narodni
N U dlozisté
1 L Sedé
6 literatury

Evolving Neural Networks which Control a Simple Robotic Agent

Neruda, Roman
2006

Dostupny z http://www.nusl.cz/ntk/nusl-36905

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 15.08.2024

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .

http://www.nusl.cz/ntk/nusl-36905
http://www.nusl.cz
http://www.nusl.cz

4 Institute of Computer Science
Academy of Sciences of the Czech Republic

Evolving neural networks which
control a simple robotic agent

Roman Neruda, Stanislav Slusny
Technical report No. 986

December 2006

Pod Vodarenskou vézi 2, 182 07 Prague 8, phone: +420266 053 111, fax:
+420 286 585 789, e-mail:ics@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Evolving neural networks which
control a simple robotic agent

Roman Neruda, Stanislav Sludny*
Technical report No. 986
December 2006

Abstract:

The design of intelligent embodied agents represents one of the key research topics
of today’s artificial intelligence. These agents should be able to adopt to changes
of the environment and to modify their behaviour according to acquired knowledge.
The goal of this work is the study of emergence of intelligent behaviour within a
simple intelligent agent. Cognitive agent functions will be realized by mechanisms
based on neural networks and evolutionary algorithms, where the evolutionary al-
gorithm will be responsible for the adaptation of a neural network in a simulated
environment.

Keywords:
Evolutionary algorithms, neural networks, robotic agent.

1Acknowledgment This work was supported by the Ministry ofiEation of the Czech Republic under the
project Center of Applied Cybernetics No. 1M684077004 (5810).

Contents

1 Introduction

2 Preliminaries
2.1 Neural networks

2.2 Evolutionary algorithms
3 Kheperarobots

3.1 Physicalrobot

3.2 Simulationenvironmentso

4 Experiments
4.1 Avoiding walls
42 Maze

5 Conclusions

Chapter 1

Introduction

One of the main goals of Artificial Intelligence (Al) is to geinsight into natural intelligence
through a synthetic approach, by generating and analyziifgial intelligent behavior. In
order to glean an understanding of a phenomenon as compleatasal intelligence, we
need to study complex behavior in complex environmentsdificmally, Al has concerned
itself with complex agents in relatively simple environrtgersimple in the sense that they
could be precisely modeled and involved little or no noiseé ancertainty.

In contrast to traditional systems, reactive and behawdset systems have placed agents
with low levels of cognitive complexity into complex, noigynd uncertain environments.
One of the many characteristics of intelligence is thatiges as a result of an agent’s inter-
action with complex environments. One approach to devalbpremous intelligent agents,
called Evolutionary robotics (ER), is through a self-orgarion process based on artificial
evolution. Its main advantage is that it is an ideal framéwfor synthesizing agents whose
behaviour emerge from a large number of interactions amuoeig ¢onstituent parts[3].

In the following sections we introduce neural networks avalgionary algorithms, two
basic tools used in evolutionary robotics. Then we look ag¢fpédra robots and related simu-
lation software. In the next chapter, we present two expanisiwith real Khepera robots. In
both of them, artificial evolution will be guiding self-ong@ation process. In first of them,
we expect emergence of wall avoidance behaviour. In thenskdmesides wall avoidance
behaviour, we expect emergence of behaviour, that guasfiu maze exploration. In both
experiments, agents are controlled by simple feed forwatotal networks, and this restric-
tion causes their pure reactive behaviour. However, resué surprisingly good, as we will
show. In the last chapter, we draw some conclusions andrgrdgections for our future
work.

Chapter 2

Preliminaries

2.1 Neural networks

The robot’s control algorithm is based on the neural netaoMeural networks are popular
in robotics from various reasons. They provide straightod mapping from input signals
to output signals, several levels of adaptation and arestdbunoise.

An multilayer feedforward ANN is an interconnected netwoflsimple computing units
called neurons which are ordered in layers, starting with sput layerand ending with
an output layer [1]. Between these two layers there can be a numbdridifen layers
Connections in this kind of networks only go forward from oagdr to the next. Each
neuron has real inputs, and each input has assigned a real weight.

The outputy(z) of a neuron is defined in equation 2.1:

y(x) =g (Z wixi> , (2.1)

wherex is the neuron with: input dendrites ... z,,), one output axomy(z), (wp ... w,)
are weights ang : 8 — R is theactivation function One of the most common activation
function is a logistic sigmoid function 2.2

o(§) =1/(1+ e, (2.2)

wheret determines its steepness.

