
Evolving Neural Networks which Control a Simple Robotic Agent

Neruda, Roman
2006

Dostupný z http://www.nusl.cz/ntk/nusl-36905

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 15.08.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-36905
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Evolving neural networks which
control a simple robotic agent

Roman Neruda, Stanislav Slušný

Technical report No. 986

December 2006

Pod Vodárenskou věžı́ 2, 182 07 Prague 8, phone: +420 266 053 111, fax:
+420 286 585 789, e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Evolving neural networks which
control a simple robotic agent

Roman Neruda, Stanislav Slušný1

Technical report No. 986

December 2006

Abstract:

The design of intelligent embodied agents represents one of the key research topics
of today’s artificial intelligence. These agents should be able to adopt to changes
of the environment and to modify their behaviour according to acquired knowledge.
The goal of this work is the study of emergence of intelligent behaviour within a
simple intelligent agent. Cognitive agent functions will be realized by mechanisms
based on neural networks and evolutionary algorithms, where the evolutionary al-
gorithm will be responsible for the adaptation of a neural network in a simulated
environment.

Keywords:
Evolutionary algorithms, neural networks, robotic agent.

1Acknowledgment This work was supported by the Ministry of Education of the Czech Republic under the
project Center of Applied Cybernetics No. 1M684077004 (1M0567).

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Neural networks . 3
2.2 Evolutionary algorithms .. 3

3 Khepera robots 6
3.1 Physical robot . 6
3.2 Simulation environments .. 6

4 Experiments 9
4.1 Avoiding walls . 9
4.2 Maze . 11

5 Conclusions 13

1

Chapter 1

Introduction

One of the main goals of Artificial Intelligence (AI) is to gain insight into natural intelligence
through a synthetic approach, by generating and analyzing artificial intelligent behavior. In
order to glean an understanding of a phenomenon as complex asnatural intelligence, we
need to study complex behavior in complex environments. Traditionally, AI has concerned
itself with complex agents in relatively simple environments, simple in the sense that they
could be precisely modeled and involved little or no noise and uncertainty.

In contrast to traditional systems, reactive and behavior based systems have placed agents
with low levels of cognitive complexity into complex, noisyand uncertain environments.
One of the many characteristics of intelligence is that it arises as a result of an agent’s inter-
action with complex environments. One approach to develop autonomous intelligent agents,
called Evolutionary robotics (ER), is through a self-organization process based on artificial
evolution. Its main advantage is that it is an ideal framework for synthesizing agents whose
behaviour emerge from a large number of interactions among their constituent parts[3].

In the following sections we introduce neural networks and evolutionary algorithms, two
basic tools used in evolutionary robotics. Then we look at Khepera robots and related simu-
lation software. In the next chapter, we present two experiments with real Khepera robots. In
both of them, artificial evolution will be guiding self-organization process. In first of them,
we expect emergence of wall avoidance behaviour. In the second, besides wall avoidance
behaviour, we expect emergence of behaviour, that guarantees full maze exploration. In both
experiments, agents are controlled by simple feed forward neural networks, and this restric-
tion causes their pure reactive behaviour. However, results are surprisingly good, as we will
show. In the last chapter, we draw some conclusions and present directions for our future
work.

2

Chapter 2

Preliminaries

2.1 Neural networks

The robot’s control algorithm is based on the neural networks. Neural networks are popular
in robotics from various reasons. They provide straightforward mapping from input signals
to output signals, several levels of adaptation and are robust to noise.

An multilayer feedforward ANN is an interconnected networkof simple computing units
calledneurons, which are ordered in layers, starting with aninput layer and ending with
an output layer. [1]. Between these two layers there can be a number ofhidden layers.
Connections in this kind of networks only go forward from one layer to the next. Each
neuron hasn real inputs, and each inputxi has assigned a real weightwi.

The outputy(x) of a neuron is defined in equation 2.1:

y(x) = g

(

n
∑

i=1

wixi

)

, (2.1)

wherex is the neuron withn input dendrites (x0 ... xn), one output axony(x), (w0 ... wn)
are weights andg : ℜ → ℜ is theactivation function. One of the most common activation
function is a logistic sigmoid function 2.2

σ(ξ) = 1/(1 + e−ξt), (2.2)

wheret determines its steepness.
In this paper, by training of neural network, we mean modification of its weights. Usually,

the sets of examples are provided with learning task, from which neural network is trained by
some supervised learning algorithm. However, training neural networks for robot controllers
is not that case - training sets are usually not available. The adaptation of neural network
is not carried out by a supervised learning algorithm as usually, but instead, an evolutionary
algorithm is used.

