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Abstrakt:
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Symbols and notation

The following fonts and symbols, everywhere in the text of this booklet have the meaning
described bellow:

def
= definition of newly introducec object, set or number
2⇒ implication from equation, etc.
4
= equality follows from 4
5

6= nonequality follows from 5

xx

≤ follows from xx
rs

≥ follows from rs
xx

< less than follows from xx
xx

> great than follows from xx

K= {1, . . . ,m} set of natural numbers between 1 and m

BN
α ball in <N space centered at initial point and with radius α

<N real N -dimensional space

Ωm m-tuple Cartesian product of set Ω
^
z element in Cartesian (multiple) product of specified set

X̄ general (sub)set of a given set

X system of subsets of a given set

X set of systems of sets over a given set

2X̄ potential set of X̄ , 2X̄
def
=
{
Z̄
∣∣Z̄ ⊂ X̄

}

[Ω]λ linear hull of set Ω of vectors from linear vector space (=set of all
linear combination of finite set of vectors from Ω)

B̄⊥ orthogonal complement of the set B̄

[B̄]κ convex hull of set B̄

H∗n vektor space (with specified parameters)

CĀ set of continuous functions defined on a given set Ā

NPα
k set of objest with predefined properties, generally set of functions,

mappings, etc., context dependent
B∗ general learning algorithm

Ā4 B̄ symetric difference of two sets Ā and B̄

Ā
.
−B̄ difference of sets Ā and B̄

o
(
f̃
)

g̃ = o
(
f̃
)

means that absolute value of function g̃ is on assymp-

totic neighbourhood of zero majorized by function f̃

O
(
f̃
)

g̃ = O
(
f̃
)

means that absolute value of function g̃ is on assymp-

totic neighbourhood of infinity majorised be values of f̃
A matrix of real numbers, colums or rows will be denoted by notion

lines of matrix
~x vector from a given vector space (all vectors will be considerd as

columns)

6 F. Hakl ICS Prague, Tech. Rep. 1227
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~xi i-th indice of the vector)

A(n) square matrix of order 2n

~x(n) vector of dimension 2n

〈~x |~y 〉 scalar product of vectors, 〈~x |~y 〉 =
∑n

i=1 ~xi~yi
~x� ~y tensor product of vectors or matrices
∧

AND binary function AND
∨

OR binary function OR
t

XOR binary function XOR
¬

NOT unary function NOT

bMc greatest whole number less than M (=whole bellow part)

dMe smallest whole number greater than M (=whole upper part)

vpm (j) vpm (j) is vector from {−1,+1}n , (resp. {0, 1}n , by context),
whose coordinates correspond with binary inscription of natural
number j (coordinates of vector vpm (j) correspond to pozitions
of 1 in binary expansion of j, are equal to 1).

vbin (j) vbin (j) is vector from 0,1, whose coordinates correspond with bi-
nary inscription of natural number j (coordinates of vector vbin (j)
correspond to pozitions of 1 in binary expansion of j, are equal to
1).

nint (~v) whole number, derived from vector ~v ∈ {−1,+1}n, (resp. ~v ∈
{0, 1}n, by context), where ones components of vector nint (~v)
correspond to 1 in binary expansion of number nint (~v) , the
rest components correspond to position of 0 in binary expansion
of nint (~v)(

a
i

)
binomical coefficien

f̃ general mapping between two sets(
f̃ ∗ g̃

)
convolution of functions f̃ a g̃

Ã (b) value of function (mapping) Ã at point b

ln (x) natural logarithm of x

log2 (x) logarithm of radix 2

x ≡ y mod r x ≡ y mod r means that there exist whole number k such that
x = yk + r, where x, y, and r are whole numbers

ProbΠ̃

(
Ā
)

probability of set Ā under probability distribution Π̃∣∣V̄
∣∣ cardinality of set V̄

|δ| absolute value of number δ

‖~z‖max maximum norm of vector

‖~z‖E Eucleidian norm of vector

‖~z‖LK̄2 specified norm of vector

Ā
∣∣
P orthogonal projection of set Ā into subspace P

Newly mentioned object will be emphasized in the text by another font, like newly
introduced notion .

Dec 2015 F. Hakl 7
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Preface

About this booklet. This work grew out of lecture notes for MSc. courses that I taught
at the Mathematical department of FNSPE CTU in Prague since 1997. Conse-
quently, this is a textbook covering enough material for two semester courses. The
main focus of this textbook is on introduction to PAC learning model and its vari-
ants.

The audience. This text is intended for students in mathematics and other fields such
as computer science and electrical engineering. Also a significant portion of the
presented material is suitable for undergraduates.

Prerequisites. The necessary prerequisites is basic linear algebra and theory of prob-
ability. In some places knowledge of some basic analysis, functional analysis and
topology is needed.

8 F. Hakl ICS Prague, Tech. Rep. 1227
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Chapter 1

PAC learning model

Wisdom

Nature

Process Ours

(learning algorithm)

X̄ , P̃ C

xi

0 or 1

xi

0 or 1

c̄

produce xi ∈ X̄
if asked

by density P̃

do something
ask Process

if necessary

or Wisdom

when finished
select h̄ ∈ C

h̄ should be

else

return 0

if xi ∈ c̄
return 1

”resemble” to c̄

fixed set X̄ and concept class C ⊂ 2X̄

hypothesis h̄ ∼ c̄

define probability P̃ over X̄ and choose target concept c̄ ∈ C

Figure 1.1: Learning scenario.

1.1 Concepts and concept classes

Key subject relating to the term learning algorithm is any subset of firmly given set X̄ .
The terms concept, hypothesis, concept class and hypothesis class are used to designate
such systems in the literature relevant to our further explanation. That is also why this
terminology will also be used in the following definitions and explanations.

9
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CHAPTER 1. PAC LEARNING MODEL Lecture Notes

Definition 1.1.1 Let X̄ be an arbitrary set. Then we call c̄ ⊂ X̄ concept (over set
X̄ ). Nonempty collection of sets C ⊂ 2X̄ is concept class (over set X̄ ). Members
of this class c̄ ∈ C are concepts of the class C .

One of the methods for describing concept is to set up the concept as a sample of
a given set in a representation. Formally, we then define the concept Cf̃ for Boolean

function f̃ .

Definition 1.1.2 Let f̃ be a mapping from the set X̄ into two point set {−1,+1} .
Then define concept c̄f̃ as

c̄f̃
def
=
{
x ∈ X̄

∣∣∣f̃ (x) = 1
}
.

Obviously, the preceding definition can be used to define concept class corresponding
to set of functions over X̄ .

Definition 1.1.3 Let us assume that F̄ is an arbitrary set of function which maps X̄
into {−1,+1} . Then we say that F̄ represent concept class

CF̄
def
=
{
Ā ⊂ X̄

∣∣∣(∃f̃ ∈ F̄ )(Ā = c̄f̃ )
}
.

Among others such classes we point out so called HALFSPACEn which is most
natural concept class in variety applications.

Definition 1.1.4 Let n be natural number and

F̄
def
=
{
f̃ : <n → {−1,+1}

∣∣∣f̃ (~x) = s̃gn (〈~x |~w 〉 − t), t ∈ <, ~w, ~x ∈ <n
}
.

Then HALFSPACEn
def
= CF̄ .

It is straightforward that HALFSPACEn contains all halfspaces of n-dimensional
Euclidean space.

Definition 1.1.5 Let n be natural number and

F̄
def
=
{
f̃ : <n → {−1,+1}

∣∣∣f̃ (~x) = s̃gn (‖~x− ~c‖E − r), r ∈ <+, ~c, ~x ∈ <n
}
.

Then BALLn
def
= CF̄ .

It is straightforward that BALLn contains all balls in n-dimensional Euclidean space.