In this paper, by training of neural network, we mean modiioceof its weights. Usually,
the sets of examples are provided with learning task, fromshvheural network is trained by
some supervised learning algorithm. However, trainingalewetworks for robot controllers
is not that case - training sets are usually not availablee ddhaptation of neural network
is not carried out by a supervised learning algorithm asliysuat instead, an evolutionary
algorithm is used.

2.2 Evolutionary algorithms

Evolutionary algorithmhas been investigated by John Holland [2], with a markeccase
of interest within the last few years. Evolutionary searefers to a class of stochastic opti-
mization techniques — loosely based on processes beliexaaktrate in biological evolution

3

— in which a population of candidate solutions (chromosgmegslves under selection and
random “genetic” diversification operators. The problernoind maximum offitness func-
tion. Every member of population is calleadividual and represents a potential solution to
a problem.

The algorithm 1 reveals skeleton of genetic algorithm usealir experiments. To fully
describe genetic algorithm, it is needed to define how edciti@o will be represented, how
initial population will be created and what genetic opersitaill be used in the Reproduction
step.

The standard genetic algorithm uses binary strings to enattdrnative solutions. Real-
world experiments demand big precision, what causes tapdbromosomes, for which the
evolution process becomes non-efficient. Therefore,rdiffeencoding method is used. The
synaptic weights of neural networks are directly encodethergenotype as a string of real
values. In our experiments, traditional one-point cross@nd biased mutation operators
were used. Initial population consisted of neural netwavit randomly initialized weights.

We have used theulette wheel selectiom all experiments, which performs the equiv-
alent role to natural selection — it chooses individualsrfext population proportionally to
their fitness values.

Evaluation of an individual by a fitness value was carriedioatsimulation. To evaluate
the individual, neural network is constructed from chroorae, environment is initialized
and robot is put into randomly chosen starting location)(4The inputs of neural networks
are interconnected with robot’s sensors and outputs whibti® motors. The robot is then
left to “live” in the simulated environment for some (fixedne period, fully controlled by
neural network. Depending on how well is robot doing, indial is evaluated by fithess
value. The higher evaluation, the more successful robotecuing particular task.

Input: number of individuals in populatio?v, number of elitst, maximum number of

populations7,,,,. .
Output: the best found solution of a problem.

1. Start: Create initial population of individualsP(0) = {11, ..., Ix},i = 0.

2. Evaluation of individuals: To compute fitness functiom é&very individual/, build
ANN corresponding td and initialize simulated environment. Let robot (contdll
by ANN) freely carry actions for fixed time period. Evaluatbot by real value,
depending how well it was doing.

3. Stop-condition: I = G.,,.., finish and return solution represented by individual with
minimal value of fitness function.

(a) Creation of new populatioR(i + 1) from populationP(i): Create empty popu-
lation P(i + 1).

(b) Selection: Choosé best individuals from populatio#’(:) and move them to
the populationP(i + 1). Apply selection operator, choogé— F individuals and
insert them into the populatioR’ (7).

(c) Reproduction: Apply crossover and mutation operatorpapulation?’ (i), re-
sulting population isP(i + 1).

i. Crossover step: If populatioR’ (i) contains odd number of individuals, in-
sert chromosome of the first individual from populati8fti) into population
P"(i). From population”’ (i) choose pairs of chromosomésand D and
apply on them crossover operator, insert new chromosdarhesd D’ into
populationP” (i),

ii. Mutation step: On every chromosome from populati$tii) apply mutation
operator, insert new chromosome into populatitfa + 1).

4. New generationi = i + 1, Continue by step 2.

Algorithm 1: Skeleton of the evolutionary algorithm.

Chapter 3

Khepera robots

3.1 Physical robot

Khepera is a miniature mobile robot with a diameter of 70 mm anwveight of 80 g. The
robot is supported by two lateral wheels that can rotate ith Qwections and two rigid pivots
in the front and in the back. The sensory system employs &agtlive infrared light” sensors
distributed around the body, six on one side and two on oilder $n “passive mode”, they
measure the amount of infrared light in the environment,cwhs roughly proportional to
the amount of visible light. In “active mode” these sensarstea ray of infrared light
and measure the amount of reflected light. The closer theyoaaesurface, the higher is
the amount of infrared light measured. The Khepera sensorsletect a white paper at a
maximum distance of approximately 5 cm. The robot is equdppi¢h a Motorola MC68331
CPU with 512 Kbytes of EEPROM and 512 Kbytes of static RAM.