2.2 Evolutionary algorithms

Evolutionary algorithmhas been investigated by John Holland [2], with a marked increase
of interest within the last few years. Evolutionary search refers to a class of stochastic opti-
mization techniques — loosely based on processes believed to operate in biological evolution

3

— in which a population of candidate solutions (chromosomes) evolves under selection and
random “genetic” diversification operators. The problem isto find maximum offitness func-
tion. Every member of population is calledindividual and represents a potential solution to
a problem.

The algorithm 1 reveals skeleton of genetic algorithm used in our experiments. To fully
describe genetic algorithm, it is needed to define how each solution will be represented, how
initial population will be created and what genetic operators will be used in the Reproduction
step.

The standard genetic algorithm uses binary strings to encode alternative solutions. Real-
world experiments demand big precision, what causes too long chromosomes, for which the
evolution process becomes non-efficient. Therefore, different encoding method is used. The
synaptic weights of neural networks are directly encoded onthe genotype as a string of real
values. In our experiments, traditional one-point crossover and biased mutation operators
were used. Initial population consisted of neural networkswith randomly initialized weights.

We have used theroulette wheel selectionin all experiments, which performs the equiv-
alent role to natural selection — it chooses individuals fornext population proportionally to
their fitness values.

Evaluation of an individual by a fitness value was carried outin a simulation. To evaluate
the individual, neural network is constructed from chromosome, environment is initialized
and robot is put into randomly chosen starting location (4.1). The inputs of neural networks
are interconnected with robot’s sensors and outputs with robot’s motors. The robot is then
left to “live” in the simulated environment for some (fixed) time period, fully controlled by
neural network. Depending on how well is robot doing, individual is evaluated by fitness
value. The higher evaluation, the more successful robot in executing particular task.

4

Input: number of individuals in populationN , number of elitsE, maximum number of
populationsGmax.
Output: the best found solution of a problem.

1. Start: Create initial population ofN individualsP (0) = {I1, ..., IN}, i = 0.

2. Evaluation of individuals: To compute fitness function for every individualI, build
ANN corresponding toI and initialize simulated environment. Let robot (controlled
by ANN) freely carry actions for fixed time period. Evaluate robot by real value,
depending how well it was doing.

3. Stop-condition: Ifi = Gmax, finish and return solution represented by individual with
minimal value of fitness function.

(a) Creation of new populationP (i + 1) from populationP (i): Create empty popu-
lationP (i + 1).

(b) Selection: ChooseE best individuals from populationP (i) and move them to
the populationP (i+1). Apply selection operator, chooseN −E individuals and
insert them into the populationP ′(i).

(c) Reproduction: Apply crossover and mutation operators onpopulationP ′(i), re-
sulting population isP (i + 1).

i. Crossover step: If populationP ′(i) contains odd number of individuals, in-
sert chromosome of the first individual from populationP ′(i) into population
P ′′(i). From populationP ′(i) choose pairs of chromosomesC andD and
apply on them crossover operator, insert new chromosomesC ′ andD′ into
populationP ′′(i).

ii. Mutation step: On every chromosome from populationP ′′(i) apply mutation
operator, insert new chromosome into populationP (i + 1).

4. New generation:i = i + 1, Continue by step 2.

Algorithm 1: Skeleton of the evolutionary algorithm.

5

Chapter 3

Khepera robots

3.1 Physical robot

Khepera is a miniature mobile robot with a diameter of 70 mm and a weight of 80 g. The
robot is supported by two lateral wheels that can rotate in both directions and two rigid pivots
in the front and in the back. The sensory system employs eight“active infrared light” sensors
distributed around the body, six on one side and two on other side. In “passive mode”, they
measure the amount of infrared light in the environment, which is roughly proportional to
the amount of visible light. In “active mode” these sensors emit a ray of infrared light
and measure the amount of reflected light. The closer they areto a surface, the higher is
the amount of infrared light measured. The Khepera sensors can detect a white paper at a
maximum distance of approximately 5 cm. The robot is equipped with a Motorola MC68331
CPU with 512 Kbytes of EEPROM and 512 Kbytes of static RAM.

