narodni
N U dlozisté
1 L Sedé
6 literatury

Properties of the block BFGS update and its application to the limited-memory
block BNS method for unconstrained minimization

Vicek, Jan
2017

Dostupny z http://www.nusl.cz/ntk/nusl-364641

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 26.04.2024

Dalsi dokumenty muzete najit prostfednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-364641
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Properties of the block BFGS update
and its application to the
limited-memory block BNS method for
unconstrained minimization

Jan VI¢ek?, Ladislav Luk$an®?

#Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodarenskou v&Zi 2, 182 07 Prague 8, Czech Republic and
bTechnical University of Liberec, Halkova 6, 461 17 Liberec, Czech Republic

Technical report No. V 1244

June 2017

Pod Vodarenskou vézi 2, 18207 Prague 8 phone: 4420266 052083, fax: +420 286585 789,

e-mail:luksan@cs.cas.cz, vlcek@cs.cas.cz



7 Institute of Computer Science
Academy of Sciences of the Czech Republic

Properties of the block BFGS update
and its application to the
limited-memory block BNS method for
unconstrained minimization'

Jan VI¢ek?, Ladislav Luk$an®?

3 nstitute of Computer Science, Academy of Sciences of the Czech Republic,
Pod vodarenskou v&Zi 2, 182 07 Prague 8, Czech Republic and
bTechnical University of Liberec, Halkova 6, 461 17 Liberec, Czech Republic

Technical report No. V 1244

June 2017

Abstract:

A block version of the BFGS variable metric update formula and its modifications are inves-
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1 Introduction

In this paper we propose a block version of the widely used BNS method, see [1], for
large scale unconstrained optimization

min f(r): z € RY,
where it is assumed that the problem function f : RY — R is differentiable.
The BNS method belongs to the variable metric (VM) or quasi-Newton (QN) line
search iterative methods, see [6], [12]. They start with an initial point xy € RY and

generate iterations zy., by the process xy1 = T + Sk, Sk = tidg, £ > 0, where dj, is the
direction vector and the stepsize t; > 0 is chosen in such a way that

fes1 — fr < ertrgi di, Gl dy > €295 dy, (1.1)

(the Wolfe line search conditions, see e.g.[15]), 0 <&y < 1/2, &1 <eg < 1, fr. = f(xx)
and g, = V f(xy). Usually dp = —Hygr with a symmetric positive definite matrix Hy;
typically Hj is a multiple of I and Hj,; is obtained from Hj; by a VM update to satisfy
the QN condition (secant equation)

Hy1yp = s (1.2)
(see [6], [12]), where yx = gr+1 — gk For k > 0 we denote

Bk = Hk_la bk = Sgyh

(note that by > 0 for gx # 0 by (1.1)). To simplify the notation we frequently omit index
k and replace index k£ + 1 by symbol + and index k£ — 1 by symbol —.

Among VM methods, the BEGS method, see [6], [12], [15], belongs to the most effi-
cient; the update formula preserves positive definite VM matrices and can be written in
the following quasi-product form

H, = ZI)SST + (I - lljsyT)H(I - ;ysT). (1.3)
The BFGS method can be easily modified for the large-scale optimization; the BNS and
L-BFGS (see [8], [14], [9] - subroutine PLIS) methods represent its well-known limited-
memory adaptations. In every iteration we recurrently update matrix (1, ; > 0, (with-
out forming an approximation of the inverse Hessian matrix explicitly) by the BFGS
method, using m couples of vectors (Sk_m, Yk—m), - - -, (Sk, Yx) successively, where

m =min(k,m—1), m=m+1 (1.4)

and m>1 is a given parameter. In case of the BNS method, matrix H, can be expressed
either in the form, see [1],

B U T(D+¢ytyyu—t -u"t ST

H+ - <I+ [Sv CY} [ _U—l 0 gyT )

where Sk =[Sk, -, Sk, Yi = [Uk—m - - Ukl, De=diag[br—m, ..., bxl, (Ur)ij = (S{ Yi)ij
for i <j, (Uk)i; =0 otherwise (an upper triangular matrix), or in the form, also given
in [1]

H, =SU'DUT'S" +¢(1 - Su™"Y")(1-vU~sT). (1.5)
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This indicate that direction vectors can be calculated efficiently without computing of
H . explicitly, see [1].

For STY nonsingular and any H € RV*Y, the BFGS update formula (1.3) can be
easily generalized to the following block version

H, =SS"Y)'s" + PTHP, P=I1-Y(S'Y) 'S, (1.6)

which satisfies the QN conditions H,Y = S, i.e. for the whole block of stored difference
vectors. This generalization of the BFGS update of H was derived by Schnabel [16] for
STY and H symmetric positive definite, using a variational approach, and by Hu and
Storey [7] for quadratic functions, using corrections for the exact line search. Both in [16]
and in [7], some modifications of matrices Y (and also S in [7]) are proposed with intent
to replace STY by a symmetric positive definite matrix. Note that these modifications
disturb the QN conditions from previous iterations.

Formula (1.6) is not directly applicable to general functions, since it does not guaran-
tee that the corresponding direction vectors are descent if the matrix STY is not positive
definite (i.e. STY +Y7TS symmetric positive definite). To overcome this difficulty and
at the same time utilize the advantageous properties of the block BFGS update in the
limited-memory context, in each iteration we determine n > 1 and split matrices S and
Y in such a way that S =[Spu),...,Su), Y= [Yu],..., Y], where all blocks S[Ti]Y[Z-] are
positive definite. Afterwards we replace the BNS formula (1.5) by n successive updates
of an initial VM matrix H; (¢ for the BNS method (1.5)) using a modification of the
block BFGS update (1.6) with matrices S}, Y;) instead of S,Y" (the block BNS method,
see Section 4). Obviously, for n = m we obtain the BNS method. The question how to
form suitable blocks S};,Y};) will be discussed in Section 5. Numerical results indicate
that this approach can improve results significantly compared to the BNS and L-BFGS
method.

In spite of the fact that matrix H, is unsymmetric generally, we use the conventional
direction vector d, = —H,gy, such that z* = z, + dy solves the problem g(z*) = 0,
9(2)=g++H'(z — z) (a linear model for gradients which respects the QN conditions:
g(xy) = gy, glx) = g for Hiy = s, g(x_) = g_ for Hyy = s and Hyy_ = s_,...).
In this way, for ill-conditioned problems we usually obtained better results than e.g.
with the vector d; = —(1/2)(H, + HT)g,, which minimizes the quadratic function
Q(d)=d"(Hy+ HY)'d+ ¢™d.

In Section 2 we derive the block BFGS update for general functions, present its prop-
erties and modifications and show some connections with the corrected BFGS update,
see [18] and [17]. In Section 3 we focus on quadratic functions and show optimality of
the block BFGS method and a role of unit stepsizes. In Section 4 we investigate the
block BNS method and derive a convenient formula similar to (1.5) to represent the re-
sulting VM matrix and a related formula for efficient calculation of the direction vector.
The corresponding algorithm is described in Section 5. The global convergence of the
algorithm is established in Section 6 and numerical results are reported in Section 7.

We will denote by || - || the Frobenius matrix norm, by || - || the spectral matrix norm,
by |- | the size of both scalars and vectors (the Euclidean vector norm) and by [A];:? the
principal submatrix of A with both row and column indices of entries from n; to ns.



2 The block BFGS update

Using a variational approach, we will derive the block BFGS update (1.6) for general
functions, investigate its generalized form and show some connections with methods based
on vector corrections from previous iterations for conjugacy.

2.1 Derivation and basic properties

To derive the basic variant of the block BFGS update, given by Theorem 2.2, we utilize
Theorem 2.1, which is a block version (with S)Y instead of s,y) of Corollary 2.3 in [3].

Lemma 2.1. Suppose that a matriz J € RN*™ has a full rank, v € R™ and 2z*=
J(JTT)"tu. Then z* is the unique solution to mingepn |z| s.t. JTw = u.

Proof. Obviously J'z* = u. Let 2’ = 2* +v and J™2' = u for some v € RY. Then
JT =0, thus |2/]* = T (JTJ)"'u + |v|?, which yields the desired conclusion. O

Theorem 2.1. Let S,Y € RN*™m, AW, Wi € RN W, Wgr nonsingular, V =
WIWRY and let the matriz Y have a full rank. Then VTY is nonsingular and the
unique solution to

: -1 N -1 _

| L W Ay — AWRY|F st AyY =S (2.1)
1S

Ay = APy + SVIYY" VT P =T -Y(VTY) VT (2.2)

Proof. We denote Q = W;'(Ay — A)Wy" 2 [wi,...,wy|T and J = WRY. Since
JTOT = (QWRY)T (ANY — AY)"W T, problem (2.1) can be rewritten as

min Z“"J%P st. JIQT = (S — AY)Tw T

wleRN
Denoting [uy, ..., un] = (S — AY)TWL_T, this can be broken up into NV disjoint problems
min |w;|? st Jwi=w;, i=1,...,N.
w; RN

Using Lemma 2.1 (J has obviously full rank), we get Q7= J(JLJ)1(S—AY)TW T, ie.