10 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 1.2. BASIC TERMS OF LEARNING ALGORITHMS

1.2 Basic Terms of Learning Algorithms

For better comprehension of the functionality of the Probably Approximately Correct
learning model we will use a more formal example of the role of learning than the one
presented at the beginning of this section. Let us consider a problem involving a specific
given set Ā ∈ <n knowing a priori that Ā is a sphere in geometric terms. Let us assume
to have a given sequence of points ~xi ∈ <n, while each of them is known either to lie
within the set Ā or not. Our task is to decide how does the set Ā look like, and -
in this specific case - to find the centre and radius of the relevant sphere. It is evident
that our decision is highly dependent on the properties of the given sequence ~xi. Let us
assume that, based on an algorithm (deterministic or nondeterministic), we have opted
for a sphere in <n , claiming it is equal to the set Ā . It is natural to expect that this
particular set should contain all the points ~xi ∈ Ā and, on the other hand, should contain
no ~xi that does not lie within Ā . This requirement will be called consistency and a set
which we assume to be equal to the sphere Ā will be called a hypothesis (the equality
of the sphere selected by us and Ā is solely our hypothesis, based on the properties of
the algorithm used and on the sequence of points ~xi).

Let us designate our chosen sphere K̄ . Then, it is evident that the condition of
consistency must be met in case, when symmetric difference of the sets K̄ and Ā will
be an empty set, and it is natural to demand that this should hold for the generated
hypothesis or that this should at least hold with a high rate of probability. The terms
discussed above are treated in the following definitions.

Definition 1.2.1 Let C be a concept class and a set system H satisfies C ⊂ H ⊂ 2X̄ .
Then, H is hypothesis class for concept class C.

Definition 1.2.2 Let
^
x

def
= {x1, . . . , xm}, xi ∈ X̄, i∈ {1, . . . ,m} , ~z ∈ {−1,+1}m and

let c̄ ⊂ X̄. Then the ordered tuple (
^
x, ~z

)

is a sample of concept c̄ of lenght m if and only if

(∀i∈{1, . . . ,m}) ((xi ∈ c̄)⇔ (~zi = 1)) .

For concept class C define sample space of concept class as

S̄C
def
=
⋃

m≥1

{⋃

c̄∈C

{(
^
x, ~z

) ∣∣∣
(
^
x, ~z

)
is a sample of the length m of concept c̄

}}
.

A set b̄ ⊂ X̄ is consistent set with sample
(
^
x, ~z

)
if and only if for all i∈{1, . . . ,m}

, holds
(
xi ∈ b̄⇔ ~zi = 1

)
.

A rate of difference between two sets has to be available for the purpose of further
explanation. We define this rate of difference as follows:

Dec 2015 F. Hakl 11
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CHAPTER 1. PAC LEARNING MODEL Lecture Notes

Definition 1.2.3 Let X̄ be a probability space with probability distribution P̃ . Fur-
thermore, C is concept class over X̄ and H is hypothesis class for C . Then, for each
c̄ ∈ C and h̄ ∈ H the number

eP̃
(
c̄, h̄
) def

= ProbP̃
(
h̄4 c̄

)

is error of hypothesis h̄ regarding a concept c̄ and probability P̃ (symbol

h̄4c̄ denotes symmetric difference between sets h̄ and c̄ , e.g. h̄4 c̄ =
(
c̄
.
−h̄
)
∩
(
h̄
.
−c̄
)

).

” h̄ should be resemble to c̄ ”

h̄2

P̃ = 0.1

h̄1

c̄ c̄

P̃ = 0.1 P̃ = 0.1

P̃ = 0.1

Figure 1.2: Example of two hypotheses with the same error.

Since the set Ā has been described solely by the sequence of its elements (plus a
priori information on its shape) our considered learning algorithm is essentially a mapping
between the set of all the samples of the set Ā into the set of all spheres in <n . We will
not require a precise learning algorithm to provide a exact hypothesis for all the possible
tasks of this type but we will only require the given learning algorithm to produce, in
most cases, a “satisfactory” hypothesis (for instance a hypothesis consistent with the
given sample). The following definition represents a quantification of this requirement.

Definition 1.2.4 Let us have a defined function m̃ (ε, δ) mapping a set (0, 1) × (0, 1)
into a set of natural numbers, and let H be a hypothesis class for the concept class C,
defined over the set X̄ . Then learning algorithm of complexity m̃ (ε, δ) of the

concept class C is each mapping Ã∗ : S̄C → H such that for all c̄ ∈ C, for all 0 < ε < 1,
0 < δ < 1 and for any probability P̃ defined on X̄ is the probability of the set

{
^
x ∈ X̄m

∣∣∣
(
^
x, ~z

)
is sample c̄ a eP̃

(
c̄, Ã∗

((
^
x, ~z

)))
≥ ε
}

smaller than the number δ. If such a learning algorithm exists we say that C is
uniformly learnable according to the hypothesis class H . We will call each such
learning algorithm the (ε, δ)-learning algorithm .

Remarks:
In the literature, this particular model of computational complexity is designated as PAC
(Probably Approximately Correct) learning.

12 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 1.2. BASIC TERMS OF LEARNING ALGORITHMS

It is evident that each set may be described very precisely by means of a great number
of its members. Algorithms using very long samples may probably produce much more
veritable hypotheses. If we are satisfied with the given accuracy of generating hypotheses,
described by numbers ε and δ, it is natural to ask how many a sample must be used for
the given concept class to guarantee this accuracy. That is why we will introduce the
term sample complexity of learning algorithms as follows:

Definition 1.2.5 Minimal value m̃ (ε, δ) for which A∗ is a learning algorithm is a
sample complexity of learning algorithm A∗ .

This complexity is defined solely with a view to the length of the sample of the learning
algorithm used; the issue of the inner computational complexity of the algorithm itself
is not taken into consideration in this case! The roughest estimate of sample complexity
is given by the subsequent statement, based solely on probability properties (providing
a basic estimate of the number of samples that have to used for the learning algorithm
which produces a consistent hypothesis).

Theorem 1.2.1 Let us assume that C is a concept class over finite set X̄ and H = C.
Let learning algorithm A∗ require at least

1

ε
ln

(
|C|
δ

)
(1.1)

queries and for any given concept c̄ ∈ C and any probability density P̃ defined on X̄ ,
produce a consistent hypothesis. Than

ProbP̃

(
eP̃

(
c̄, Ã∗

((
^
x, ~z

)))
≥ ε
)
< δ.

Proof:
Let us assume that h̄ is a hypothesis consistent with the sample ({x1, . . . , xm} , ~z), which
is generated by a learning algorithm. Without loos of generality, it is possible to assume
that for some 1 ≤ k ≤ m is x1, . . . , xk ∈ c̄ and xk+1, . . . , xm 6∈ c̄. Hence, it ensues from
the consistency of h̄ that x1, . . . , xk ∈ h̄ a xk+1, . . . , xm 6∈ h̄. Therefore, the following
estimate holds

eP̃
(
c̄, h̄
)

=
∑

x∈c̄4h̄

ProbP̃ (x) ≤ 1−
m∑

i=1

ProbP̃ (xi).

Hence, we obtain from the requirement ε ≤ eP̃
(
c̄, h̄
)

m∑

i=1

ProbP̃ (xi) ≤ 1− ε

and from the positiveness of the numbers ProbP̃ (xi) it further ensues that

(∀i∈{1, . . . ,m})(ProbP̃ (xi) ≤ 1− ε).

Dec 2015 F. Hakl 13
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CHAPTER 1. PAC LEARNING MODEL Lecture Notes

Hence, the probability of selection of m points xi ∈ X̄ such that they are consistent with
hypothesis h̄ for which eP̃

(
c̄, h̄
)
≥ ε meets the inequality

ProbP̃
({
x1, . . . , xm

∣∣eP̃
(
c̄, h̄
)
≥ ε and h̄ is consistent

})
=

m∏

i=1

ProbP̃ (xi) ≤ (1− ε)m

(selected queries may be repeated; this is an independent selection).
But we are interested to know the probability that such hypothesis really exists. The

number of hypotheses is, however, finite and equals the number of concepts in the class C
. Therefore, the overall probability of the incidence of the hypothesis with the properties
described above is lower than the number

|C| · (1− ε)m.
We demand that probability should, at the most, equal the value of δ, hence that it should
hold that |C| · (1− ε)m ≤ δ. Let us choose

m
def
=

⌈
1

ε
ln

(
|C|
δ

)⌉
.

