophene (4,6-DMDBT) was evaluated both on the MSA supports and Pd-Pt/MSA catalysts in a flow reactor in the gas phase at 300°C and 5.0 MPa. CoMo catalysts were compared in hydrodesulfurization (HDS) of 1-benzothiophene (BT) parallel with hydrodeoxygenation (HDO) of octanoic acid (OA) at 330°C and 1.6 MPa using first order rate of ethylbenzene and hydrocarbons (heptane+octane) formation k_{EB} and k_{HC} as activity indexes, respectively. It was found that isomerization and disproportionation of 4,6-DMDBT occur on MSA supports. Brønsted acidity and the amount of deposited active metal phase influenced the overall HDS activity k_{DMDRT} and HYD/cracking selectivity. HDS on Pd-Pt catalysts proceeded almost exclusively by the hydrogenation (HYD) route. Activities of majority of Pd-Pt catalysts correlated with their Brønsted acidities while not with metal dispersion1. The studied sulfidic CoMo phase increased DDS route (formation of DMBP) and results in similar HDS/HDO activity and selectivity (keB/kHC) as the reference Al2O3 supported counterpart. We believe that high acidity of MSAs positively influence hydrorafination of 4.6-DMDBT and oxygen (OA) containing feeds, which motivate our forthcoming research.

The authors gratefully appreciated and acknowledged the financial support of the Czech Science Foundation (grant No. 17-22490S).

Table 1. Activity of catalysts in HDS of 4,6-DMDBT and HDS/HDO of BT/OA.

Catalyst	W/F _{DMDBT}	XDMDBT	k _{DMDBT} mmol/h.gcat	W/F _{BT}	keB	k _{HC}
0.10PdPt/MSA2	168	0.70	7.1	g.ii/iiloi	- 1111101	ni.gcai
0.32PdPt/MSA2	130	0.92	19.3		_	
0.82PdPt/MSA2	110	0.91	21.7		_	_
1.23PdPt/MSA2	103	0.91	23.2	-	_	-
0.11PdPt/MSA4	166	0.82	10.2	_	_	-
0.31PdPt/MSA9	128	0.87	15.8	_	-	_
0.74PdPt/MSA13	149	0.88	14.1	_	-	_
1.32PdPt/MSA13	75	0.90	30.3	-	-	-
1.50PdPt/MSA13	80	0.84	22.3		-	_
ref. 11.6CoMo/Al ₂ O ₃	1182	0.83	1.5	-	-	_
16.3CoMo/MSA25	2 5		-	10	106	21
ref. 12.9CoMo/Al ₂ O ₃	2	-	-	10	97	30

Reference

¹ Vít Z., Gulková D., Kaluža L., Kupčík J. Applied Catalysis B: Environmental, **2015**, 179, 44-53.