Robot miniaturization has several advantages[4]. It makes possible to build complex
environments on a limited surface, fundamental laws of physics give higher mechanical ro-
bustness to a miniature robot and while the miniature robot will resist the collision, the other
robot would probably report serious damages (this is in particular important when evolving
real robots without simulation).

3.2 Simulation environments

Although evolution on real robots is feasible, serial evaluation of individuals on a single
physical robot might require quite a long time. As stated in [3], the experiment on evolution
of a homing navigation performed by Floreano and Mondada took 10 days when carried out
entirely on physical robots.

One way to avoid the problem of time is to evolve robots in simulation and then run
the most successful individuals on the physical robot. Simulated robots might run faster
and the power of parallel computers can be easily exploited for running more individuals
at the same time. However, simulation present other problems. There is a real danger that
programs which run well on simulated robots will completelyfail on real robots because
of the differences in real and simulated world sensing. Several evolutionary experiments
recently conducted in simulations and successfully validated on real robots demonstrated
that, at least for a restricted class of robot-environment interactions, it is possible to develop
robots in simulation.

6

Figure 3.1: Khepera robot built by K-Team SA (www.k-team.com).

Figure 3.2: Schematic drawing of the robot with infrared promixity sensors, left and right
wheel (controlled by independent motors).

7

One of the widely used simulation software (for Khepera robots) is Yaks simulator, which
is freely available. Yaks can also control real robot through serial cable connection, so
evolved neural network can be directly tested on real robot.Simulation consists of pre-
defined number of discrete steps, each single step corresponds to 100 ms. Yaks allows the
user to customize and design world with walls, obstacles andspecify start locations. In our
experiments, we introduce the concept ofzones, which are circular areas that provide the
ability to reference to that specic location on the map. Zones incorporate features such as the
number of times a robot has visited it.

8

Chapter 4

Experiments

We have conducted two experiments. First experiment is actually navigation with wall avoid-
ance, classic task that most people working in mobile robotics have some experiences with.
A robot is put in an environment with some corridors and is required to cover longest pos-
sible distance without hitting the objects. In second experiment, the task of robot is to learn
effective maze exploration strategy.

Experiments were carried out in simulated environment. Parameters of evolutionary al-
gorithm are shown in table 4.1. Evaluation of robot took at most 200 steps, and was inter-
rupted when the robot hit the wall. Neural networks had one hidden layer with 4 neurons,
eight input neurons (corresponding to sensors) and two output neurons (corresponding to
motors). Each simulation step, signal values measured by sensors were passed to neural
network and outputs from neural networks were sent to motors. Values from sensors are in
range[0, 1], the higher value is, the closer obstacle is in front of sensor. Motor speeds have to
be in range[−0.5, 0.5], where0 means motor turned off,0.5 corresponds to fastest forward
speed and−0.5 corresponds to fastest backward speed.

Population size 150
Crossover probability 0.7
Mutation probability 0.7

Number of generations150

Table 4.1: Parameters of evolutionary algorithm.

The experiments differ only in the way of evaluating individuals by fitness function. Eval-
uation is started by environment initialization and fitnessvalue of the individual is cleared.
Starting position of the robot is chosen randomly from six predefined positions. Each simu-
lation step, fitness valueφ of an individual is increased by fitness gain∆φ.

4.1 Avoiding walls

The goal was to evolve a control system capable of maximizingspeed while avoiding walls.
The external size of a “maze” was approximately 80x67 cm (figure 4.2).

Similarly to [3], fitness gain ink-th step∆φk is composed of three components.

∆φk = V k(1 −
√

∆vk)(1 − ik) (4.1)

9

Figure 4.1: Artificial evolution with a single robot. The population of evolving individ-
uals is stored on the computer memory, each individual can betested in simulated or real
environment (reprinted with small modifications from [3]).

Figure 4.2: Trajectory of the best individual from the last generation in “avoid walls” exper-
iment. Robot is able to move without hitting the walls.

10

V k
L , V k

R ∈ [−0.5, 0.5], V k = |V k
L | + |V k

R | (4.2)

∆vk = |V k
L − V k

R |, ∆vk ∈ [0, 1] (4.3)

φ =
n
∑

k=1

∆φk

n
(4.4)

V k is computed by taking sum of absolute values of left wheel speed V k
L and right wheel

speedV k
R (thusV k ∈ [0, 1]). This component is maximized by high rotation speed of the

wheels, without regard to direction. Second component1 −
√

∆vk motivates wheels to
rotate in the same direction. Last component is responsiblefor wall avoidance. The valueik

of the most active sensor ink-th step provides conservative measure of how close the robot
is to an object, independently of its relative position. Thecloser it is to an object, the higher
the measured value in a range from 0 to 1.