Then the inequality (δ < 1) holds 1 .

|C| · (1− ε)m ≤ |C|e−εm ≤ |C|eln( δ
|C|) = δ.

q. e. d.

Example 1.2.1 Let X̄
def
= {1, · · · , k}, C

def
=
{
ā ⊂ X̄

∣∣(∃i ∈ X̄
) (
ā =

{
j ∈ X̄ |i ≤ j

})}
.

Further define learning algorithm A∗ as

Ã∗ ((x1, . . . , xm, z1, . . . , zm)) = h̄ = 〈b, k〉 ∩ X̄, where b = min
i∈{1,...,m}

{xi |zi = 1} .

Obviously the algorithm A∗ produces consistent hypotheses only. At the same time,
|C| = k. Let 0 < ε, δ < 1 and

m ≥ 1

ε
l̃n

(
k

δ

)
.

Then A∗ is (ε, δ)-learning algorithm.

Example 1.2.2 Let X̄
def
= {1, · · · , k}n, let

C
def
= {〈a1, b1〉 × 〈a2, b2〉 × · · · × 〈an, bn〉 |(∀j∈{1, . . . , n}) (aj ≤ bj)} .

Further define learning algorithm A∗ as

Ã∗ ((~x1, . . . , ~xm, z1, . . . , zm)) = 〈a1, b1〉 × 〈a2, b2〉 × · · · × 〈an, bn〉

1Let f̃ (ε)
def
= e−ε − (1− ε). Then f̃ (0) = 0 and f̃ ′ (ε) = 1− e−ε > 0 on (0, 1) . Hence e−ε > 1− ε on

(0, 1) .

14 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 1.2. BASIC TERMS OF LEARNING ALGORITHMS

where

(∀j∈{1, . . . , n})
(
aj = min

i∈{1,...,m}

{
(~xi)j |~zi = 1

}
and bj = max

i∈{1,...,m}

{
(~xi)j |~zi = 1

})
.

Obviously the algorithm A∗ produces consistent hypotheses only. At the same time,
|C| =

(
k
2

)n
. Let 0 < ε, δ < 1 and

m ≥ 1

ε
l̃n

((
k
2

)n

δ

)
.

Then A∗ is (ε, δ)-learning algorithm.

Let us note that the estimate 1.1 is not dependent on the specific rate of probability
P̃ . This can be explained by the fact that the influence of different probabilities of the
elements in X̄ is compensated by the probability of the selection of this element according
to the density of probability P̃ . In other words, elements from X̄ with considerable
probability, which - in case of belonging to symmetric difference c̄4 h̄ greatly contribute
to the actual size of error, being more frequent in an average sample, which - in view of
the fact that algorithm always produces a consistent hypothesis - eliminates their impact.
That is why the estimate 1.1 is independent of probability P̃ .

In the subsequent explication, we will demonstrate that this estimate can be markedly
improved, notably by applying the term VC-dimension.

Dec 2015 F. Hakl 15
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CHAPTER 1. PAC LEARNING MODEL Lecture Notes
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Chapter 2

Vapnik-Chervonenkis dimension

We now begin to introduce the mathematical theory which is necessary to study PAC
learning in cases of infinite concept and hypotesis classes. A main notion discussed in this
chapter is Vapnik-Cervonenkis dimension which is a measure of possible set clasification
potential of set collection contained in concept class given.

2.1 VC-dimension of concept class

Definition 2.1.1 Let X̄ is a given set, Ȳ ⊂ X̄, C ⊂ 2X̄ . Then C is shattered by
Ȳ , iff:

(∀z̄ ⊂ Ȳ )(∃c̄ ∈ C)(c̄ ∩ Ȳ = z̄).

Further define Vapnik-Chervonenkis dimension of the set system C as

VCdim (C)
def
= sup

{∣∣Ȳ
∣∣ ∣∣ C is shatterd by Ȳ

}
.

Note, that Vapnik-Chervonenkis dimension is equal to the size of maximal set Ā ⊂ X
satisfying {

B̄
∣∣(∃Z̄ ∈ C)(B̄ = Ā ∩ Z̄)

}
= 2Ā,

or to +∞, if an set of any size is shattered by C .

The notion of VC-dimension is so imortant that we illustrate it using following examples
(see [AB92]).

Example 2.1.1

1. Let X̄ = < and C are all intervals (a,+∞) , where a ∈ <. In this case, obviously
for an arbitrary {b, c ∈ < |b < c} there does not exists an interval (a,+∞) which
contains the point b and does not contain the point c. Hence VCdim (C) = 1.

2. Let X̄ = <, s is a natural number, s > 1 and C contains all union of s intervals. Let
S̄ = {x1, . . . , x2s |xi < xi+1}. It is straightforward that S̄ is shattered by concept
class C . But for S̄ = {x1, . . . , x2s+1 |xi < xi+1} each concept containing points
x1, x3, . . . , x2s+1 also contains at least one point from x2, x4, . . . , x2s. Clearly such
S̄ is not shattered by the concept class C . It follows VCdim (C) = 2s.

17
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

3. Let X̄ = <n and C are all intervals in the space <n . Obviously an set of 2n points
located in the midle of faces of the unit cube is shattered by the concept class C (we
can move faces slightly in the direction of coordinates axes). But for arbitrary set
Ā of 2n + 1 points, there exists minimal parallelepiped containing whole set Ā .
Straightforwardly there exists an point ~x ∈ Ā which is in the interior of mimimal
parallelepiped, or lies in the some of its face. Obviously the set Ā

.
−{~x} can not be

separate off the set {~x}. Hence VCdim (C) = 2n.

Example 2.1.2 For the completness we show an example of the concept class with infinite
VC-dimension.

1. Put

C
def
=
{
Āα

∣∣∣(∃α ∈ <n)
(
Āα =

{
x ∈ <

∣∣∣s̃in (αx) ≥ 0
})}

.

Then for arbitrary natural l define sequence Z̄l
def
= {zi}l1, zi

def
= 1

10i
. Further for any

subset of the set Q̄ ⊂ Z̄l the sequence δ1, . . . , δl , δi ∈ {0, 1} satisfies δi = 1 ⇔ zi ∈
Q̄. If we define

α
def
= π

(
l∑

i=1

(1− δi) 10i + 1

)
,

then equality

αzj = α
1

10j
= π

(
l∑

i=1

(1− δi) 10i−j +
1

10j

)
.

holds. Hence

αzj = α
1

10j
= π

(
j−1∑

i=1

1− δi
10j−i

+
1

10j
+ (1− δj) +

l∑

i=j+1

(1− δi) 10i−j

)
.

Obviously the expression
∑l

i=j+1 (1− δi) 10i−j is divisible by 2 while the expression∑j−1
i=1

1−δi
10j−i

+ 1
10j

is less than to 1.

It follows that s̃in (αzj) < 0 for δj = 0 and s̃in (αzj) > 0 for δj = 1. Thus the set
Āα separate each subset Z̄l defined via sequence δ1, . . . , δl . Therefore for arbitrary
l there exists the set of the size l which is shattered by the concept class C , So
VCdim (C) = +∞.

2. Put

C
def
= {[~x1, . . . , ~xm]κ |m ∈ N and (∀i∈{1, . . . ,m}) (~x ∈ <n)} ,

e.g. C is the set of all convex hulls of all finite subsets of <n . It is clear, that
vertices of a given convex hull over m points can be shattered by C , so VCdim (C) =
+∞.

18 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 2.1. VC-DIMENSION OF CONCEPT CLASS

2.1.1 General properties of VC-dimension

In the next text we analyze concept classes defined over an finite set X̄ . We start
with the Sauer’s lemma ([Sau72]) which provide us upper bound on number of concepts
in a concept class with predefined VC-dimension. We feel necessary to point out here
that this upper boudnd is genuine combinatorial property of finite sets.

