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Abstract:

The technical report presents a brief overview on web search engines with deeper insight into their linear
algebra background. The linear algebra plays very important rule in modern web search algorithms (e.g.
Google). The report presents two algorithms, particularly HITS and PageRank. The algorithms are dis-
cussed on their convergence problems and also some improvements to their personalization abilities. The
computation complexity is also mentioned and briefly sketched.
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1 Introduction

Current web would not have been such a success, had it not for efficient search engines helping users
to find requested resources. Therefore it is not a surprise that lot of research activities have been in
the filed of web search engines. On the other hand, the search engines would not offer so good services
if they did not employ some sophisticated mathematical methods.

The HITS [1] and PageRank [2],[3] are the most popular link analysis algorithms. Both were
clearly described in [4]. These algorithms were proposed in 1998 and were a milestone in web search
technologies. The state of the art before year 1998 was unacceptable, while web search engines
produced a very long list of relevant pages and a user had to do all the confusing work of selecting
the more and less relevant ones by simply clicking on the links. Moreover, it was quite easy to spam
the pages and therefore the ordering of result web pages did not help a lot. Example of spamming
techniques was a placing the most popular search terms printed out in white on a white background.
This resulted in increasing rating of the page. Such situation was a real danger for future of the
Internet, while the Internet was holding huge mass of useful information but with out efficient way to
search for relevant ones, it might have let to decrease of users’ attention.

This obvious space was then filled be many cleaver techniques to improve search engines accuracy
and efficiency. In the rest of the report we will concentrate on the most important and popular ones,
HITS and PageRank algorithms.

2 The HITS algorithm

The HITS [1] algorithm for link analysis was developed by Jon Kleinberg from Cornell University
during his postdoctoral studies at IBM. The basis of the algorithm is quite simple and lies in under-
standing patterns that can be found in the web structure. Kleinberg noticed that some pages usually
point to many other pages and on the other hand some pages are pointed by many others. Therefore
he proposed two terms: hubs and authorities. The hubs are pages with many outlinks; the pages
that point to many other. Pages pointed by many other pages, therefore having many inlinks, are
authorities. Moreover, Kleinberg noticed two rules:

good hubs seemed to point to good authorities and good authorities were pointed to by good hubs

To record these rule he decided to compute and assign two scores to every web page i. Particularly,
hub score hi and authority score ai. The scores were computed in iteration cycles. Therefore the hub

score for page i at iteration k was labeled as h
(k)
i and authority score as a

(k)
i . The definition of the

scores follow:

a
(k)
i =

∑

j:eji∈E

h
(k−1)
j

h
(k)
i =

∑

j:eij∈E

a
(k)
j for k = 1, 2, 3, . . . , (2.1)

where ei represents a hyperlink from page i to page j and E is the set of hyperlinks.
It is clear that at the very begin of the computation it is necessarily to have some starting values for
both scores. Kleinberg decided to start computation simply with uniform scores for all pages:

a
(1)
i = 1/n

h
(1)
i = 1/n (2.2)

where n is total number of pages in a so-colled neighborhood set for the query list.
The neighborhood set contains all pages in the query list with addition of all pages pointing to and
also from query pages. The amount of pages in neighborhood might be in size of hundred or hundred
thousand of pages depending on the query. Latent association can be made in the neighborhood set.
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The process of computing of the both scores is then started in an iterative fashion until convergence
to stationary values is reached.