Wi Ay —AWRY = Q=W (S —AY)(J'))JT,
Ay —A = (S—AY)(J) ' T Wk,
which gives (2.2) and nonsingularity of V'Y by JTWx = V7T and J1J = VY. O
Since the matrix Ay is meant as an approximation of the inverse Hessian matrix, thus
near to a symmetric matrix, and since the nearest symmetric matrix to any matrix M
in the Frobenius norm is 3(M+M7) by Lemma4.1 in [3], we will construct a matrix A*

satisfying A*Y = S nearest to the subspace of symmetric matrices in R¥*". Following
the approach used in [3], we will find lim; .., A;, where in view of Theorem 2.1

Ag = APy +S(VIY)'WWT A= (1)2)(A+ AT Py + S(VIY) " 'WT i =0,1,... (2.3)



Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied and sequence {A;}32, be
defined by (2.3). Then

lim 4; = (1/2)PL(A+ATYPy + V(VTY) TSTP, + S(VTY) VT 2 4%, (2.4)
Moreover, if T € R™™ 1is nonsingular and V= ST, we obtain the block BFGS update
(1.6) with H, = A*, H = (1/2)(A+AT).

Proof. First we prove (the matrix V7Y is nonsingular by Theorem 2.1)
A= (1/2)7 + A%, 7 =VVIY)y (ATY-9)TPy, (2.5)
i=1,2,..., by induction. For i=1 it is true, since from (2.3) we get
A=S(VIY) W = L(Ag+AT) Py = L(APy+ PEATHV(VTY)TST) Py
= L(I-PL)APy + JPL(A+AT)Py + LV (VTY) TSTPy
= %V(VTY)’T(ATY—S)TPV+V(VTY)*TSTPV+%P$(A+AT)PV
by VIPy =0, P2 = Py and [-PL =V(VTY) TYT.
Suppose that (2.5) is true for some i > 1. By VP, = 0 and P2 = P we obtain
(AP = ;PVT (A+ AT Py +V(VTY)TSTP, = A*—S(VIY) 'V = A* Py,

and ZPy = Z, ZTPy = 0, which by (2.3) and (2.5) yields
1 1
A= 5(AZ»+AZ.T VPy+S(VIY) 'vT= ﬁZJr(A*—S(VTY)‘lvT)JrS(VTY)‘lVT,
i.e. (2.5) is true for i+1, which completes the induction. Consequently, this implies (2.4).
Finally, let V = ST. Then Py = I — Y(T7STY)'TTST = I — Y(S7Y)~'ST =P (see
(1.6)), STPy = 0 and

A*= ;PT(A + ATYP 4 S(STy) ST, (2.6)
which is (1.6) with H, = A*, H = (1/2)(A+AT). O

In the sequel, we give some properties of the block BFGS update, similar to the well-
known properties of the standard BFGS update. To be able to prove some assertions
(e.g. Corollary 2.1) easily, we will investigate the generalized form of (1.6)

Hy=8(S"y €)'+ (I - S(S™Y) "Y") H (I -y (S"Y)'s") (2.7)

(i.e. (1.6) with Y replaced by Y (), where we consider any nonsingular matrices H €
RN*N and STY,C € R™ ™. First we prove the following lemmas.

Lemma 2.2. Let W; € R¥Y, u>0,v>0,i=1,...,4, and WIWs=1. Then
det (1 +WaWy — WaWJ') = det (W) Ws) . det (W] W3). (2.8)

Proof. Denoting « = det (I + WiWi — W3W4T), we can write

I wWr oo I wr 0 I Wi 0
Wy, I Wi l|=| 0 I+W,WT Wi |=|0 I+WiWI-W,WI W, |=oa.
o Wl I o wr I 0 0 I
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The initial determinant on the left can be rewritten in another way as follows:

I WY 0 I wWI o I WI —WIw,
o = —W1 1 W3 = —W1 1 Wg = —W1 I 0
wWIw, o I-WIws| |WIw, 0 0 WIW, 0 0

by W[IW; = I. To obtain the desired result, we multiply the third block column of the
last determinant by —1 and interchange it with the first block column. O

Lemma 2.3. Let A € RY*N be a positive definite (not necessarily symmetric) matriz.
Then A is nonsingular and matriz A=" is also positive definite.

Proof. Obviously, A is nonsingular. Let ¢ € RY, ¢ # 0, p = A~'q. Then ¢7A™1q =
p™ATp = pTAp > 0. O

Theorem 2.3. Let matrices STY and C be nonsingular and let the matriz H,. be given
by (2.7). Then H Y = SC™! and
(a) if we replace the matrices S,Y in (2.7) by STs, YTy with Ts, Ty € R™™
nonsingular, then the corresponding matrix Hy can be also written in the form
(2.7) with C replaced by Ty CTsh, -
(b) for H, Hy and STBS nonsingular and B = H™', the matriz By = H{" is given by
B, =B - BS(S"BS) 'S"TB+YC(STY) YT, (2.9)
(c) for H H, and STBS nonsingular, the determinant of B, is
det B = det B .det(STY C)/ det(STBS). (2.10)

(d) for H and STY C positive definite, also H, is positive definite.

Proof. (a) We simply replace S,Y by STs, YTy in (2.7) and rewrite the relation.
(b) Denoting B, = B — BS(STBS)™*STB + YC(S'Y) YT, we have B, S = YC,
thus we get from (2.7)
B\H, = YC(STYC)"'ST+ (B, - YC(STY) TYT) H (I - Y(STY)~1ST)
= Y(STY)ST + (I - BS(STBS)™1ST) (I - Y(STY)~1ST)
I — BS(STBS)*ST + BS(STBS)~1STY (STy)~1ST = I.
(c) Using (2.9) and Lemma 2.2 with W; = HYC, W] = (STY)"TyT, W3 =
S(STBS)™', Wl = STB, we get
det By = detB.det (I — S(STBS)"'STB + HYC(STY) TyT
det B . det (1—WsW{ +WiW]) = det B det((STBS) ™). det(STY C).
(d) Let ¢ € RN, ¢ # 0. If ,S_’Tq # 0, then ¢"H q > ¢'S(STY C)"1STqg > 0 by
Lemma 2.3, otherwise ¢"H,_q = q"Hq > 0. O

Corollary 2.1. Let the matrices STY and H be nonsingular, H symmetric, B = H™",
and let the matrices STBS and Hy given by (2.7) with C= I (i.e. by (1.6)) be nonsin-
gular. Then



(;(m + Hf)) — B-BS(S"BS) S"B+ Y<1(STY+ YTS)>1YT, (2.11)
;(B+ +B]) = B-BS(S"BS) 'STB + 1Y((STY) +(YT) YT (212)
det(;(H++Hf))_1 — detB. det( ((5"Y) "+ (v7s)- )) / det(STBS),  (2.13)

det;(3++31) = det B.det = (STY+ Y'S)/ det(S"BS) . (2.14)

Proof. From (1.6) we obtain 3(Hy+ HL)=3S((S™Y) '+ (Y1S)")ST+ PTHP, which
can be written in the form (2.7) with C' = ($(/+(YS)"1S7Y))~! and H, replaced by
s(Hy+HT). Using Theorem 2.3 (b)—(c), we get (2.11)—(2.13). Since (2 12) can be
written in the form (2.9) with C'= (/4 (S7Y)"'Y™S) and B replaced by 3(By+BY),
Theorem 2.3 (c) yields (2.14). O

2.2  Connections with methods based on vector corrections

The following lemma shows that if we correct vectors s,y suitably, the BFGS update
of the block BFGS update with submatrices Sp,Yp of S, Y with columns from previous
iterations (i.e. without s,y) can be expressed as the block BFGS update (2.7).

Lemma 2.4. Let S 2 [Sp,s], YV 2 [Yp,y], the matrices SEYp, T§, Ty, € R™ ™ be non-
singular, Cp=TF (T, Po=1—Yp(SLYp)~1SE, s=PLs, = Ppy, b=35"5#0 and
Hp = Sp(SLYp Cp)~*SE + PLHPp (2.15)

(i.e. (2.7) with S,Y,C replaced by Sp,Yp,Cp), where H is a nonsingular matriz. Then
also the corrected BFGS update

1 _p 1 1 5T
Hy = =55+ ([—b )Hp(f—Z ) (2.16)
of Hp can be equivalently written in the form (2.7) with C =TyTs ", where
TE —(SEYp) Vs TP —(SHYp)'Sky
1 1

(the upper block triangular matrices). Moreover, SEB.5=3"Hy'Sp=0 holds and if H
and S}QYP Cp are symmetric matrices, then also Hp, H, and STY C are symmetric.

Tg = Ty = (2.17)

Y

Proof. Setting S = STs,Y =Y Ty, we obtain S = [SpT¢,s— Sp(SEYp) TYEs]| =

[SpTE, PEs]=[SpT¥, 5] and similarly Y =[YpT{, Ppy|=[YrT¥, 4], which yields

(LTS (L SER | _ [ ETSPAY o
STPPYPT)I/D b a 0 b

by PLSp = PpYp = 0. Using (2.18), we get

STy = (2.18)

S(STV) 15T = Sp(STYpCp)- 15T+b§§T V(§T) 15— Vp(STYp) 15T+ig§T (2.19)

Setting P = I—(1/b) 457, from (2.16) we obtain successively



- - 1 - - - _ -
55" + PTHpP = Z§§T+PTSP(SIZYP Cp) *SLP+PTPLHPpP

1 _ 1
T4 Sp(SpYp Cp) 1SEH+ (I— B§QT> PLHPp ([— 79 WT)

VAR
VAR

1 1
557+ Sp(SEYp Cp) 1 Sh+ ( E—B§ngPT)H<PP—bPPg~T>

55T +Sp(SLYp Cp)~tSE

S| = S =S = O =

1 _ 1
+ (I—SP(SJZYP)_TYE—ngT>H<[—YP(S£YP)_1SJZ—E§§T>

by P2=Pp and P Sp=0, which yields P%Sp=Sp—(1/b)5§" PESp=Sp. Using (2.19),
from this we have

Hy = S(SY) 8"+ (1-8(5"Y)"v") H (1 -Y(§"Y)'5"), (2.20)
which can be written in the form (2.7) by Theorem 2.3(a).