Robot miniaturization has several advantages[4]. It makesiple to build complex
environments on a limited surface, fundamental laws of isygive higher mechanical ro-
bustness to a miniature robot and while the miniature rolibtesist the collision, the other
robot would probably report serious damages (this is ini@der important when evolving
real robots without simulation).

3.2 Simulation environments

Although evolution on real robots is feasible, serial ea#ibn of individuals on a single
physical robot might require quite a long time. As stated3ijy fhe experiment on evolution
of a homing navigation performed by Floreano and Mondadk 1@odays when carried out
entirely on physical robots.

One way to avoid the problem of time is to evolve robots in datian and then run
the most successful individuals on the physical robot. $ated robots might run faster
and the power of parallel computers can be easily exploibedunning more individuals
at the same time. However, simulation present other prablerhere is a real danger that
programs which run well on simulated robots will complet&yl on real robots because
of the differences in real and simulated world sensing. f&é\evolutionary experiments
recently conducted in simulations and successfully védidian real robots demonstrated
that, at least for a restricted class of robot-environmeteractions, it is possible to develop
robots in simulation.

Figure 3.1: Khepera robot built by K-Team SA (www.k-teanmjo

Figure 3.2: Schematic drawing of the robot with infraredrpiaty sensors, left and right
wheel (controlled by independent motors).

One of the widely used simulation software (for Khepera tepis Yaks simulator, which

is freely available. Yaks can also control real robot thitowgrial cable connection, so
evolved neural network can be directly tested on real rol&mulation consists of pre-
defined number of discrete steps, each single step corréspori00 ms. Yaks allows the
user to customize and design world with walls, obstaclesspedify start locations. In our
experiments, we introduce the conceptzohes which are circular areas that provide the
ability to reference to that specic location on the map. Zoneorporate features such as the
number of times a robot has visited it.

Chapter 4

Experiments

We have conducted two experiments. First experiment isafigtoavigation with wall avoid-
ance, classic task that most people working in mobile rasdtave some experiences with.
A robot is put in an environment with some corridors and isuregfl to cover longest pos-
sible distance without hitting the objects. In second expent, the task of robot is to learn
effective maze exploration strategy.

Experiments were carried out in simulated environmentafaters of evolutionary al-
gorithm are shown in table 4.1. Evaluation of robot took ash&00 steps, and was inter-
rupted when the robot hit the wall. Neural networks had owlelén layer with 4 neurons,
eight input neurons (corresponding to sensors) and twoubutpurons (corresponding to
motors). Each simulation step, signal values measured tgose were passed to neural
network and outputs from neural networks were sent to motakies from sensors are in
rangel0, 1], the higher value is, the closer obstacle is in front of seridotor speeds have to
be in rangg—0.5, 0.5], where0 means motor turned off).5 corresponds to fastest forward
speed and-0.5 corresponds to fastest backward speed.

Population size 150
Crossover probability| 0.7
Mutation probability | 0.7
Number of generations 150

Table 4.1: Parameters of evolutionary algorithm.

The experiments differ only in the way of evaluating indivéds by fithess function. Eval-
uation is started by environment initialization and fitneahie of the individual is cleared.
Starting position of the robot is chosen randomly from siedafined positions. Each simu-
lation step, fitness valug of an individual is increased by fitness gai.

4.1 Avoiding walls

The goal was to evolve a control system capable of maximigpegd while avoiding walls.
The external size of a “maze” was approximately 80x67 cm (&gu?2).
Similarly to [3], fitness gain irk-th stepA¢* is composed of three components.

A" = V(1 — VAR (1 —iF) (4.1)

9

r POPULATION ﬁ
MUTATION
CROSSOVER

i SELECTION
EVALUATION

Figure 4.1: Artificial evolution with a single robot. The pdation of evolving individ-
uals is stored on the computer memory, each individual catested in simulated or real

environment (reprinted with small modifications from [3]).

%%%&\\\\WWHWWNH\\\\\\\\\\HHHHHHHH%\

WWWH

)

Zi

)

LN
A

Eil

Figure 4.2: Trajectory of the best individual from the lashgration in “avoid walls” exper

iment. Robot is able to move without hitting the walls.

10

VEVE €1-0.5,05], VE = |V + V4] (4.2)

AvP = |VF —VE|, Avh € [0,1] (4.3)
" AP

=> — 4.4

¢ k=1 n ()

V* is computed by taking sum of absolute values of left wheetdpg® and right wheel
speedV} (thusV* € [0,1]). This component is maximized by high rotation speed of the
wheels, without regard to direction. Second componient v Av* motivates wheels to
rotate in the same direction. Last component is responfibl@all avoidance. The valu#

of the most active sensor irrth step provides conservative measure of how close the robo
is to an object, independently of its relative position. Theser it is to an object, the higher
the measured value in a range from 0 to 1.