To solve the problem of quite huge amount of pages in computation a reduction is necessarily.
Therefore one can replace, using linear algebra, the summation equations with matrix equations. Let
h and a be column vectors containing hub and authority scores, respectively. Adjacency matrix for
the neighborhood is L. The L matrix is set up in that Lij = 1 if page i points to j, and 0, otherwise.
Having these definition, the equations 2.1 can be rewritten as:

a(k) = LT h(k−1)

h(k) = La(k). (2.3)

Using algebra it can be easily shown that

a(k) = LT La(k−1)

h(k) = LLT h(k−1) (2.4)

From these equations it is clear that Kleiber’s algorithm is a power method (a power method for
solving eigenvalues is mentioned in section 4) applied to the positive semi-definite matrices LT L and
LLT . LT L is called hub matrix and LLT is called authority matrix. The HITS is so reduced to solving
the eigenvector problems:

LT La = λ1a

LLT h = λ1h (2.5)

where λ1 is the largest eigenvalue of the matrices, and a and h are corresponding eigenvectors.
Even though there are some issues like convergence, existence, uniqueness worth considering we

will not take more attention on them. HITS algorithm has been also modified with various advantages
and also disadvantages [5],[6],[7].

A variation of HITS’s concept is the base of web search engine TEOMA (http://www.ask.com/).

3 The PageRank Algorithm

As was mentioned, before 1998 there were algorithms aimed to be the solution of the problem with
unreliable web search engines. One of them, already mentioned, was HITS algorithm and the second
was PageRank algorithm. Both were examples of link analysis algorithms. The PageRank algorithm
is the search heart of well known Google web search engine and was proposed by Sergey Brin and
Larry Page during their study at Stanford University. The PageRank algorithm also uses recursive
schema as HITS does. On the other hand, the basis idea is a bit different:

“A page is important if it is pointed to by other important pages.”

Although it might be seen a bit strange, your web page rank (its importance) is recursively cal-
culated by summing rank of all pages pointing to yours. Very important aspect of the PageRank
algorithm is that Brin and Page found that rank of pointing page cannot be used as whole, but it
should be distributed proportionately. Particularly, assume that your page is pointed to by only Ya-
hoo!, which also points to many other pages. Yahoo! surely has a big page rank, but the page rank
given to the pointed page is not the Yahoo! rank, but it is its rank divided by amount of pages being
pointed by Yahoo!. Assume that Yahoo! points to 1000 pages, the pointed page is then given by
1/1000 of Yahoo! page rank. The PageRank definition follows:

r
(k+1)
i =

∑

j∈Ii

r
(k)
j

|Oj |
(3.1)
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where r
(k)
i is the PageRank of pointed page i at iteration k, Ii is the set of pages pointing to page i

and finally |Oj | is the amount of pages being pointed by page j. As was mentioned in case of HITS
algorithm, also PageRank starts with uniform rank for all pages at zero iteration cycle. Therefore, the

starting rank of page i at zero iteration is r
(0)
i = 1/n, where n is total number of Web pages. Before

W1

W4

W2 W6

W5W3

Figure 3.1: Example of web link-structure

we proceed, a matrix notation of the preceding formula should be defined as:

π(k+1)T = π(k)T
H,

where π(k)T is PageRank vector (a row vector) at ith iteration, H is row normalized hypermatrix.
The H hyprermatrix stands for the structure of the Web and the elements of H are defined as:

hij = 1/ |Oi| if a link from page i to page j exists

hij = 0 otherwise.

In the Figure 3.1 one can see an example of web structure. Nodes stand for web pages and arcs denote
hyperlinks between them. An example of matrix H of the web structure from Figure 3.1 given above
follows:

H =











0 1/2 1/2 0 0 0
0 0 1/2 0 0 1/2
0 0 1/3 0 1/3 1/3

1/3 0 1/3 0 1/3 0
0 0 0 0 0 0
0 0 0 0 1 0











It is clear that matrix H from the example has dimensions 6x6, while in the figure there are six
webpages labeled as W1 to W6.

Unfortunately, this procedure suffers by convergence problems. Due to the convergence problems,
Brin and Page a bit modified the proposed algorithm. The concept of hyperlink structure of the web
was preserved. They build irreducible aperiodic Markov chain characterized by a primitive transition
probability matrix. The irreducibility is the key factor influencing the convergence, while it guaran-
tees existence of a unique stationary distribution vector - the new PageRank vector. In [8] authors
showed that the power method applied on primitive stochastic iteration matrix will always converge
to the PageRank vector independently of the starting vector, and moreover, the convergence rate is
determined by the magnitude of the subdominant eigenvalue λ2. Further, the power method guar-
antees not only the convergence independently of the starting vector, but it also speed up much the
computation. For more information see section 4.