Since H,j =35 and HpYp = SpCp', i.e. Hp'Sp=YpCp by (2.16) and (2.15), we
have SII;BJrg:Sgg:SgPpy:O and §TH];15P = §TYPCP: STPPYPCP =0 by P};SP =
PpYp = 0.

If H and SLYp Cp are symmetric matrices, then also Hp and (T4)TSLTYpTYE are sym-
metric by (2.15) and (TE)TSEYpTE = (TE)T(SEYp Cp)TE | which yields the symmetry
of the matrices Hy, STY and STY C by (2.16), (2.18) and by the equality STY C =
TSHS™Y) Tst. O

In view of the relations ShB, 3 =3"Hp'Sp=0, we can regard the transformations s —
§=Pls=s—Sp(SEYp) 1YEs, y— §=Ppy=y—Yp(SEYp) 1 SEy (or the transformations
S—S,Y—Y) in Lemma 2.4 as corrections from previous iterations for conjugacy, which
shows some connections with methods [18] and [17], where similar corrections are used.

Although variational characterizations of such corrections are significant mainly for
quadratic functions, see Section 3, the following theorem indicates that we can expect
good properties of the block BFGS update also for functions similar to quadratic (e.g.
near to a local minimum).

Theorem 2.4. Let S 2 [Sp,s], Y 2 [Yp,y], § = S+SPO' = y+Ypa oceR™ m>1,
§=Pls, §y=Ppy, Pp=1— YP(S Yp)~ 15’};, b= 5%, b= 5% and STY be symmetric
positive definite. Then b > b and b= sT§ > 0 for any o € R™. Moreover, let Hp be
given by (2.15) with Cp = I, H, by (1.6) and a=4"Hpij, a=7"Hpy. If we define H, by

H, = .16:9'5T+ (I—éégT)Hp(]—éyéT) (2.21)
(the corrected BFGS update) and if a symmetric positive definite matriz G satisfying
GS=Y is given, then within c €R™ we have G5 = ij, & > @ and

|GV, G = (1—ia/ b )2 | GV2(5—Hpi) Y b+ | GV HoGM =135 (2.22)

this value is minimized by the choice 5 = 3, i =y, when H+ =H,.



Proof. From § = PLs and § = Ppy we obtain b = s7j by P2 = Pp, which gives

b=b—s"Yp(SLYp)1SLy. (2.23)

From § = s + Spo and §j = y + Ypo we get b = b+ 2y"Spo + oTSLYpo, which can be
written as

. T

b="b—y"Sp(SpYp) 'Sty + (o+ (SEYp) ' Shy) SEYp(o+ (SEYP)'Shy) . (2.24)
Since the matrices STy, SLYp are symmetric positive definite by assumption, we have
b > 0 by (2.23), Theorem 2.22 in [5] and S}y = Y7 's. Comparing (2.24) and (2.23), we
can see that always b > b holds. B B

Let GS =Y with G symmetric positive definite. Obviously G§ = ¢ and G$ =y—
Yp(SEYp) TYE s=7. Denoting w=G"25, w=G"?5, W =G"*HpG"*, W=G"*H G*/*?
and M= I—-W, we have |[w|*=b> b= |w|*> > 0 and (2.21) can be written in the form

W = (1/|w))ww” + PWP =1— PMP, P=1—(1/|w])ww’, (2.25)

by G§ = §j and P? = P. In view of the fact that the trace of a product of two square
matrices is independent of the order of the multiplication, from (2.25) we obtain

II-WI|2 = |PMP|2 =Te(PMPM) = Tr([M—(l/]w[Q)waMr)
| M||% — Tr(waM2+MwaM— [wTMw/|w|2] waM)/|w|2 (2.26)
= M| = 2iMw*/Jw]* + (w'Mw)?/w]*,
ie. (2.22) by Mw = GY%(3 — Hpjj) and w"™Mw = b — d. In view of HpYp = Sp by

(2.15) and in view of s’Yp = yISp by symmetry of STV values |Mw| and w'Mw are
independent of o, as we can see from

S'—“Hpgj = s+ Spoc— Hpy— HpYpo =s— Hpy,
b—ia = (5 —Hpj)"§j= (s —Hpy)(y+Ypo) = s"y — y"Hpy + (s"Yp — y"Sp)o.

In view of (2.26) we can write |1 — W||% = ¢(|@|?/|w[?), where function

(&) = (@ ™Mw)*/|w]* — 2| M/ |w]* + || M][5 (2.27)

is nonincreasing on [0, 1], since ¢/(€)/2 = (wMw)?/|w|* — |Mw|?/|w|* < 0 for € € [0, 1]
by the Schwarz inequality. Therefore value ||[I — W||% is minimized by the choice § = 3,
ij = 4, which gives |w| = ||, i.e. maximizes |@|/|w|. For this choice, matrices H, and
H, are identical by Lemma 2.4, where for Cp = I (i.e. TE =TF) and STY symmetric
we have Ts = Ty, thus C' = I.

The rest follows immediately from & = (@ — b) +b = (a —b) + b > (@ — b) + b. O

Seemingly, in accordance with Theorem 2.4, the block BFGS update should be ad-
vantageous in case that the matrix STY is positive definite and near to symmetric (e.g.
near to a local minimum). Paradoxically, the standard BFGS update often gives better
results if STY is almost symmetric and the Hessian matrix is ill-conditioned. Therefore
we will use, in addition to the block BFGS update, i.e. update (2.21) of Hp with

§ =35, Jy=19 (2.28)
by Lemma 2.4, also the standard BFGS update of Hp, i.e. (2.21) with
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i=s, =y, (2.29)
or a special update of Hp given by (2.21) with

S=s—(sly_/b)s.,  G=y—(y's /by, (2.30)

which can be more robust than the block BFGS update. In Section 4 we show how it can
be used within the block BNS method. The question how to choose a suitable update
will be discussed in Section 5. For functions similar to quadratic, the choice (2.30) can
also be characterized variationally:

Theorem 2.5. Let S =[s_,s|, ¥ = [y Y, S—s—(s y-/b- )3_, g=y—(y's_/b_)y-
Ss=s—as_, y=y—ay_, a €R, b—s U, b=5%j. Then b=sT y; if the matriz STy s
symmetric positive definite, then b>b>0 for any a« € R. Moreover, let Hp be given by
(2.15) with Cp = I and a = yTpr If we define Hy by (2.21) and a symmetric positive
definite matriz G satisfying GS=Y is given, then within a € R the relations G5=1j and
(2.22) hold. Besides, the values & and (2.22) are minimized by the choice §= 5, §j = 7.

Proof. We have §'j = s7j — (s y Jo)sT [y —(sty/b_ )Y _] =T If the matrix STV is
symmetric positive definite, then sTy_=1y%_, the value b = b—2asTy_ +a2b_ is minimized
bya—s y_/b_,i.e. by §= 3§, § = ¢ and the minimum value is b=s T =b—sty_sTy/b_
with b > 0 by Theorem 2.22 in [5].

Let GS =Y with G symmetric positive definite. Setting o = 0,...,0,—a)T and
replacing s by s, y by ¥, b by b and @ by §THp1, we can proceed in the same way as in
the proof of Theorem 2.4. a

3 Results for quadratic functions

In this section we suppose that f is a quadratic function with a symmetric positive definite
Hessian G (thus GS =Y and STY = STGS is a symmetric matrix) and show optimality
of the block BFGS method and a role of unit stepsizes, which are very frequent, not only
for quadratic functions. Here we consider only the G -conjugacy of vectors.

The following theorem shows that the block BFGS update gives the best improvement
of convergence in some sense for linearly independent direction vectors.

Theorem 3.1. Let f be a quadratic function f(z)=3(x—2)'G(x—z), € RN, with a
symmetric positive definite matriz G, k>0, the vectors Sk—iny - - -, Sk be linearly indepen-
dent and let S;=[Sp—m, ..., 5], Yi=Yk—rn> .-, yi], Py=1— Y(STY) 18T i=k—m, ...k,
5i:5i+gi—10i—1; ?ji:yi+3~/i—10i—1; Ui—1€72i71, §;=PF i, =Py, i=k— m+1, . .,k,
Sk = Sk—in =Sk, Uk—in=Uk—n =Yk—m- Lhen S’Tf/; are symmetric positive definite and
§l; > 81y, >0, i=k—nm,..., k. Moreover, if H is a symmetric positive definite matriz
and if we define Hy1 by (1 6) and Hyyy by Hy_i=H and

Hipy = (1/875:) 857+ (1= (1/875:) 3] ) Hi(T— (/8730 337 ). (3.1)

i=k—mm,....k, then value |GV*Hy 1 GV?>—I|| is minimized and the matrices Hyyy and
Hy. 1 are identical and symmetric positive definite for §;,=3;, 4;=9;, i=k—m+1,... k.