Lemma 2.1.1 (Sauer) Let X̄ be a finite set and C ⊂ 2X̄ . Then

|C| ≤
VCdim(C)∑

i=0

(∣∣X̄
∣∣
i

)
.

Further, there exists C ⊂ 2X̄ such that equality holds.

Proof:
Let us define for arbitrary but fixed y ∈ X̄ the following sets

C(y)
def
=

{
Ā

.
−{y}

∣∣Ā ∈ C
}

Cy
def
=

{
Ā ∈ C

∣∣(∃B̄ ∈ C)(Ā 6= B̄ and B̄ = Ā ∪ {y})
}

Cy
def
=

{
Ā ∈ C

∣∣(∃B̄ ∈ Cy)(Ā = B̄ ∪ {y})
}
.

We prove the claim of lemma it tree steps.
add 1)

Firstly, we show that for arbitrary y ∈ X̄ is

|C| − |C(y)| = |Cy|.

Obviously

C(y) =
{
Ā
∣∣Ā ∈ C, y 6∈ Ā

}
∪
{
Ā

.
−{y}

∣∣Ā ∈ C, y ∈ Ā
}
.

Hence

|C(y)| =
∣∣{Ā

∣∣Ā ∈ C, y 6∈ Ā
}∣∣+

∣∣∣
{
Ā

.
−{y}

∣∣Ā ∈ C, y ∈ Ā
}∣∣∣−

∣∣∣
{
Ā
∣∣Ā ∈ C, y 6∈ Ā

}
∩
{
Ā

.
−{y}

∣∣Ā ∈ C, y ∈ Ā
}∣∣∣ = |C| − |Cy|.

add 2)
Secondly, we prove

VCdim (Cy) = n− 1⇒ VCdim (C) ≥ n. (2.1)

It follows from the assumption VCdim (Cy) = n − 1 that there exists an set Ā ⊂ X̄
.
−{y},∣∣Ā

∣∣ = n− 1 which satisfy

{
B̄
∣∣(∃Z̄ ∈ Cy)(B̄ = Ā ∩ Z̄)

}
= 2Ā. (2.2)

To verify it we prove the equality

{
B̄
∣∣(∃Z̄ ∈ (Cy ∪ Cy))(B̄ = (Ā ∪ {y}) ∩ Z̄)

}
= 2Ā∪{y}.

Dec 2015 F. Hakl 19
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Inclusion ⊂ is obvious, so let us pay our atention to opposite inclusion ⊃. Let H̄ ∈ 2Ā∪{y}.
If y 6∈ H̄ then by 2.2 ∃Z̄ ∈ Cy such that H̄ = Ā ∩ Z̄ = (Ā ∪ {y}) ∩ Z̄). On the contrary,

let y ∈ H̄. If we recall 2.2 then for the set H̄
.
−{y} there exists M̄ ∈ Cy such that

H̄
.
−{y} = Ā ∩ M̄ . On account of M̄ ∈ Cy it must be M̄ ∪ {y} ∈ Cy and therefore the

set equality H̄ = (Ā ∪ {y}) ∩ (M̄ ∪ {y}) holds. So we get that VCdim (Cy ∪ Cy) ≥ n and
because (Cy ∪ Cy) ⊂ C, the equality VCdim (C) ≥ n must be fulfilled.

add 3)
Now we are ready to conclude the proof of the lemma by induction on the set size

∣∣X̄
∣∣.∣∣X̄

∣∣ = 1, 2 :
The claim ot the lemma is straightforward.∣∣X̄
∣∣ = k 7→

∣∣X̄
∣∣ = k + 1 :

Let us assume that induction assumption is valid fot the case when if
∣∣X̄
∣∣ = k. The

definition of the set system Cy follows that the set cintained in it does not contain y, so

the whole set system Cy is build over the set X̄
.
−{y}. If we apply induction assumption

we obtain

|Cy| ≤
VCdim(Cy)∑

i=0

(∣∣X̄
∣∣− 1

i

)
≤

VCdim(C)−1∑

i=0

(∣∣X̄
∣∣− 1

i

)

(the second inequality holds owning to the fact VCdim (C) − 1 ≥ VCdim (Cy) which comes
true due to 2.1).

At the same time, in view of induction assumption (C(y) is defined over the set
X̄

.
−{y}), the estimation

|C(y)| ≤
VCdim(C(y))∑

i=0

(∣∣X̄
∣∣− 1

i

)
≤

VCdim(C)∑

i=0

(∣∣X̄
∣∣− 1

i

)
,

holds, whereas the second inequality immediatelly follows from the definition of the VC-
dimension. So we can write (remind

(
j
i

)
=
(
j−1
i

)
+
(
j−1
i−1

)
and

(
j
0

) def
= 1,

(
j
−1

) def
= 0)

|C| = |C(y)|+ |Cy| ≤
VCdim(C)∑

i=0

(∣∣X̄
∣∣− 1

i

)
+

VCdim(C)∑

i=0

(∣∣X̄
∣∣− 1

i− 1

)
=

VCdim(C)∑

i=0

(∣∣X̄
∣∣
i

)
.

So we proved the desired inequality. Finally, we have to show that there exists a
concept class for which the equality is true. Let us define a concept class

C
def
=
{
ā ⊂ X̄ ||ā| ≤ k

}
.

It is easy to verify that |C| =
∑k

i=0

(|X̄|
i

)
and that VCdim (C) = k, which conclude the

proof.
q. e. d.

The following simple lemma highlights usefulness of the Sauer’s lemma.

Lemma 2.1.2 Let C be a finite concept class. Then VCdim (C) ≤ log2 (|C|).

20 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 2.1. VC-DIMENSION OF CONCEPT CLASS

Proof:
To shatter any set of the size d we need at least 2d different concepts, hence the set
of the size greater than log2 (|C|) can not be shattered by the set C . Therefore
VCdim (C) ≤ log2 (|C|).

q. e. d.

The notion introduces in the next definition has very narow relationship to VC-dimension
and also to Sauer’s lemma.

Definition 2.1.2 Let C be a nonepty concept class ovet the set X̄ and S̄ ⊂ X̄. Then
we define

ΠC

(
S̄
) def

=
{
S̄ ∩ c̄ |c̄ ∈ C

}
.

Further for a fixed m ≥ 0 let us define

ΠC (m)
def
= max

{∣∣ΠC

(
S̄
)∣∣ ∣∣S̄ ⊂ X̄ ,

∣∣S̄
∣∣ = m

}
,

(maximum is over all sets S̄ ⊂ X̄ of the size m).

Apparently ΠC

(
S̄
)

is the system of all subset of the set S̄ whose are possible to
separate from their complement in S̄ using concept from concept class C . The number
ΠC (m) expresses the cardinality of maximal such system ΠC

(
S̄
)

under condition that
the set S̄ ⊂ X̄ is finite set of the size m. There exists evident realationship between the
number discussed above and the VC-dimension

VCdim (C) = sup {m |ΠC (m) = 2m}.

Definition 2.1.3 For all d ≥ 0 a m ≥ 0 put Φd,m
def
=
∑d

i=0

(
m
i

)
, if m ≥ d and Φd,m

def
= 2m

if m < d.

Estimations contained in the successive lemma are usefful in deriving upper bounds on
necessary sample size which quarrants that learning algorithm produce an hypothesis with
acceptable small error (in the sense of probablity of the symmetric difference between the
original concept c̄ and produced hypothesis h̄ ).

Lemma 2.1.3 If C is an arbitrary concept class over X̄ and VCdim (C) = d < +∞,
then

1. ΠC (m) ≤ Φd,m for all d,m ≥ 0.

2. Φd,m ≤ md + 1 for d,m ≥ 0 and Φd,m ≤ md for d ≥ 0 and m ≥ 2.

3. Φd,m ≤ 2m
d

d!
≤
(
em
d

)d
for m ≥ d ≥ 1.