The power method requires a primitive stochastic matrix. Therefore, here one can see how the
Google does the transformation of hyperlink structure of the Web. Firstly, stochastic matrix is a
matrix where following holds: “Let I be a finite or countable set, and let P = (pij : i, j ∈ I) be a
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matrix and let all pij be nonnegative. We say P is stochastic if:

∑

i∈I

pij = 1

for every j ∈ I. In other words, a matrix P is stochastic if every column is a distribution.
Google defines H matrix as an n × n (iff there is n pages in the Web) matrix whose elements hij

are probabilities of moving from page i to page j in one mouse click (see stochastic matrix definition
above). To do this transformation the simples way is to set hij = 1/ |Oi|. To make this clear see the
following example of H:

H =











0 1/2 1/2 0 0 0
0 0 1/2 0 0 1/2
0 0 1/3 0 1/3 1/3

1/3 0 1/3 0 1/3 0
0 0 0 0 0 0
0 0 0 0 1 0











︸ ︷︷ ︸

Probability of moving from page i to page j

Assume, that a user is at page 4 (row four in the example above) and he/she is about to click on one
of the existing hyperlinks (to pages 1,3, and 5). The probability that the user clicks on the hyperlink
to page 3 is 1/3 while the total amount of outgoing links is 3.

Nevertheless, the H matrix can obviously contain some zero rows (row 5 in the example of matrix
H above and web page W5 in the Figure 3.1), which means that it might not be stochastic. Such
situation occurs for all pages having no outlinks and unfortunately there are many pages with this
feature - we will call them dangling nodes. The dangling nodes can be fixed in an easy way by replacing
all zeros rows with eT /n, where eT is a row vector containing all ones. A new stochastic matrix S

created from H is then given as

S = H + aeT /n.

ai =

{
1 if page i is a dangling node,
0 othervise

An example of now stochastic matrix S created from example above:

S =











0 1/2 1/2 0 0 0
0 0 1/2 0 0 1/2
0 0 1/3 0 1/3 1/3

1/3 0 1/3 0 1/3 0
1/6 1/6 1/6 1/6 1/6 1/6
0 0 0 0 1 0











︸ ︷︷ ︸

Revised Stochastic matrix

Note, that uniform vector eT /n can be replaced by any probability vector pT if the following
condition hold pT e = 1.

Remind that existence of a unique stationary distribution vector is required by well defined PageR-
ank. Unfortunately, the modification of matrix H to matrix S does not guarantee the existence of the
vector. Shortly, the irreducibility on top of stochasticity is required. In the other words, what we need
is a matrix that describe strongly connected graph, and the Web doesn’t have the strong connectivity
property. So the adjustment to matrix S to make it irreducible creates the Google matrix G, which is
defined to be

G = αS + (1 − α)E, (3.2)
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where 0 ≤ α ≤ 1 and E = e.eT /n The easiest way how to guarantee the strong connectivity, is to take
S matrix and to add a matrix that have no zeros elements, see the example below:

G = α











0 1/2 1/2 0 0 0
0 0 1/2 0 0 1/2
0 0 1/3 0 1/3 1/3

1/3 0 1/3 0 1/3 0
1/6 1/6 1/6 1/6 1/6 1/6
0 0 0 0 1 0











︸ ︷︷ ︸

S with zero elements

+(1 − α)