Proof. Since the columns of S =S}, are linearly independent, the matrices S’ Ty, =S TGSQ-,
1=k —m,..., k, are symmetric positive definite and we can set FIZH S, (STY) lgiT—i-
ETI:IE-, i=k—m,..., k. Using successively Theorem 2.4 with G = G and S = S, Y=Y,
Hp=H; H, = Hz+17 i=k—m+1,... k we get that values ||GY2H; G2 — 1| are
minimized and the matrices Hz+1 and Herl are identical and symmetric positive definite
for the choice §;=35;, §;=v;, i=k—m+1,...,k, when ch+1 Hk+1 Hyyq. O

In Section 2 we mentioned the similarity to the methods based on the corrections from
previous iterations for conjugacy. The following theorem, which can be proved similarly
as Theorem 3.3 in [18], shows that in two successive iterations with VM matrices H, H,
obtained by the block BFGS updates, the only unit stepsize is sufficient to have all stored
direction vectors from previous iterations conjugate with vector s, .

Note that the vectors Shy,, YZs, from the preceding iteration are used for functions
near to quadratic in the process of the suitable update formula selection, see Section 5.
Theorem 3.2. Let f be a quadratic function f(z) = 3(z — 2)'G(z — z), z € RY, let
G, H,H, be symmetric positive definite matrices satisfying HYp = Sp and H, Y = S,
where S £ [Sp,s], Y = Yp,yl, let d=—Hg, dy=—H,g, and t=1, i.e. s=d. Then
STy, =Y2s, =0, i.e. all columns of Sp are conjugate with vector s, .

4 The block BNS method

In this section we will derive some representations of matrix H, which generalize the
BNS formula (1 5). For this purpose, we split matrices S, Y in such a way that S =
Supy -, Syl Y = [Yp, - - -, Y] and use the theory in Section 2 for the matrices Sy, Y
1nstead of S,Y, where n € [1,m] is calculated in such a way that all blocks S[{]Ym are
positive definite (i.e. S%Ym + Y%S[i] are symmetric positive definite), which is satisfied
e.g. for n=m, when we get the BNS method.

To construct the matrix H,, in view of (2.6) we set Hyyy=H;, H = Hp,11], where

H[i+1]:S[ (Sz] [l]C[Z]) IS —I— Pz](H[i}"'H[j;])P[i], P[i}:]—Y[i}(SQY[i])_ls[g, (4.1)

for S[{]’YMC’M nonsingular, ¢ = 1,...,n. We consider arbitrary nonsingular matrices
Hp, Cy, although only the choice H;=(1, (>0, C =1 is used in Sections5-7. Obvi-
ously, all matrices Hp,) are positive definite for this choice by Theorem 2.3 (d) and have
only a theoretical significance (are not formed explicitly). Note that notation here is
partly different than in the previous sections.

In the process of splitting matrices S,Y’, we start with the matrices S}, Y}, to have
maximum of the latest QN conditions satisfied (for Cp,) = I). Thus to test positive
definiteness of the blocks S[I;}Ym, i =mn,...,1, we use the RL factorization arranged in
reverse order compared to the usual LU factorization. The following lemma converts the
problem of the RL factorization to the same problem of a smaller dimension, see Section 5
for details.

Lemma 4.1. Suppose that A, R, L. € R***, 1>0, u,v € R*, a€R, a#0,

A:[fT Z] R:lRZ ) L:[(l/i)vT 1] (42)
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(R is an upper block triangular matriz, L lower block triangular). Then to get A= RL,
it suffices to find R, L satisfying A — (1/a)uvT=RL. Moreover,
(a) if u = v then the matriz A is symmetric positive definite if and only if both o > 0
and the matriz A — (1/a)uv® is symmetric positive definite,
(b) if the matriz A is positive definite, then a>0 and A—(1/a)uvT is positive definite.
Further, if principal minors det[A]"™" (see the end of Section 1) are nonzero, i=1, ..., u+
1, then we can continue in this way repeatedly, i.e. the whole factorization process is well

defined, and the result factorization is unique.

Proof. Let A — (1/a)uv’=RL. Using relations for R, L in (4.2), we obtain

RL + (1/a)uwv? -
v a

RL =

Using Theorem 2.22 in [5], we get (a). Let A be positive definite. Then also A~ is positive
definite by Lemma 2.3, obviously together with all its principal submatrices. Similarly
we deduce that o > 0 (a principal submatrix of A). Since the matrix 4 — (1/a)uv?
(the Schur complement of entry « in A) is the inverse of a principal submatrix of A~}
by Theorem 1.23 in [5], it is positive definite by Lemma 2.3. Finally, the existence and
uniqueness of the factorization under the conditions above follows from Theorem 1.24 in
[5], considering the rows and columns of A, R, L arranged in reverse order. O

The following lemma generalizes the approach used in the proof of Theorem 2.2 in [1].

Lemma 4.2. Let w, v > 0, SLJ YLE RNX“, SR,YR € RNXV, SC: [SL, SR], YC:[YL,YR],
Up,Ep € RMH, Cr e RV, Hr € RN Uy, SEYR and Cr nonsingular,

Hy = S UTELUSNST + (I — S USTYH(T - YL USAST (4.3)
He = Sr(SkYrCr)7'Sh+ PLHLPr, Pr=1-Ygr(SkYr) 'SE. (4.4)

Then matriz Ho can be written in the form
He = ScUsTEcUG'SE + (I — ScUGTYE)Hi(I — YoUG'SE), (4.5)

where .
UL S YR EL

Ue = L , Ec = _ 4.6
¢ SEYr ] ¢ [ YiSrCr' ] (4.6)

(matriz Uc is upper block triangular, Ec block diagonal).

Proof. From (4.3) - (4.4) we obtain

Ho = Sp(SEYRCR) 'SE + PLS, U TEL U ST Pr+ KT HIK, (4.7)
where

K = (I-YU;'ST)(I-Ya(SEYR)'Sh)

= 1Y U 'ST — Yr(SEYR) 'Sk 4+ Y U STYR(SEYR)LSE

_ Up' —Up'STYr(SEYR) ™ | [ ST | _ —1qT

Using this representation of U5', we obtain [I 0]U;' = [U;', —U;'STYR(SEYR) Y,
therefore
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Up'SpPr=Up'S, — UL ST YR(SEYR) 'S = [1 0] Uc'SE (4.8)
by (4.7). Similarly [0 I]U5" = [0, (SEYR Y], i.e. (SEYR)™'SE =1[0 I'UZ'SE, thus
SR(SEYR CR)*S}; = Sg (S}QYR)fTY[{SRO}El(SgYR)flsg
= ScUZ"[0 I]"YSrCR! [0 T]UG'SE (4.9)
—r[ 0 _ '
= SCUCT YgSRcél Uclsg.
To get (4.5), it suffices to use (4.6) —(4.9) together with K = I—Yo U5'SE. O
The following theorem describes a basic version of the block BNS method.
Theorem 4.1. Let S = [Sm, Ceey S[n]], Y = [Y[l], o ,Ynﬂ, n>1 5 = [Sm, . ,Sm],

Y; = Yy, ..., Y], matrices S[:Z»F]Y[i] Cp) be nonsingular, matrices Hy; 1) be given by (4.1),
it=1,...,n, and Hy = H;. Then

1
i = SUTTEU S + 5 (1= 80"y (Hr+ HT ) (1= YU ST, (4.10)
where (an upper block triangular matriz)
Su¥ - SpYien  ShYi
U, = - : : 4.11

S[f_uy[i—l] S[:%uy[i] ( )

S[i]Y[ﬂ
B, = diag |- (2, 457 Yeoasr )], s =vis,on 4
i = dlag 5( 1+ 1))"'75( i—1+ i_1>7 A J— 4] 4] [4] » ( 12)

,7=1,...,n.
Proof. We will proceed by induction on i. For ¢ = 1, update (4.1) can be written as
- — _ 1
Hgp= Spy (St Yi) ™ (Yl Sty C ) (ShYim) 15§]+§P[5(H1+HIT )Py,
i.e. (4.10) with Uy = S{jYyy, By = Y{Sy q;]l =Y. )
Suppose that (4.10) - (4.12) hold for some i <n and set Hj 1) = 5(Hjis1 + H[fﬂ]) and
Higo) = Si1) (S Vi) Clivt) ™ Sy + Pliflisr Pivy (4.13)
in view of (4.1). Since H};4q) can be written in the form (4.10) with E; replaced by E; =
%(EH—E;‘F), we can use Lemma 4.2 with S;, = S;, Y, = Vi, Sk = S}, Yr = Y1), Cr =
Clis1), Sc= Siy1, Yo =Y, U= U;, Ep= E;, Hi=5(H;+HY}), H =Hj;11), Ho=Hjj19).
Denoting F; i = diag [E, , EZ‘+1:|, we obtain (4.10) with Hjyq, S;, Y5, Us, E; replaced by
Hiiva), Sit1, Yie1, Uipr, By and the induction is established with ¢+1 replacing i. O
Similar representations of Hy,1 can be derived also for update (2.21) with the choice
(2.30), which we sometimes use instead of the last update (4.1), see Section 5.

Corollary 4.1. Let Hyy=H;, n>1, S =[Sy, ..., S| 2 Sp,sl, Y=[Yup, ..., Y 2
A A . .