Proof:
add 1)

Let m be arbitrary and let S̄ ⊂ X̄ be arbitrary subset such that
∣∣S̄
∣∣ = m and

∣∣ΠC

(
S̄
)∣∣ =

ΠC (m). Put X̄∗
def
= S̄ and C∗

def
=
{
c̄ ∩ S̄ |c̄ ∈ C

}
. As ΠC∗

(
S̄
)

=
{
S̄ ∩ c̄ |c̄ ∈ C∗

}
, we

have
∣∣ΠC∗

(
S̄
)∣∣ ≤ |C∗|. It implies that ΠC∗ (m) ≤ |C∗|. At the same time ΠC∗

(
S̄
)

=

Dec 2015 F. Hakl 21
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

{
S̄ ∩ c̄ |c̄ ∈ C∗

}
=
{
S̄ ∩ c̄ |c̄ ∈ C

}
= ΠC

(
S̄
)

which follows ΠC∗ (m) = ΠC (m) (note that
we assume

∣∣ΠC

(
S̄
)∣∣ = ΠC (m) and obviously ΠC∗ (m) ≤ ΠC (m)). In addition VCdim (C∗) ≤

VCdim (C). So owning to Sauer’s lemma we get the estimation

ΠC (m) = ΠC∗ (m) ≤ |C∗| ≤
VCdim(C∗)∑

i=0

(∣∣X̄∗
∣∣

i

)
≤

VCdim(C)∑

i=0

(∣∣X̄∗
∣∣

i

)
= ΦVCdim(C),m .

Hence the first inequality in the lemma is clearly fulfilled for any m.
add 2)

This part will be proved by induction on m and d using the relationship
(
m
i

)
=
(
m−1
i

)
+(

m−1
i−1

)
(recall that

(
j
0

) def
= 1,

(
j
−1

) def
= 0). So we can write

d∑

i=0

(
m

i

)
=

d∑

i=0

(
m− 1

i

)
+

d∑

i=0

(
m− 1

i− 1

)
=

d∑

i=0

(
m− 1

i

)
+

d−1∑

i=1

(
m− 1

i

)
ind.

≤

ind.

≤ (m− 1)d + (m− 1)(d−1) = md

(
(m− 1)d

md
+

(m− 1)(d−1)

md

)
=

= md

[(
1− 1

m

)d
+

1

m

(
1− 1

m

)(d−1)
]

= md

(
1− 1

m

)d−1

≤ md.

add 3)

First, we prove the inequality Φd,m ≤ 2m
d

d!
. To do it we aplly induction on m and d.

If d = 1 then Φd,m = m+ 1 ≤ 2m and inequality holds.
Further, for m = d > 1 is Φd,m = 2d. If we recall binomical formulae we can observe

that for d > 1 the expression 2 ≤
(
1 + 1

d−1

)d−1
is true. If we apply induction on d we

derive

2d ≤
(

d

d− 1

)d−1

2d−1 ≤ induction

assumption
≤ 2

(
d

d− 1

)d−1
(d− 1)d−1

(d− 1)!
= 2

dd

d!
,

which concludes the claim for the case m = d > 1.
Now let us assume that m > d > 1. Because of Φd,m = Φd−1,m−1+Φd,m−1 it is sufficient

to verify that

2
(m− 1)d−1

(d− 1)!
+ 2

(m− 1)d

d!
≤ 2

md

d!
.

After multiplying by the number d!, the previous expression is equivalent to the expres-
sions bellow:

d(m− 1)d−1 + (m− 1)d ≤ md ⇔
(d+m− 1)(m− 1)d−1 ≤ md ⇔

d+m−1
m−1

≤ md

(m−1)d
⇔

1 + d
m−1
≤
(
1 + 1

m−1

)d
,

where the last estimation is based on binomical formula again.

The second estimation 2m
d

d!
≤
(
em
d

)d
is evident for d = 1. For d ≥ 2 we use Stirling’s

formulae

n! = nn
√

2πn · e−n+ δ̃(n)
4 , 0 < δ̃ (n) < 1 .
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Lecture Notes 2.1. VC-DIMENSION OF CONCEPT CLASS

whose applying yields

2
md

d!
<

2md

dde−d
√

2πd
=

√
2

πd

(em
d

)d
<
(em
d

)d
.

q. e. d.

Corollary 2.1.4 Let X̄ be a finite set, C ⊂ 2X̄ and VCdim (C) > 0. Then

VCdim (C) >
ln
(∣∣C̄
∣∣)

1 + ln
(∣∣X̄

∣∣) .

Proof:

Sauer lemma asserts that |C| ≤
∑VCdim(C)

i=0

(|X̄|
i

)
. Applying last part of 2.1.3, we conclude

|C| ≤

(
e
∣∣X̄
∣∣

VCdim (C)

)VCdim(C)

.

In other words,

ln (|C|) ≤ VCdim (C)
(
1 + ln

(∣∣X̄
∣∣)− ln (VCdim (C))

)
< VCdim (C)

(
1 + ln

(∣∣X̄
∣∣)) .

q. e. d.

2.1.2 VC-dimension of union and intersection

Lemma 2.1.5 Let Q concept class over X̄ and P is defined as

P
def
=
{
ā ⊂ X̄

∣∣∣
(
∃b̄ ∈ Q

) (
ā = X̄

.
−b̄
)}

.

Then VCdim (Q) = VCdim (P).

Proof:
Let z̄ ⊂ X̄ be an arbitrary set shattered by concept class Q , an z̄1, z̄2 be arbitrary di-
chotomy of z̄ . Hence, there exists sets ā ∈ Q and b̄ ∈ Q such that z̄1 ⊂ ā, z̄1 ∩ b̄ = ∅ and

z̄2 ⊂ b̄, z̄2 ∩ ā = ∅. In other words z̄1 ∩
(
X̄

.
−ā
)

= ∅, z̄1 ⊂
(
X̄

.
−b̄
)

and z̄2 ∩
(
X̄

.
−b̄
)

= ∅,

z̄2 ⊂
(
X̄

.
−ā
)

. It follows that each subset z̄ ⊂ X̄ shattered by concept class Q is also

shattered by concept class P and vice versa. Therefore VCdim (Q) = VCdim (P).
q. e. d.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Definition 2.1.4 Let Ci ⊂ 2X̄ , i ∈ {1, . . . , k} are concept classes. Then define the
following sets

UC1,...,Ck
def
=

{
k⋃

i=1

c̄i |(∀i∈{1, . . . , k}) (c̄i ∈ Ci)

}

and

IC1,...,Ck
def
=

{
k⋂

i=1

c̄i |(∀i∈{1, . . . , k}) (c̄i ∈ Ci)

}
.

Finally denote UC as the set of all finite unions of subsets C and IC as the set of all
finite intersections of subsets C . Further, for each natural number k define the sets

Uk,C
def
=

{
k⋃

i=1

c̄i |(∀i∈{1, . . . , k}) (c̄i ∈ C)

}

and

Ik,C
def
=

{
k⋂

i=1

c̄i |(∀i∈{1, . . . , k}) (c̄i ∈ C)

}
.

Lemma 2.1.6 Let C be a concept class over X̄ and (∀ā ∈ C)
(
X̄

.
−ā ∈ C

)
. Then

the equality rovnost
VCdim (Uk,C) = VCdim (Ik,C)

holds.

Proof:
Remember that for all sets the following de Morgan’s formulas holds

X̄
.
−

k⋃

i=1

āi =
k⋂

i=1

(
X̄

.
−āi
)

and X̄
.
−

k⋂

i=1

āi =
k⋃

i=1

(
X̄

.
−āi
)
.

Using these formulas it is easy to prove that (∀ā ∈ Uk,C)
(
∃b̄ ∈ Ik,C

) (
ā = X̄

.
−b̄
)

.

Obviously the claim of lemma follows from lemma 2.1.5.
q. e. d.

Main properties of VC-dimension of concept classes union provides next theorems.