At the end of evaluation (either after 200 simulation steps or when robot hits the wall),
fitness value is divided by the number of stepsn, thus finally fitness evaluation is actually an
average fitness gain.

Picture 4.2 shows trajectory of the best individual from last generation. Theoretically,
if robot would be moving at full speed with no sensors activated, it could obtain maximal
fitness value 1. In fact, corridors were quite narrow, so sensors were activated almost all the
time. No robot from the last generation was moving at full speed.

As shown in picture 4.2, robot learned to effectively move without hitting the walls. Best
individuals from earlier generations were quite successful too, but path was not so smooth
yet.

4.2 Maze

In this experiment, robot should learn effective maze exploration strategy. Maze (figure 4.3)
has size 100x100 cm. There are two ”zones” randomly located in the maze (green circles
in figure 4.3). Robot is rewarded, when passes through these zones and zones are relocated.
Zones can not be even sensed by the robot, so robot should learn effective strategy to seek
through all corridors in a complex maze.

Similarly to previous experiment, fitness value is increased each simulation step by fit-
ness gain. This time, however, we left two components and fitness gain is increased only for
ability to avoid walls. Robot moving is stimulated in anotherway - at the end of simulation,
fitness value is increased by number of visited zonesZ.

∆φk = (1 − ik) (4.5)

φ =
n
∑

k=1

∆φk

n
+ Z (4.6)

As shown in picture 4.3, evolved strategy consists of following right wall, what guaran-
tees complete maze exploration. Even trajectory of best individuals is not very smooth, as
robot is penalized for being too close to the wall, it is trying to move away from the wall

11

Figure 4.3: Khepera (represented by black circle) in a maze environment. Robot should
look for green circles, called “zones”, although it was not able to sense them. When the zone
was hit by robot, it was randomly relocated. Evolved strategy, which consisted of right wall
following, guarantees complete maze exploration.

but not to loose contact with the wall on its right side. Due tothe fact, that robot is not re-
warded for the fast movement, robot is moving at significantly slower speed than in previous
experiment.

12

Chapter 5

Conclusions

In the previous section, we presented two experiments, in which self-organization process
based on evolutionary algorithm should have developed behaviours, that solve relative simple
tasks. In both experiments, feed forward neural network wasevolved, that controlled agent’s
behaviour. Although experiments were conducted in simulation only, neural networks were
later transfered to the real Khepera and results were surprisingly good. No learning on real
robots was needed. This proves potential of this approach.

Our experiments were concerned one embodied agent only. In recent years, the envi-
ronmental complexity is scaled up by introducing other agents, and cognitive complexity is
scaled up by introducing learning capabilities into each ofthe agents. Similarly to synthe-
sizing behaviours, we should assume that evolutionary approach can be successfully applied
also to synthesize agents able to display collective behaviours. In this case, evolving indi-
vidual might exploit not only the properties that emerge from the interactions among the
constituent elements of the agent and between the agent and the environment but also the
interactions among different individual agents.

In our future work, we would like investigate the feasibility of applying the evolutionary
method to the synthesis of the control systems of a group of robots able display collective
behaviour. Research will also investigate which type of strategies emerge during evolution:
these strategies might shed new light on behaviours of animals moving in groups (heards,
flocks, ecc.).

13

Bibliography

[1] J. Š́ıma, R. Neruda. Teoretické ot́azky neuronov́ych śıtı́. Matfyzpress, Praha, 1996.

[2] J. Holland. Adaptation In Natural and Artificial Systems. The University of Michigan
Press, Ann Arbour, 1975.

[3] S. Nolfi, D. Floreano. Evolutionary Robotics - The Biology,Intelligence and Techology
of Self-Organizing Machines. The MIT Press, 2000.

[4] Mondada, F., E. Franzi and P. Ienne. Miniaturisation: A tool for investigation in con-
trol algorithms. In T. Yoshikawa and F. Miyazaki, eds., Proceedings of the Third In
ternational Symposium on Experimental Robotics. Springer-Verlag, Berlin, (1993),
501513.

14