[YP,Z/]; S[n] = [S[]:L]7S]7 }/’[n] = [Y[ﬁay]; S§=85§—Qs_, y:y_ﬁy77 a:STyf/b*7 ﬁ:yTsf/b77

s #£0, S=[Sp, 8], Y=[Yp, 9|, the matrices S[?]Y[i] Cu,i=1,...,n—1, (S[‘Z])TY[TILD]C[%

be nonsingular, the matrices Hy), i=2,...,n, be given by update (4.1) and a matriz H by
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H, = (1/8%) 88"+ (I-(1/8"9) 39" ) Hp(1—(1/5"5) 93"), (4.14)
1
_ T T
Hp = S[n]((s[n) Y[n]c[n]) ( ) +§( ) (Hlnl—l_H[n])P[nl (4.15)
P _ VP P
R CORRC O (4.16)
Then
Hy = SUTEOU'S" + (1 - SUY")(H+ H ) (1-YO'8T)  (417)
= SUTEUT'S" 4+ 3(1-SUTY")(H + HY ) (T-YU'ST),  (4.18)
where
A Up S}g@ A Up S}Cy = Ep ﬁUNJ
U= i sy ’ aw? sty |7 E= gl k|7 (4.19)
S - Sy¥ie-u 5[11, ) 3(Z1+37)
Up= oy : Ep= 4.20
P S Vin] S[fz o [51 T 5 (T +Xl) N (4.20)
(matrices U,Up are upper block tmangular, E,Ep block diagonal), ¥; = MS C’[Z] , 1=
L...,n=1, 20 =(Y])"SE(CL) ™Y, @' = sTY}) is the last row of Up, 07 the last row of

Ep, W the last column of Ep and k= 3?0,,_1 + s19. If C[}Z} =1 then W =@, ¥ is the last
column of diag [S{)Ypy, .-, STy Yin-1), (i) Y] and & = b+5(3 — a)b_ .
Proof. We have §7j = s’j by Theorem 2.5. Using Theorem 4.1 for updates (4.1),

i=1,...,n—1, followed by (4.15) (i.e. for updates (4.1), i=1,...,n, with Sp;, Y}, re-
placed by SP ] or with S = Sn, Y =Y, replaced by Sp, Yp, we get

Hp = SpUsTEpUp'Sh+ (I SpURTYE) (Hr+H] ) (I-YpUp'ST) (4.21)
and to prove (4.17), it suffices to use Lemma 4.2 for update (4.14) of Hp, i.e. with
kS:L:SP7 YL :YP7 SR: §7YR:Z)70R: 17 SC :S,YC :Y7 UL = UPaEL :EP7
Hy = Y(H, + HT), H, = Hp, Ho = H,.

Since we can write S= [Sp,s—as_|=5Ts, Y = [Yp,y—By_|=Y Ty, where
1

Ty — diag [I, l Lo ” € R™™ Ty = diag l[, [ 1 p ” e R™M(4.22)
(4.17) yields (4.18) with U = TgTUTy !, E = Ty TETy . After rearrangement we obtain
T/\
i = TS—TlUP 5;%’] [I 1 5] _ [I 1
1

a 1

[Up ﬁSpy —l—Spy] [Up S;";y]

sty au’ sy

- —r|Ep 1 1 Ep pw Ep pw
E =17 . 1 Bl = 1 | = N . .
Y l sTyl [ 1 B 1 l 5Ty BT BPlp_1+s"y
by BSEy_+SLj=SLty, asTy+sty=apb_+sy—aBb_ = sty and 0,, 1 = W,,_1, Where
obviously @ = @ and 0,,_; = b_ for C'[i] =1. O
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To estimate the benefit of the block BFGS update in Section 5, we use values @, b,
see Theorem 2.4, which can be calculated with a negligible increase in the number of
arithmetic operations:

Corollary 4.2. Let Hyy = Hy, n> 1, S= [Spj,..., Sl 2 [Sp,s], Y= [Yu,..., Y] =
Yp,y], S —[S[n s, Y Y, 2 [Yﬁ,y], the matrices SﬁYm Cp) be nonsingular, matrices Hp,
be given by update (4.1), i=2,...,n, with H;y= (I, { > 0, matrices Hp, P[];], Up, Ep

by (4-15), (4.16) and (4.20) and let § = Phy, a=§"Hpj, b= s"j. Then

a = C’y‘Q_‘_yTSPUI;T<E_’+CYEYP>UJ;1S;€?/_QCyTSPUI;TY]?y> (4.23)
b= b—s"Y((Sp) (V) Sy, (4.24)
where
o T 1 T To -
E = diag[3(514+57), ..., 3(Zaa+204),0], 5= YISuCh, (4.25)
i=1,...,n—1, and the dimension of the null matriz is equal to dim((Y;})"SH;(CLy) ™).

Proof. In the same way as in the proof of Theorem 4.1 we get (4.21). Furthermore,
since (Sﬁ})TP[};} =0 and (P[IZ]) = PP from (4.15) we obtain

[n]’
-1

T T P\T
(P)" HpPyy = Hp — S[n((sn]) Y[n]C[n]) (Spmy)™ - (4.26)

[n

In a similar way as in the proof of Lemma 4.2 (relation (4.9)) we prove (the dimension
of the null principal submatrix is equal to dim >+ ...+ dim X,_;)
P (P Ty PP\ Y aP\T _ 7|0 —1¢gT .
S[n}((s[n]) Y[n}C[n}) (S[n]) =5SpUp [ (}ﬁﬁ)TS[JZ](C[IZ])—I ] Up Sp
for Hy = (I, ¢ > 0, this together with (4.20) —(4.21) and (4.26) immediately gives

(P Hp Pl =SpUp"EU'SE+¢ (1= SpUp"YE ) (1-YpUR'SE), (4.27)
and subsequently yields (4.23) by a = y ((P[%)TH pP[ﬁ])y. Finally, (4.24) follows by
analogy with (2.23) (for the proof of (2.23) we need not the symmetry of S7Y"). O

Using representation (4.10) or (4.18), the direction vector and an auxiliary vector
YTH g, (see Section 5) can be calculated effectively, similarly as for the BNS method,
see [1]. E.g. for H=(I and matrix H, = H, ) given by (4.10) we have (omitting index n)

~Hioge = ~Cgo = S[UTT((E+QYTY)UT'STg — ¢YTy, )| + Y [CUT85T. ], (4.28)

Y'H, g, = (YT, +YIS|UT((E+ (YY)U'S g, — (Y7, )| =YY [CUT'STg, ], (4.29)
where in brackets we multiply by low-order matrices. Similarly for H, given by (4.18)

—Hig,=—Cgy = S|[UTT((E+¢Y"Y)U 'S, — ¢Y7g, )| +Y [CO'STg, |, (4.30)

from this we easily obtain the corresponding representation of Y7H, g, .

In comparison with the BNS method, here U,U are not triangular matrices gener-
ally, which can complicate calculations. Using factorization S% Yiy=RuLy, 1=1,...,n,
where Rj; and L[Tﬂ are upper triangular matrices, and denoting Lp=diag[ Ly, ..., Lpy ],
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Ey = Ly (E+ CYTY), we can set U = Ur Lp, where Ur = U Lp! and L% are upper
triangular matrices, and rewrite (4.28) and E, in the form

—Higy=—Cg+ — 5 [UTfT(EALflUTAST _CLBTYTng)] +Y[<L51U515T9+}7 (4.31)
EA—dlag[ (RELETSTY), g (R Ly St Yi-u) Bl [+ CLBTYTY. (4.32)

In case of matrix U we can proceed similarly. If we denote

5 ST SP?/ - (S[n])TY[ Spy s _ | D pw

U = l sy | Um= | har gy | B =gy | (433)
(submatrices of U, U, E in (4.19)), we can see that for SYm) positive definite (thus
s = b—s"y_y's_/b_ >0 and (Sf))"Y}) positive definite) a RL factorization of Ul
exists by Lemma4.1, because all its principal minors are obviously nonzero. Since they

do not change by adding to a row (column) a multiple of another row (column), we can
also factorize matrix Uy, and write Up,) = Rpy L), where Ry, L[Tn] are upper triangular

matrices. Denoting Lp= diag[L[l], s Ly Ly )y Ea = LR (E+CYTY), we can set
U= UTLD, where Up=U LD and L are upper triangular matrices, and rewrite (4.30)
and EA

—Hig,= —Cg+ - {0T_T (EA[:BlﬁT_lsTng - CEBTYTQJr)} + Y[CiﬁlﬁT_lSTQJrL (4.34)
. 1 _ = =

Our experlments indicate, that this approach can also improve numerical results.

5 Implementation

We will assume that Cpyj=...=Cp = C’[IZ] =1 and H;=(I, (=b/y" > 0, and denote
S=[Sp,s|,Y=[Yp,y]. Before we give the algorithm of the method, we will discuss the
question how to split matrices S, Y into S = [Spy, ..., Swyl, Y = [Yq), ..., Ymls n € [1,m],

with suitable positive definite blocks [S[:f] Yjl, i =1,...,n, and how to choose the appro-
priate update from (2.28)- (2 30) for each of blocks As we mentioned in Section 4, we
start with the submatrix S Y}, to have maximum of the latest QN conditions satisfied.

In this connection, from now on we denote a set of indices j of vectors s;, y; which form
matrices S}, Y}; by Z;, a number of columns of these matrices by m; > 1,7 =1,...,n, and
a set of indices j of vectors s;,y; which correspond to entries of the principal submatrix
[STY]” (see the end of Section 1), 1 < v <7 < m, by Z¥. Obviously, >, m; = m.