1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6
1/6 1/6 1/6 1/6 1/6 1/6











︸ ︷︷ ︸

eeT /n

=

= α











0 1/2 1/2 0 0 0
0 0 1/2 0 0 1/2
0 0 1/3 0 1/3 1/3

1/3 0 1/3 0 1/3 0
1/6 1/6 1/6 1/6 1/6 1/6
0 0 0 0 1 0











︸ ︷︷ ︸

S with zero elements

+

+











(1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6
(1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6
(1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6
(1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6
(1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6
(1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6 (1 − α)/6











︸ ︷︷ ︸

(1−α).eeT /n

In this moment, while G is a convex combination of the two stochastic matrices S and E, G is
naturally both stochastic and irreducible. Note that in G every node is connected with all others.
One might think that it is strange because the real Web does not have such a property, but note that
the probability of moving from one site to the other is very small when there had not been hyperlink in
H. Nevertheless, if you have ever used Google for searching then you might have noticed that Google
sometimes does some PageRank correction - personalization. To allow the personalization feature,
Google eventually replaced the uniform vector eT /n with a general probability vector vT , so that
E = evT instead. See [9], [10] for details on the personalization of Google and vector vT .

4 Power Method

Having specified matrix G, we are now facing the problem of evaluating the PageRank vector π(k)T

in an acceptable time. Further, take in mind that size of the matrix was about 4.3 billion pages in
2004 and has quickly risen to approximately 25 billion indexed pages in 2006. That the computation
method of PageRank is the power method is very natural. The reasons follow. Consider iterates of
the power method applied to completely dense matrix G assuming E = evT , then

π(k)T = π(k−1)T
G = απ(k−1)T

S + (1 − α)vT =

απ(k−1)T
H + (απ(k−1)T a + (1 − α))vT

The intent of the precedent equation is that now we can apply the power method to extremely sparse
matrix H, and moreover dense matrices G and also S are never neither formed nor stored. Matrix
free methods, like the power method is, are required due to the mentioned size of matrices and vectors
involved in the computation.
Let us very briefly mentioned the computation complexity of the power method applied to very sparse
matrix H. Each vector multiplication can be computed in nzz(H) flops, where nzz(H) is the number
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of non-zeros in H. So the question is how many non-zeros can be found in H? Fortunately, the answer
can be very easily found. First, mind how the H matrix was specified:

hi,j = 1/ |Oi| if a link from page i to page j exists

hi,j = 0 otherwise.

Then, each row stands for a page and every column stands for all other pages in the index (current
PageRang indexes 25 billion pages). Therefore, if page has for example 25 outlinks, then 25 non-
zeros elements are in i-th row. It is clear that each row contains much less non-zeros then the size
of H matrix is, further the average number of non-zeros is less then 10. Therefore the complexity is
O(nnz(H)) ≈ O(N). The last question concerns convergence problem. In [3] Brin and Page showed
that only 50 to 100 iteration cycles are enough. The reason lies in the fact that it can be proven [10]
that subdominant eigenvalue of G satisfies |λ2| ≤ α, and Google originaly set α = 0.85.

While both concepts, HITS and PageRank, are simple it is good to note that the precedent gave
only brief overview on the most important aspects. Many other important features and issues, like
personalization, have not been mentioned but one can found some useful information in [11], [12], [13],
[10], [14], [15].

5 Conclusion

The technical report summarizes the development in the area of web search engines algorithms, par-
ticularly, HITS and PageRank algorithms are discussed. The algorithms are described from the linear
algebra point of view. Both algorithms are based on similar idea inspired by the Internet structure.
HITS algorithm defines terms hubs and authorities that describe pages having many outlinks and
pages with many inlinks, respectively. The PageRank algorithm, on the other hand, uses a slightly
different approach how to describe the structure of the Internet. Further, both algorithms require
efficient way of computing ranks, while amount of pages available on Internet is vast. Therefore some
modifications are needed to achieve matrices properties required by the Power Method the computa-
tional method used. The modifications are described in details in case of the PageRank algorithm.
The Power method is shown to be the right choice while it is able to converge in 50 to 100 iterations.
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