Theorem 2.1.7 Let X̄ be arbitrary set and P , Q are concept classes over X̄ . Then

VCdim (UP,Q) ≤ VCdim (P) + VCdim (Q) + 1.

Proof:
We show this theorem by contradiction. Let VCdim (P) = m, VCdim (Q) = n, and VCdim (UP,Q) =
n+m+2. It follows that there exists a points set {x1, . . . , xm+n+2} ⊂ X̄ which is shattered
by concept class UP,Q, where xi 6= xj, i, j∈{1, . . . ,m+n+ 2} . Because of VCdim (P) = m

24 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 2.1. VC-DIMENSION OF CONCEPT CLASS

a VCdim (Q) = n, there exist sets ā ⊂ {x1, . . . , xm+1} and b̄ ⊂ {xm+2, . . . , xm+n+2} such
that

(∀p̄ ∈ P) (ā 6= {x1, . . . , xm+1} ∩ p̄) and (∀q̄ ∈ Q)
(
b̄ 6= {xm+2, . . . , xm+n+2} ∩ q̄

)
.

Because the set {x1, . . . , xm+n+2} is shattered by UP,Q there exist sets z̄ ∈ UP,Q, z̄P ∈ P,
z̄Q ∈ Q, such that

z̄ = z̄P ∪ z̄Q and (z̄P ∪ z̄Q) ∩ {x1, . . . , xm+n+2} = ā ∪ b̄ .

For the sake of clarity, let us define sets Ā
def
= {x1, . . . , xm+1} and B̄

def
= {xm+2, . . . , xm+n+2}.

As were mentioned before we can write Ā ∩ B̄ = ∅, ā ⊂ Ā, and b̄ ⊂ B̄. So

(z̄P ∪ z̄Q) ∩ {x1, . . . , xm+n+2} = (z̄P ∪ z̄Q) ∩
(
Ā ∪ B̄

)
=

=
(
(z̄P ∪ z̄Q) ∩ Ā

)
∪
(
(z̄P ∪ z̄Q) ∩ B̄

)
= ā ∪ b̄ .

Owning to that
(
(z̄P ∪ z̄Q) ∩ B̄

) .
−B̄ = ∅ and

(
ā ∪ b̄

) .
−B̄ = ā we get

(
(z̄P ∪ z̄Q) ∩ Ā

)
= ā and using the same argumentation,

(
(z̄P ∪ z̄Q) ∩ B̄

)
= b̄ ,

or equivalently

(
z̄P ∩ Ā

)
∪
(
z̄Q ∩ Ā

)
= ā and

(
z̄P ∩ B̄

)
∪
(
z̄Q ∩ B̄

)
= b̄ .

q. e. d.

Theorem 2.1.8 Let P , Q be concept classes over an set X̄ and let (∀ā ∈ P)
(
X̄

.
−ā ∈ P

)
.

Then
VCdim (UP,Q) ≤ VCdim (P) + VCdim (Q) .

Proof:
Assume that P fulfills assumptions of the theorem, e.g. p̄ ∈ P⇔ X̄

.
−p̄ ∈ P. Further let

VCdim (P) = n and VCdim (Q) = m.
To prove the theorem by contradiction let us assume that there exist mutually dif-

ferent points {x1, . . . , xm+n+1} that are shattered by concept class UP,Q. The fact that
VCdim (Q) = m implies that there exists an set ā ⊂ {x1, . . . , xm+1} which can not be
separated from ({x1, . . . , xm+1}

.
−ā by any concept in Q . Consequently for any set

Ȳ ⊂ {xm+2, . . . , xm+n+1} there exists an concept p̄ ∈ P, which separates the set ā ∪ Ȳ
from the set {x1, . . . , xm+n+1}

.
−
(
a ∪ Ȳ

)
. Now let us take into mind two different cases:

add a)
Let ā 6= ∅. Jelikož výše uvedená množina je neprázdná, můžeme z ńı vybrat libovolný
bod x0. Potom ovšem pro libovolnou množinu Ȳ ⊂ {xm+1, . . . , xm+n+1} existuje koncept
p̄ ∈ P odděluj́ıćı x0 ∪ Ȳ od {x1, . . . , xm+n+1}

.
−
(
x0 ∪ Ȳ

)
. Jelikož P obsahuje s každým

svým konceptem i jeho doplněk, zajist́ıme t́ımto konceptem i opačné odděleńı. Jelikož toto
plat́ı pro libovolnou množinu Ȳ ⊂ {xm+2, . . . , xm+n+1}, je množina {x0, xm+1, . . . , xm+n+1}
(jej́ıž mohutnost je n + 1) tř́ıdou koncept̊u P rozdělena, což je v rozporu s t́ım, že
VCdim (P) = n
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

add b)
Let ā = ∅. Každá množina Ȳ ⊂ {xm+2, . . . , xm+n+1} je odseparovatelná od množiny
{x1, . . . , xm+n+1}

.
−Ȳ nějakým konceptem z P . Vezmeme libovolný bod x0 ∈ {x1, . . . , xm+1}.

Potom pro libovolnou množinu Ȳ ⊂ {xm+2, . . . , xm+n+1} existuje koncept p̄ ∈ P, který
tuto množinu odseparuje od množiny x0 ∪ {xm+1, . . . , xm+n+1}

.
−Ȳ . Dále koncept X̄

.
−p̄

zajist́ı opačnou separaci. So the set {x0, xm+2, . . . , xm+n+1} is shattered by concept class
P , which leads to contradiction.

q. e. d.

Classes of VC-dimension one

We turn now attention to most simpliest, but still applicable, concept classes of the
VCdim (C) = 1. To sake of completness let us characterize concept classes with VCdim (C) ≤
1.

Theorem 2.1.9 Let C be nonempty concept class over X̄ . Then

1. VCdim (C) = 0 if and only if C contains exactly one set.

2. Let one of the following conditions is true:

(a) C is linearly ordered by inclusion, or

(b) any two sets in C are disjoint.

Then VCdim (C) = 1

Proof:
add 1: ⇒)

Let C contains a least two different sets ā , b̄ . Without loss of generality we can assume
that there exists an point z ∈ ā such that z 6∈ b̄. In this case ā∩{z} = z and b̄∩{z} = ∅.
So we have VCdim (C) = 1 which is contradiction.

add 1: ⇐)

In opposite, let be C
def
= {{ā}}. Let there exists y ∈ X̄ which is shattered by C . If y ∈ ā,

then y ∩ ā 6= ∅, and {y} is not shattered by C . If y 6∈ ā, then y ∩ ā 6= {y}, and resembly
{y} is not shattered by C . Hence no one-point subset of X̄ can be shattered by C .

add 2: a)
Let {a, b} ⊂ X̄, a 6= b, be shattered by C . So there exist sets c̄1, c̄2 ∈ C such that c̄1 ∩
{a, b} = {b} and c̄2∩{a, b} = {a}. But C is linearly ordered by inclusion, hence without
loss of generality, c̄1 ⊂ c̄2. It follows c̄2 ∩ {a, b} = {a, b} and we have a contradiction.

add 2: b)
Let {a, b} ⊂ X̄, a 6= b, be shattered by C . So there exist sets c̄1, c̄2 ∈ C such that
c̄1∩{a, b} = {b} and c̄2∩{a, b} = {a, b}. Hence c̄1∩c̄2 = {b} which contradicts assumptions
b) of the second part of the theorem.

q. e. d.
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Lecture Notes 2.1. VC-DIMENSION OF CONCEPT CLASS

Theorem 2.1.10 Let X̄ be an arbitrary set, C ⊂ 2X , and VCdim (C) = 1. Then
VCdim (Un,C) ≤ n.