In accordance with the theory in Sections 2,3 we should use the block BFGS update
whenever an objective function is close to a quadratic function (e.g. near to a local
minimum). Taking this into consideration, we find such positive definite (to have direction
vectors descent) submatrices SM i) of the largest order, for which A; <4, for i=n, A; <o,
otherwise, where the numbers A;= max;, j,ez,{ (5] y;,—5195,)%/ (bj,b;, )} (zero for quadratic
functions), can serve as a measure of the deviation from a quadratic function, i=n, ..., 1.
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On the other hand, the use of this update can deteriorate stability, which is most
noticeable in case of the last block ST Y|, if it is almost symmetric, i.e. A, < d3. There-
fore to select the suitable choice from (2.28)-(2.30) for such a block, we estimate the
benefit of the block BFGS update in comparison with the corresponding BFGS updates,
see below. If we regard this benefit as sufficient or if m,, < 2, we always use the choice
(2.28), otherwise we denote a; ; = (S[E]Y[n])i,j, 1,j=1,...,m, and calculate the value

My —2

0= Z \/ ]ai,mnammivb (51)
=1

(this formula was chosen empirically), which can be also regarded as an estimate of the
deviation f from a quadratic function and is equal to zero for quadratic function if t_ =1,
see Theorem 3.2. Subsequently, we use the choice (2.28) for 6 <y, (2.29) for 6 > d5 or
574> 0 and (2.30) otherwise, see Algorithm 1 and Procedure 3 for details.

It follows from the proof of Theorem 2.4 that ||GY2H, G'?>~I||2=p(€), E=b/b €(0,1]
for STY symmetric positive definite, where the quadratic function ¢ given by (2.27) is
nonincreasing on [0, 1], all its coefficients are independent of o € R™, ¢(0) = ||M|%
corresponds to Hp (no updating), ¢(b/b) to the standard BFGS update, i.e. (2.21) with
the choice (2.29) and ¢(1) to the block BFGS update, i.e. (2.21) with the choice (2.28).
Although we cannot calculate either p(§) or ¢’(€), the following lemma shows that the
ratio b/b and a suitable estimate of the decrease of ¢ on [b/b, 1] can be considered as
good indicators of the benefit of the block BFGS update for STY near to symmetric.

Lemma 5.1. Let we denote quantities a,b as in Theorem 2.4, W, M as in the proof of
Theorem 2.4, & = b/b €(0,1] and let the function p(§) be given by (2.27). Then

p(&) —p(l) > (1—a/b*(1-&), (5.2)
[£(0) = ©(&)]/[p(0) —(1)] < &(2—&).
Proof. Quadratic function (2.27) can be written in the form
p(£)
Since ¢ < d by the Schwarz inequality, we obtain
p(&) — (1) =e(gf — 1) +2d(1 - &) > &1 — &)™
Denoting ¥(t) = (t& — ¢€?)/(t — ¢), t# ¢, we have
[£(0) =(€)]/[p(0) = (1)] = (2d&: —2€7)/(2d—2) = (2d) < 9(2¢) = &1(2—&1)
by ¥'(t) = e(§f — &)/(t —¢)* < 0. O
Both values @, b can be calculated efficiently by (4.23)-(4.24), with a negligible in-
crease in the number of arithmetic operations. Since we need this values while we create
blocks S}, Y} and thus we have not blocks Sp, Yy, ¢ < n, created yet (see Algorithm 1),
we will calculate only an estimate of a, assuming that all matrices Sp), Y};), © < n, have
one column, i.e. that the matrix Hp given by (4.21) is calculated by the BNS method,
see Section 1. In view of Lemma 5.1 we regard the benefit of the block BFGS update as

sufficient, if (1 — b/b)|1 — @/b| > 1 together with b/b > 1.5 or if b/b > 50 (this criterion
was found empirically).

e —2de + | M3, = (@"™w/|w))?=(1—-a/b)?, d=|MoHw)? (5.4)
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To improve the readability of the main algorithm, we first present three auxiliary
procedures. Procedure 1 serves for updating of the basic matrices STY, Y7V, similar to
the algorithm given in [1] for updating of the matrices D, U, Y1V in (1.5). In comparison
with the standard BNS method, where the upper triangular matrix U is used, we need the
whole matrix STY here, therefore we use an additional vector Y2's = —t Y2 Hg, see also
Algorithm 1. Note that the number of arithmetic operations is approximately the same as
for the corresponding algorithm in [1]. We present the whole procedure for completeness,
although some parts of steps (ii), (iii) are contained in Step 1 of Algorithm 1.

Procedure 1 (Updating of basic matrices)
Given: t > 0, matrices Sp, Yp, SLYp, Y2 Yp and vectors s,y, g, Shg, Yig, YA Hg.
(i): Set S :=[Sp,s], Y :=[Yp,y].
(ii): Compute S*g. = [Shgs,s'g1], Yigy = [Ypgs y'g4], Yis = -t Y Hy.
(iii): Compute Spy = Spg,—Spg, Yy =Yg —Yig, s'y, y'y.
SpYp Sty YpYp Ypy

w): Set STY :=
(iv): Se s"Yp 8Ty y'Ye y'y

, YTY = and return.

Procedure 2, based on Lemma 4.1, is used for seeking out of the positive definite
bottom-right-corner principal submatrix of [STY]Z of a maximum order (with ip = 0)
and for its RL factorization (with ip = 1), see Procedure 3.

Procedure 2 (RL factorization of A)
Given: A factorization indicator ip, a global convergence parameter ¢p € (0, 1), indices
bounds v, 7, v < 7, and the matrix [STY]Z 24
(i): fip=0 set A=A+ AT. Set v=v—v+1,0:=0.
(ii): Ifip=0and A;; <epTrA set v:=min(v+7,7) and go to (). If =1 go to (iv).
(111): Set Ay ;= Api/Asp, j=1,...,0—1. Set A, j := A;; —A; ;A5 ;, i=1,...,0—1,
j=1,...,0—1. Set v := 0 — 1 and go to ().
(v): Ifip =0return. Set L;; == A;jfor 1 <j<i<wv, L;j:=1for1<j=1i<p,
R;;:=A;;for1 <i<j<v,L;; = R;;:= 0 otherwise. Return.

The following Procedure 3 is used for formation and factorization of blocks S[Z;}Y[i},
1 =1,...,n and selection of the suitable update formula. Note that to realize updating
with the choice (2.29), we merely create block SE;]YM of order 1, see step (v).

Procedure 3 (Block generation)

Given: Symmetry tolerances d1,0-,03 and update-type tolerances dy4, 05,05, 0; > 0,
i=1,...,6, and a global convergence parameter ep € (0, 1).

(i): Set 6:= d;, an indices upper bound 7 := m, an auxiliary block index ig:=1 and
an update-type ((2.28)—(2.30)) indicator iy := 0.

(ii): Find a minimum indices bound v such that max;, ;7 {(sflij—s;fgyjl) (b, bjl)} <.

(#i): Using Procedure 2 with ¢, =0, possibly correct the indices lower bound v. If m <3

or 7<m or 7—y <2 or max;, j,cry {(sﬁyjz—sg;yjl)Q/(ijbjl)} > 03 go to (v).
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(iv): Compute 6 by (5.1), @ by (4.23) and b by (4.24). If ((1—b/b)|1—a/b| > 1 and
b/b>1.5) or b/b> 50 or § <, then go to (v). If 6> 05 or b/b> g set iy :=1,
otherwise set iy :=2.

(v): I iy=1set v:=v and iy :=0. Set A;,:=[STY]). If iy =2 and v=m, denote by
A;, matrix U[n] in (4.33). Using Procedure 2 with ip =1, find matrices R; .= R and
L;, =L such that A;,:=R;,L;,. Set v :=v—1. If 7 >1set §:=0y, ip:=ip+1
and go to ().

(vi): Setn :=ipg, S[CEYM = Ap_iv1, Ry) = Rn—i1, Ly) = L—ipr, =1, on. Ifig =2
set R[n] = RM and L[n] = L[n]. Return.

We now state the method in details. For simplicity, here we omit stopping criteria
and a contingent restart when some computed direction vector is not sufficiently descent.

Algorithm 1

Data: A maximum number m > 1 of columns S, Y, line search parameters 1, &g,
0<e1<1/2, g1 <eg <1, tolerance parameters dy,...,0d, 0; >0, i€{1,...,6},
d4 <95, and a global convergence parameter ep € (0, 1).

Step 0: Initiation. Choose starting point o € RY, define starting matrix Hy = I
and direction vector dy = —gy and initiate iteration counter k to zero.

Step 1: Line search. Compute x4 = xp + tgdy, where t; satisfies (1.1), g1 =
Vf($k+1), Sk — tkdk, Yk = Jk+1 — Gk, bk = Szyk, Ck = bk/y]zyk If £k =0 set
Sk = [kl Yio = [we], S{Ya = [stynls Y2 Y= [y ye], compute S} g1, Yy g
and go to Step 4.

Step 2: Basic matrices updating. Using Procedure 1, form the matrices Sy, Yz, ST Yz,
Y,.IY;.

Step 3: Block generation and factorization. Using Procedure 3, find a number of
blocks n and an update indicator i;; and form and factorize positive definite
blocks S[ZZEY[Z-} = RyLy), i = n,...,1. Form matrices U = U, by (4.11),
Lp =diag[ Ly, ..., Ly ], Ea by (4.32) and Uy := ULp' for iy = 0 or U
by (4.19), Lp=diag[ Ly, . - ., Lipa), Lin ], Ea by (4.35) and Uy := ULp" for
iy = 2.

Step 4: Direction vector. Compute dp.1 = —Hgi19x1 and an auxiliary vector
YiHy19k11 by (4.31) for iy =0 or by (4.34) for iy =2. Set k := k+ 1. If
k > m delete the first column of S;_1, Y._1 and the first row and column of
SE Y1, Y, Vi to form matrices (Sp)x, (Ye)r, (Sp)E(YP)k, (YP)E(YP)s-
Go to Step 1.