At the end of evaluation (either after 200 simulation stepw/ioen robot hits the wall),
fitness value is divided by the number of steps$hus finally fitness evaluation is actually an
average fitness gain.

Picture 4.2 shows trajectory of the best individual front lgesneration. Theoretically,
if robot would be moving at full speed with no sensors acédatt could obtain maximal
fitness value 1. In fact, corridors were quite narrow, so @enwere activated almost all the
time. No robot from the last generation was moving at fullespe

As shown in picture 4.2, robot learned to effectively movéwut hitting the walls. Best
individuals from earlier generations were quite succdgsfy but path was not so smooth
yet.

4.2 Maze

In this experiment, robot should learn effective maze engtion strategy. Maze (figure 4.3)
has size 100x100 cm. There are two "zones” randomly locatébde maze (green circles
in figure 4.3). Robot is rewarded, when passes through thesesznd zones are relocated.
Zones can not be even sensed by the robot, so robot shoutdd#active strategy to seek
through all corridors in a complex maze.

Similarly to previous experiment, fithess value is increlasach simulation step by fit-
ness gain. This time, however, we left two components andd#gain is increased only for
ability to avoid walls. Robot moving is stimulated in anothey - at the end of simulation,
fitness value is increased by number of visited zafies

AgF = (1 —i") (4.5)
n k
b= AT(b +Z (4.6)
k=1

As shown in picture 4.3, evolved strategy consists of foltmwight wall, what guaran-
tees complete maze exploration. Even trajectory of bestithehls is not very smooth, as
robot is penalized for being too close to the wall, it is tyito move away from the wall

11

‘]l.!ll [T II I”II | II III \I | \I II I III \I | I”I
e =
_ Pl i ! .‘;' |11 —
(o) & o =
2 l =
S —
—a G =
& T = | =
s

Figure 4.3: Khepera (represented by black circle) in a mam@@ment. Robot should
look for green circles, called “zones”, although it was naego sense them. When the zone
was hit by robot, it was randomly relocated. Evolved strgtednich consisted of right walll
following, guarantees complete maze exploration.

but not to loose contact with the wall on its right side. Duéhte fact, that robot is not re-
warded for the fast movement, robot is moving at signifigasitbwer speed than in previous
experiment.

12

Chapter 5

Conclusions

In the previous section, we presented two experiments, ishwéelf-organization process
based on evolutionary algorithm should have developedviains, that solve relative simple
tasks. In both experiments, feed forward neural networkevassed, that controlled agent’s
behaviour. Although experiments were conducted in simaratnly, neural networks were
later transfered to the real Khepera and results were surgly good. No learning on real
robots was needed. This proves potential of this approach.

Our experiments were concerned one embodied agent onlyecknt years, the envi-
ronmental complexity is scaled up by introducing other &gjeand cognitive complexity is
scaled up by introducing learning capabilities into eackhefagents. Similarly to synthe-
sizing behaviours, we should assume that evolutionarycagbrcan be successfully applied
also to synthesize agents able to display collective bebesi In this case, evolving indi-
vidual might exploit not only the properties that emerganrfrthe interactions among the
constituent elements of the agent and between the agenharehvironment but also the
interactions among different individual agents.

In our future work, we would like investigate the feasilyilaf applying the evolutionary
method to the synthesis of the control systems of a grouplaftsoable display collective
behaviour. Research will also investigate which type oftstri@s emerge during evolution:
these strategies might shed new light on behaviours of dsimaving in groups (heards,
flocks, ecc.).

13

Bibliography

[1] J. Sima, R. Neruda. Teoretiékotazky neuronoych sti. Matfyzpress, Praha, 1996.

[2] J. Holland. Adaptation In Natural and Artificial SystenThe University of Michigan
Press, Ann Arbour, 1975.

[3] S. Nolfi, D. Floreano. Evolutionary Robotics - The Biologiytelligence and Techology
of Self-Organizing Machines. The MIT Press, 2000.

[4] Mondada, F., E. Franzi and P. lenne. Miniaturisation:oAltfor investigation in con-
trol algorithms. In T. Yoshikawa and F. Miyazaki, eds., Rredings of the Third In
ternational Symposium on Experimental Robotics. Springeltag, Berlin, (1993),
501513.

14