Proof:
Let VCdim (Un,C) = n+1. Hence there exists an set Ā ⊂ X̄,

∣∣Ā
∣∣ = n+1, which is shaterred

by the concept class Un,C. So there exists an c̄ ∈ Un,C in such a way that c̄ ∩ Ā = Ā.
Because of the set c̄ is union of n sets, c̄ = c̄1 ∪ · · · ∪ c̄n, and the size of the set Ā is
n + 1, there exists an index j, such that

∣∣c̄j ∩ Ā
∣∣ ≥ 2. Therefore there exists a, b ∈ c̄j

such that a 6= b, a, b ∈ Ā. In accordance with the fact that Ā is shattered by Un,C, the
set {a, b} is shattered by concept class Un,C too. Because of VCdim (C) = 1 the set {a, b}
is not shattered by concept class C , so

(
∃ḡ ∈ 2{a,b}

)
(∀c̄ ∈ C) (c̄ ∩ {a, b} 6= ḡ) . (2.3)

In addition ḡ 6= {a, b} due to a, b ∈ c̄j. Hence ḡ ∈ {∅, {a} , {b}}. Let c̄1 ∪ · · · ∪ c̄n ∈ Un,C

be arbitrary. So we have (accordingly to 2.3)

(c̄1 ∪ · · · ∪ c̄n) ∩ {a, b} = (c̄1 ∩ {a, b}) ∪ · · · ∪ (c̄n ∩ {a, b}) 6= ḡ

because ḡ is empty set or one-point set. This contradicts that {a, b} is shattered by Un,C.

q. e. d.

Theorem 2.1.11 Let X̄ be an arbitrary set, Ci ⊂ 2X , i∈{1, . . . , n} , and set systems
Ci are linearly ordered by inclusion. Then VCdim (IC1,...,Cn) ≤ n.

Proof:
Let VCdim (IC1,...,Cn) = n + 1. Hence there exists an set Ā ⊂ X̄,

∣∣Ā
∣∣ = n + 1, which is

shaterred by the concept class IC1,...,Cn . Further, let us define the following sets:

H =
{
h̄
∣∣∣
(
∃a ∈ Ā

) (
h̄ = Ā

.
−{a}

)}
, Gi

def
=
{
Ā ∩ c̄j |c̄j ∈ Ci, j ≥ 1

}
,

B
def
=
{
b̄
∣∣(∃c̄ ∈ IC1,...,Cn)

(
b̄ = Ā ∩ c̄ and

∣∣b̄
∣∣ = n

)}
.

Straightforwardly, we have

1. The set H contains all subsets h̄ of the set Ā with
∣∣h̄
∣∣ = n and |H| = n+ 1.

2. Each Gi, i∈{1, . . . , n} , is a finite set system linearly ordered by inclusion.

3. For any i, j∈{1, . . . , n} there exist only one set ē ∈ Gi such that |e| = j.

4. Because Ā is shattered by IC1,...,Cn the equality of collection sets H = B must be
true. Hence |B| = n+ 1.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Now let b̄ ∈ B be arbitrary. It follows, that b̄ = Ā ∩ c̄1 ∩ · · · ∩ c̄n, where c̄i ∈ Ci,
i ∈ {1, . . . , n} . Obviously (∀i∈{1, . . . , n})

(
b̄ ⊂ c̄i

)
. Let us assume, for a while, that

(∀i∈{1, . . . , n})
(
Ā

.
−b̄ ∈ c̄i

)
(note, that Ā

.
−b̄ is one point set). But this imply that

Ā = Ā ∩ c̄1 ∩ · · · ∩ c̄n = b̄, where c̄i ∈ Ci, which is contradiction (b̄ 6= Ā). So there
must exists j ∈ {1, . . . , n} such that Ā ∩ c̄j = b̄, where c̄j ∈ Cj, e.g. b̄ ∈ Gj. As we
mentioned in the item 3) on the property list above, such b̄ with cardinality n is unique
in set system Gj. Because we have only n set systems Gj available, we get that |B| = n,
which contradicts item 4) of list mentioned. Confessedly the set B̄ can not be shattered
by the system IC1,...,Cn and VCdim (IC1,...,Cn) ≤ n.

q. e. d.

Lemma 2.1.12 Let C ⊂ 2X̄ be a concept class, let VCdim (C) = d ≥ 1 be finite, and k ≥ 1.
Then VCdim (Uk,C) ≤ 2dklog2 (3k) and VCdim (Ik,C) ≤ 2dklog2 (3k).

Proof:
We prove the statement of the lemma for union only, the case of intersection is resemble.
The proof for the case k = 1 is trivial so let us assume that k ≥ 2 and let T̄ ⊂ X be a
finite set,

∣∣T̄
∣∣ = m ≥ 1. Accordance with lemma 2.1.3, ΠC

(∣∣T̄
∣∣) ≤ Φd,m. Further, every

set in the system ΠUk,C

(
T̄
)

is of the form
⋃k
i=1 āi, where āi ∈ ΠC

(
T̄
)
, 1 ≤ i ≤ k. It

follows that ∣∣ΠUk,C

(
T̄
)∣∣ ≤

∣∣ΠC

(
T̄
)∣∣k ≤ (Φd,m)k .

If (Φd,m)k < 2m, then T̄ can not be shattered by Uk,C and VCdim (Uk,C) is less than m.

So, using statement of the 2.1.3 it suffices to show that
(
em
d

)dk
< 2m for m = 2dklog2 (3k),

which is equivalent to the expression log2 (3k) < 9k
2e

. This inequality is clearly satisfied
for the value k = 2 and it is obvious that is satisfied for any k greater.

q. e. d.

2.2 VC-dimension of linear concepts

The very useful tool which can be used to construct an upper bound estimation of VC-
dimension of the concept of halfspaces in Euclidean space <n is the Radon’s lemma (see.
[Lej85]) which proof is based on the notion of affine independent 1 vector set.

Lemma 2.2.2 (Radon) Let S̄
def
= {~x1, . . . , ~xk} ⊂ <n, k ≥ n+ 2, ~xi are mutually differ-

ent. Then there exists sets S̄1 and S̄2 such that S̄1 ∪ S̄2 = S̄, S̄1 ∩ S̄2 = ∅ and

[S̄1]κ ∩ [S̄2]κ 6= ∅,
1Let Ȳ be a vector space of the dimension d. Then a linear combination

∑n
i=1 αi~xi of arbitrary finite

number of vectors ~x1, . . . , ~xn ∈ Ȳ is called affine iff
∑n
i=1 αi = 1. The set Ā of all affine combinations

of the vectors ~x1, . . . , ~xn forms affine hull of vectors ~x1, . . . , ~xn . Affinne hull is in fact affine subspace

of Ȳ . Let ~v ∈ Ā. Then the set P̄
def
=
{
~x ∈ Ȳ

∣∣(∃~a ∈ Ā
)

(~x = ~a− ~v)
}

is a linear subspace of the space
Ȳ . The dimension of this subspace is called affine rank of the system ~x1, . . . , ~xn . Obviously, the affine
rank of any vector set in d-dimensional vector space can be at most d. The system ~x1, . . . , ~xn is called
affine independent iff its affine rank is equal to the number n − 1. So, any (d + 2)-tuple of vectors in d
dimensional space is affine dependent. The following theorem holds:

28 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 2.2. VC-DIMENSION OF LINEAR CONCEPTS

(the symbol [S̄]κ denotes a convex hull of the set S̄ ).

Proof:
The maximal number of afine independent vectors in linear space of dimension n is equal
to n+1. Hence, any set of n+2 vectors is afine dependent. Therefore there exist numbers
α1, . . . , αn+2 such that

n+2∑

i=1

αi · ~xi = ~0, and
n+2∑

i=1

αi = 0.

In addition, there exists j∈{1, . . . , n+ 2} satisfying αj 6= 0. Without loos of generality
we can assume that αj > 0. Further let us define a dichotomy of the set S̄ as

S̄1
def
=
{
~xi ∈ S̄ |αi > 0

}
and S̄2

def
=
{
~xi ∈ S̄ |αi ≤ 0

}
,

(
∑n+2

i=1 αi = 0 and αj > 0 implies that both of the sets S̄1, S̄2 are nonempty). Now we
define

ω
def
=

∑

{i|~xi∈S̄1}
αi , ~z1

def
=

∑

{i|~xi∈S̄1}

αi
ω
· ~xi , ~z2

def
=

∑

{i|~xi∈S̄2}

−αi
ω
· ~xi .