6 Global convergence

In this section, we establish the global convergence of Algorithm 1. The following as-
sumption and lemma are presented in [17].

Assumption 6.1 The objective function f : RN — R is bounded from below and uni-
formly convex with bounded second-order derivatives (i.e. 0 < G < M(G(x)) < MG (z)) <
G <00, z € RY, where A\(G(z)) and N(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matriz G(x)).
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Lemma 6.1. Let the objective function f satisfy Assumption 6.1. Then G < |y|*/b < G
and b/|s|* > G.
Lemma 6.2. Let A, € R**, u > 0, be a positive semidefinite matriz, Ay € RHF*H
symmetric positive semidefinite. Then 0 < Tr(A;Ay) < Tr Ay Tr Ay. Moreover, if Ay is
symmetric positive definite, then Tr(A;A;") < Tr Ay (Tr Ay)#~!/ det A,.
Proof. We can write Ay = QAQT with @ orthogonal and A diagonal with A;; > 0,
i=1,..., 1, thus Tr(4;4;) = Tr(4,QAQT) = Tr(KA), where the matrix K = QTA,Q
is obviously positive semidefinite, which immediately yields K; > 0,7 =1,...,u. Since
Tr(A;Ag) =Tr(KA) =3 KAy, we get 0 < Tr(A1A2) < Tr K Tr A = Tr A; Tr As.

If As is symmetric positive definite, all eigenvalues A;; of the matrix A, satisfy A;; >
det Ay /(Tr Ag)#~1, which yields

Tr(A1 A7) =Tr(A,QA ' Q) =Tr(KA™! ZKHA < [(Tr Ap)»~Y/ det Ay| Tr Ay
in view of >t | Ky =Tr K =Tr A;.
Lemma 6.3. Let matrices Ay, Ay € R**, 1 > 0, Ay nonsingular. Then (Tr(A;A31))? <
puTr(ATA)) (Tr(ATAs)) =1/ (det Ag)?.
Proof. For any A € R*** we have
(TrA)2—<i 1A“) <NZA <MZZA = uTr(ATA)
i=1

=1 j=1
by the Schwarz inequality and the assertlon follows from Lemma 6.2 in view of

(Tr(414; )" < wTe(A;"ATALAL") = p T ((ATAD) (AFA,) 7). -
Lemma 6.4. If Ae RF*, >0, is a positive definite matriz, then det3(A+AT) < det A.

Proof. We will proceed by induction on p. The result is true for = 1. Let it be
true for all posmve definite matrices of some order p > 1, let u,v € R* and the matrix

A= [ ;4T ] be positive definite. Then

A ‘_ A—wTl/a u
’ ol al } (0 a ’ ’
i.e. det A = avdet(A —uvT/a), where a > 0 and the matrix A —uv?/a is positive definite
by Lemma 4.1. This also implies

det — (A+AT) = adet (1(A+AT) - wa/oz)7 (6.1)

where w = £ (u+v) and the matrix $(A+A") — ww’/a is symmetric positive definite.
Using the induction hypothesis and the identity det(K+ q¢*)=(1+ ¢"K~'q) det K (K a
nonsingular matrix, ¢ a vector), which for K positive definite yields

det(K+ qq") > det K, (6.2)
we get
det A = adet(A—wl/a) > « det%(A—uvT/Oz—l—AT—vuT/a)
= o det(3(A+AT)—wwT/a+(u—v)(u— U)T/(4a)>
> «det %(A+AT)—wa/a) = det $(A+AT)
and the induction is established with p + 1 replacing pu. a
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Lemma 6.5. Let A € RM*, w € R*, u, 6 > 0, the matrix {
positive definite and det A > §(Tr A)**1. Then det A > 6(Tr A)~.

Wl } be symmetric

Proof. The matrices A — wuiT/oz, A are symmetric positive definite and « > 0 by
Lemma 4.1, thus Tr A > «, Tr A > Tr A. Using (6.2) and (6.1), we obtain

det A > det(A—ww’/a) = (detA)/a > §(Tr At/ Tr A = §(Tr A)* > §(Tr A)*. O

Theorem 6.1. Let the objective function f satisfy Assumption 6.1. Then Algorithm 1
generates a sequence {gi} that either satisfies 11m|gk| = 0 or terminates with g, = 0
for some k.

Proof. Procedure2 with ip = 0 de facto computes the RL factorization of the ma-
trices %(SaYM —1—3/[55’[2-]) 2 Ay, where L has unit diagonal entries. For m; > 1 (the
number of columns of the matrices Sp;,Y};)) all diagonal entries of R are greater than
epTr SﬁYm =epTrAp in view of step (i) of Procedure2 and for m; = 1 the only entry
of Ris TrAp>epTrAy by ep < 1, thus for i=1 ,n and k>0 by Lemma 6.4 we have

det< ((SM [l]) (Y%S[i])_g) > detS [ = detA,] > <6DTI‘ A[,])

%

(6.3)
We assume that Cj; = I, i=1,...,n, (see Sectin 5) and denote Hy = %(H[i]-i—Hﬁ),
By =Hy', By=Hy', By=(5(Hy+HJ)) ™, B=Y(B+Bf),i=1,...,n+1, k > 0. Since
in all iterations we choose Hyyj= (.1, Co= bi/|yx|?, i.e. Bpy=(|yx|*/bk)I, Lemma 6.1 gives
Tr By = (|yal¥bx) T I < NG, det By = (|yi|?/bx)Y > G~, k> 0. (6.4)

(i) Suppose first that iy =0 (i.e.in the kth iteration we use the block BFGS update
for all blocks SaYm and set H, = Hj1 = Hp,4q) with the matrices Hp,q) given by (4.1),
i=1,...,n). By Corollary 2.1, Theorem 2.3 (b) -(c), (6.3) and Lemma 6.4, (4.1) yields

B[i—i—l] = Bl Z]S[l](s[z] S[z]) S[Z]B[Z _'_}/[z]A }/[’L] 5 (65)
Biivy = By =By Sy (S B Sin) ™ Sy Bi+ Y (Vi i) ™'Y » (6.6)
det B[Hl] > det B[iJrl} > det*(B[Hl]“‘B[:g.;.l]) detB det A[z]/det( Z]B[Z]S[l) (6.7)

i = 1,...,n, where the matrices S[ ,]S[Z] are symmetric positive definite by Theo-

rem 2.3 (d), since Algorithm 1 generates all blocks S[Z [ positive definite by Lemma 4.1
and thus all columns of matrices Sy, Y}, i=1,...,n, are linearly independent.
Relation (6.5), Lemma 6.2, relation (6.3) and Lemma 6.1 give

Tr B[i—H] —Tr B[i] < Tr (}/[Z] Yi]A[;]l) <Tr Yr[z]jif[l] (TI"A[i])mifl/ (sDTrA[,-])mi

= ¢ep" TTY'TY[i]/Tr Ay < Zjezi(|yj|2/bj)/51)’ <m;G/ep’,

i=1,...,n. Using (6.4), in view of ep <1 and 7' ;m;=m this yields

TI‘BM < (N+m/€7£)éé@g, izl,...,n—l—l, Ter+1:TrB[n+1]§ @0, k>0. (69)
Since Tr Bpy41)—Tr By < Tr (V) Yiu (V) Sia) ™) by (6.6), Lemmas 6.1-6.3 and (6.3) give
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— mp—1
Tr B[n-ﬁ-l} —Tr B[n] < \/mnTI" YT Y[n])Q [TI(S[T]S[n]) TI"(Yﬁ Y[n])} /(&?DTI“A[R])W"

;|2 |s;]? ly S om, — m=1 /G \™
vy Wl [ bl W ey (S
" jet, b J€Tn b JE€Tn b D G
which by (6.4) and (6.9) ylelds
Tr Biy1 = Tt By <Oo+(m/eB)(mG/G)" G 2 0, > 0, k> 0. (6.10)

Since (det A)l/“ < (1/u)Tr A for A € R¥*# symmetric positive definite, u > 0, we
have (det(S[ ]B[l Spip))/mi < Tr (S[Z B(;1S)))/m; and relations (6.7) and (6.3), Lemma 6.2,
relation (6.9) and Lemma 6.1 give

(detB[H_l])l/ml (det%(B[H-l} +B§+1]) )1/m1 > ml(det Am)l/mz > m; (€DT1" AM)
det Bm - det B[Z] - TI‘(S% S[i] B[i]) - TrS[f]Sm .TYBM
m; ep'Tr A[z] m; Ep ZjEL- bj > m; €D/@o > ep G
O¢Tr S[Z]S O X; Y 16, — 60
(6.11)
i=1,...,n. Using (6.4), this yields
1 det By, > GN(ep G /©p)™ ™, (6.12)
. N
det Byy1= deti(B[nHﬁB[ﬂH]) > GN(ep G /Og)™ = Oy, k> 0. (6.13)

(ii) Let iy =2 in the kth iteration, i.e. we use the block BFGS update for the blocks
S[:f]YM, i=1,...,n—1, (thus also Tr B,) < Oy (see (6.9)) and (6.12) hold) and for the block
S[fl]Y[n} update (4.14)—(4.15) with C’[I:L] = [ and § =3, y =7 given by (2.30). Denoting
Bp=Hp' (positive definite by Theorem 2.3 (d)), Bp = L(Bp+B}), Hp=L(Hp+H}),
Bp=Hz', P =1-(1/5")35" and A[n] —7((SP )TYP}—i—(Y[ﬁ)TS[Z]), from (4.15) we obtain

Bp = By B[n15[n]((5[n])TBn15n9 (i) " Brap+ Y (Sg) " Yir) ™ (), (6.14)
Bp = B =B Si((Si)" B Si)~ (S[n])TB Y (AR T YT (6.15)
det Bp = det By, . det Al / det((S5))" BuShy) (6.16)

by Theorem 2.3 and Corollary 2.1. In the same way as (6.9) and (6.13) we get

TTBP§@0<@1, TI'BPITI'BPS("‘)l, detépz@g. (617)
Denoting u = Bpé/\/3TBps = Bps/\/5TBps, v = Bb3/\/3TBps = BLs/\/57 Bps, we

obtain

Briy1 = Bp—(1/§"Bp3)Bpss"Bp + (1/8"))99" = Bp — wo” + (1/5'9)99",  (6.18)
By = Bp—(1/§TBP§)BP§§TBP+(1/§Tg])gjg)T+(1/4)(u v)(u—v)T, (6.19)
Bin = ((1/8%9)88"+PTHpP) ' = Bp — (1/5"Bp3)Bpss"Bp + (1/5%9) 59", (6.20)

by (4.14), Theorem 2.3 and relations 2(uvv” 4+ vu”) = (u + v)(u + v)T — (v — v)(u — v)"
u,

and §(u+v) = (1/8"Bp8) Bps. Setting u = By u, v = B;1/2U7 we get
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—2u'v < |ul* + |v]* = @’ Bpu + v" Bpv < 2Tr Bp < 26, (6.21)

by @'u = v'Hpu = u"Hpu = 1 = 970 and (6.17). Using (6.2) with ¢ = (u — ),

T7
u
K = Bp — (1/8"Bp3)Bps5"Bp + (1/3879)5y", (6.19) and Theorem 2.3, we obtaln

det Byy1 > det K = (det Bp) §%4/57Bps. (6.22)
From §j= Py, $§=PTs, where P=1—(1/b_)y_s’, we have

1< 1P Tyl =lyl(ls-T1y-1/b-) <[y G/G, 8| <|PT Is| <[s]VG/G (6.23)
by Lemma 6.1. Further, by Theorem 2.5 we have 87§ = s7g = b—sTy_sTy/b_ . Applying
Lemma 6.5 repeatedly m,—2 times to the inequality det Ap)>en™ (Tr Apy)™ (see (6.3)),
we get det $([s_, s]"[y—,y]+[y—,y]" [s_, s]) > ep"(b_+Db)?. Using Lemma 6.4, this yields

b STy | (bt
(sTy+sty_)/2 b b

Since the matrix Bp is symmetric positive definite, from (6.17)(6.24) we obtain

~ —2
9 9o, 1 LG 90,1 O b g <o, (625
a7 < 1+€DbG 1+m—G— 3, TrBi1<©3,  (6.25)
§1s Sy O, ehb eMG? A

> 0Oy

STB ASTS @1 | | (G/G) ®1G

k > 0, with ©3>0; and ©,<O,, by Lemma 6.1, (6.13), ep<1, G <G and (6.9) - (6.10).
(i) The lowest eigenvalue A(B},) of By, satisfies A(By) > det By /(Tr By)N~! by Tr B, =
Tr By, k>0. Setting gr = H,/%g, from (6.9) — (6.10), (6.13) and (6.25) — (6.26) we get

1 r 1
§Tg:b7 b_ S_Y

IsTy_ b =5

>emb. (6.24)

Tr Byy1=Tr Bp—ulv+

det Bk+1 > (det BP) = @4, (626)

(skgr)® _ skBrsk giHigr _ stBsk Gae det By, 1 64
Isel?lgel*  sksk gign sisk GBrar — (Tr B)N-' 1y g~ ©F

(6.27)

by giHpgr = grHpgr, k > 1, which implies klim lgr| = 0, see Theorem 3.2 in [15] and
relations (3.17)—(3.18) ibid. O

One can show in the same way as in [8] that the inequality (6.27), the line search con-
ditions (1.1) and Assumption 6.1 imply that the sequence {x)} is R-linearly convergent.

7 Numerical experiments

In this section, we compare our results with the results obtained by the L-BFGS method,
see [8], [14], by the BNS method [1] and by our best limited-memory methods based on
vector corrections, see [17]-[18]. All methods are implemented in the optimization soft-
ware system UFO [13], which can be downloaded from www.cs.cas.cz/luksan/ufo.html.
We use the following collections of test problems (several problems from the both collec-
tions were excluded from our numerical experiments, since they were not solved by any
limited-memory variable metric method):
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e Test 11 — 55 chosen problems from [11] (computed repeatedly ten times for a better
comparison), which are problems from the CUTE collection [2], some of them mod-

ified; used N are given in Table 1, where the modified problems are marked with *’,

e Test 25 — 68 chosen problems from [10], which are sparse test problems for uncon-

strained optimization, contained in the system UFO, N =10000.

The source texts and the reports corresponding to these test collections can be down-
loaded from the web page www.cs.cas.cz/luksan/test.html.

Problem N | Problem N | Problem N | Problem N
ARWHEAD 5000 | DIXMAANI 3000 | EXTROSNB 1000 | NONDIA 5000
BDQRTIC 5000 | DIXMAANJ 3000 | FLETCBV3* 1000 | NONDQUAR 5000
BROYDN7D 2000 | DIXMAANK 3000 | FLETCBV2 1000 | PENALTY3 1000
BRYBND 5000 | DIXMAANL 3000 | FLETCHCR 1000 | POWELLSG 5000
CHAINWOO 1000 | DIXMAANM 3000 | FMINSRF2 5625 | SCHMVETT 5000
COSINE 5000 | DIXMAANN 3000 | FREUROTH 5000 | SINQUAD 5000
CRAGGLVY 5000 | DIXMAANO 3000 | GENHUMPS 1000 | SPARSINE 1000
CURLY10 1000 | DIXMAANP 3000 | GENROSE 1000 | SPARSQUR 1000

CURLY20 1000 | DQRTIC 5000 | INDEF* 1000 | SPMSRTLS 4999
CURLY30 1000 | EDENSCH 5000 | LIARWHD 5000 | SROSENBR 5000
DIXMAANE 3000 | EG2 1000 | MOREBV* 5000 | TOINTGSS 5000
DIXMAANF 3000 | ENGVAL1 5000 | NCB20* 1010 | TQUARTIC* 5000
DIXMAANG 3000 | CHNROSNB* 1000 | NCB20B* 1000 | WOODS 4000

DIXMAANH 3000 | ERRINROS* 1000 | NONCVXU2 1000
Table 1: Dimensions for Test 11 — the modified CUTE collection.

We have used m= 5, (51: 10_2, 52 = 10_1, 53 = 10_13, (54 = 10_10, (55 = 10_3, 56 = 05,
ep=1075 £,=107, g5= 0.8 and the final precision ||g(2*)||s < 107S.

Table 2 contains the total number of function and also gradient evaluations (NFV)
and the total computational time in seconds (Time).

Test 11 Test 25
Method NFV  Time | NFV  Time
L-BFGS 80539 13.941 | 501651 574.59
BNS 78704 14.344 | 517186 661.66

Alg. 4.1 in [17] 64395 13.038 | 319565 420.00
Alg.4.2 in[18],n=4 | 63987 13.063 | 309650 415.27
Algorithm 1 65228 12.211 | 371830 468.19

Table 2: Comparison of the selected methods.

For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods by using performance profiles introduced in [4]. The per-
formance profile pys(7) is defined by the formula

number of problems where log,(7pa) < 7

pu(T) = total number of problems
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with 7 > 0, where 7p)s is the performance ratio of the number of function evaluations
(or the time) required to solve problem P by method M to the lowest number of function
evaluations (or the time) required to solve problem P. The ratio 7p )/ is set to infinity
(or some large number) if method M fails to solve problem P.

The value of py(7) at 7 = 0 gives the percentage of test problems for which the
method M is the best and the value for 7 large enough is the percentage of test problems
that method M can solve. The relative efficiency and reliability of each method can
be directly seen from the performance profiles: the higher is the particular curve, the
better is the corresponding method. Figures 1-4, based on results in Table 2, reveal the
performance profiles for tested methods graphically.

Performance profiles for NFV Performance profiles for TIME
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Figure 7.1: Comparison of py/(7) for Test 11 and various methods for NFV and TIME.

Figures 1-2 demonstrate the efficiency of our method in comparison with the BNS
and the L-BFGS methods and from Figures 3-4 we can see that the numerical results for
the new method and the results for our methods [18], [17] are comparable.
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Figure 7.2: Comparison of py/(7) for Test 25 and various methods for NFV and TIME.

8 Conclusions

In this contribution, we derive a block version of the BFGS variable metric update formula
for general functions and show some its positive properties and similarities to approaches
based on vector corrections ([18], [17]).

In spite of the fact that this formula does not guarantee that the corresponding direc-
tion vectors are descent, we propose the block BNS method for large scale unconstrained
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Figure 7.3: Comparison of py/(7) for Test 11 and various methods for NFV and TIME.
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Figure 7.4: Comparison of py;(7) for Test 25 and various methods for NFV and TIME.

optimization, which utilizes the advantageous properties of the block BFGS update and
is globally convergent.

Numerical results indicate that the block approach can improve unconstrained large-
scale minimization results significantly compared with the frequently used L-BFGS and
BNS methods.
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