The fact that

0 =
n+2∑

i=1

αi =
∑

{i|~xi∈S̄1}
αi +

∑

{i|~xi∈S̄2}
αi = ω +

∑

{i|~xi∈S̄2}
αi

follows ω = −
∑
{i|~xi∈S̄2} αi. Hence

1 =
∑

{i|~xi∈S̄1}

αi
ω

=
∑

{i|~xi∈S̄2}

−αi
ω
.

So, it imply that ~z1 ∈ [S̄1]κ and ~z2 ∈ [S̄2]κ. Further

n+2∑

i=1

αi·~xi = ~0 ⇒
∑

{i|~xi∈S̄1}
αi·~xi =

∑

{i|~xi∈S̄2}
−αi·~xi ⇒

∑

{i|~xi∈S̄1}

αi
ω
·~xi =

∑

{i|~xi∈S̄2}

−αi
ω
·~xi .

So finally ~z1 = ~z2 and [S̄1]κ ∩ [S̄2]κ 6= ∅.
q. e. d.

We are going to use Radon lemma to prove the following important fact.

Theorem 2.2.3 VCdim (HALFSPACEn) = VCdim (BALLn) = n+ 1.

Theorem 2.2.1 Vectors ~x1, . . . , ~xn are affine independent iff

(∀α1, . . . , αn)

[(
n∑

i=1

αi~xi = ~0 a

n∑

i=1

αi = 0

)
if and only if α1 = α2 = . . . = αn = 0

]
.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Proof:
add HALFSPACE)

First of all let {~x1, . . . , ~xk} ⊂ <n, ~a ∈ <n, t ∈ <. Let a vector ~y is defined as ~y
def
=∑k

i=1 αi~xi, where
∑k

i=1 αi = 1 and (∀i∈{1, . . . , k}) (αi ≥ 1). Let in addition 〈~xi |~a〉 < t,
i∈{1, . . . , k} . Then

〈~y |~a〉 =
k∑

i=1

αi〈~xi |~a〉 <
k∑

i=1

αi · t = t . (2.4)

Now we show that VCdim (HALFSPACEn) ≤ n + 1. Assume contradiction, so put
VCdim (HALFSPACEn) > n + 1. In other words, HALFSPACEn shatters an set S̄
containing at least n + 2 points. Claim of Radon lemma implies that there exists two
disjoint sets S̄1 a S̄2 such that S̄1 ∪ S̄2 = S̄, a [S̄1]κ ∩ [S̄2]κ 6= ∅. At the same time, S̄ is
shattered by HALFSPACEn , hence there exists a hyperplane separating sets S̄1 and
S̄2. But such hyperplane must separate whole convex hulls of S̄1 and S̄2 (see 2.4) which
contradicts Radons lemma.

We finish the proof by construction of a set of n + 1 points, which is shattered by

HALFSPACEn . Let S̄
def
=
{
~0, ~ei, . . . , ~en

}
, where ~0 is zero vector and ~ei je i-th vector

of standard basis. Let S̄1 denote arbitrary subset of the set S̄ . Now we can define vector
~α ∈ <n and number t as:

~αi
def
=

{
1 if ~xi ∈ S̄1

−1 if ~xi 6∈ S̄1
a t

def
=

{
1
2

if ~0 ∈ S̄1

−1
2

if ~0 6∈ S̄1.

Apparently a hyperplane {~x |〈~x |~α〉 − t = 0} in the space <n separate sets S̄
.
−S̄1 and

S̄1. Since the set S̄1 was chosen arbitrarily, we get

VCdim (HALFSPACEn) = n+ 1.

add BALL)
Let us assume a contradiction, so put VCdim (BALLn) > n + 1. In this case there exists
S̄ = {~x1, . . . , ~xn+2} ⊂ <n which is shattered by the concept class BALLn . As in
the previous case, the Radon lemma implies that there exists two disjoint sets S̄1 a S̄2

such that S̄1 ∪ S̄2 = S̄, a [S̄1]κ ∩ [S̄2]κ 6= ∅. Because S̄ is shattered by BALLn

,
(
∃B̄1, B̄2 ∈ BALLn

) (
S̄1 = B̄1 ∩ S̄ and S̄2 = B̄2 ∩ S̄

)
. Let us assume that there exists

j∈{1, . . . , n+ 2} such that ~xj ∈ B̄1 ∩ B̄2. Than ~xj ∈ S̄1 and at the same time ~xj ∈ S̄2,
which contradicts the fact that S̄1 ∩ S̄2 = ∅. So S̄ ∩

(
B̄1 ∩ B̄2

)
= ∅. Let

B̄1 = {~x ∈ <n |‖~x− ~c1‖E ≤ r1} and B̄2 = {~x ∈ <n |‖~x− ~c2‖E ≤ r2} ,

where ~c1,~c2 ∈ <n and r1, r2 ∈ <+ are fixed. Further let us express the intersection Ī of
surfaces of the sets B̄1, B̄2 as

Ī
def
=

{
~y ∈ <n

∣∣∣∣∣
n∑

i=1

~y2
i − 2~yi (~c1)i + (~c1)2

i = r1 and
n∑

i=1

~y2
i − 2~yi (~c2)i + (~c2)2

i = r2

}
.

Now let us take into mind two possible situations,

30 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 2.2. VC-DIMENSION OF LINEAR CONCEPTS

1. Ī 6= ∅:
In this case each vektor ~y ∈ Ī satisfy

n∑

i=1

2~yi ((~c2)i − (~c1)i) = r1 − r2 −
n∑

i=1

(
(~c1)2

i − (~c2)2
i

)
.

Obviously it imply that

Ī ⊂

{
~x ∈ <n

∣∣∣∣∣〈~x |~c2 − ~c1 〉 =
r1 − r2 −

∑n
i=1

(
(~c1)2

i − (~c2)2
i

)

2

}
def
= H̄ .

The set H̄ is a hyperplane in the space <n and this hyperplane separate sets
B̄1

.
−B̄2 and B̄2

.
−B̄1, therefore it separates also the sets S̄1 and S̄2 which contradicts

Radon’s lemma. So we have proved that VCdim (BALLn) ≤ n+ 1.

2. Ī = ∅:
Obviously any hyperplane separate the sets B̄1, B̄2 and therefore especially the sets
S̄1, S̄2 which contradicts Radon’s lemma as in previous case.

Now let the set S̄ = {~x1, . . . , ~xn+1} ⊂ <n be any set shattered by concept class
HALFSPACEn . Let S̄1, S̄2 be any dichotomy of the set S̄ and let the hyperplane

{~x ∈ <n |〈~x |~w 〉 = t} separates the sets S̄1, S̄2. Put ~z
def
= t · ~w

‖ ~w‖
E

2 . Clearly ~z lies on

hyperplane and the sets B̄1, B̄2 ∈ BALLn defined as

B̄1 =

{
~x ∈ <n

∣∣∣∣
∥∥∥∥~x−

(
~z − r

~w

‖~w‖E

)∥∥∥∥
E

≤ r

}

and

B̄2 =

{
~x ∈ <n

∣∣∣∣
∥∥∥∥~x−

(
~z + r

~w

‖~w‖E

)∥∥∥∥
E

≤ r

}

separates the sets S̄1, S̄2 too for sufficiently large value of radius r > 0 because the set S̄
is finite and therefore bounded.

q. e. d.

2.2.1 Application of Cover’s lemma

Now we turn our attention to Cover’s lemma. This lemma enumerate the number of
dichotomies whose can be obtained by intersection of homogeneous halfspaces with a
finite sets of points. To point out the main idea of its proof we start with the following
two lemmas.

Definition 2.2.1 Let Ā, B̄ ⊂ <N be given. Then a vector ~w ∈ <N is homogenous
linear separator of sets Ā and B̄ iff

(
∀~a ∈ Ā

)
(〈~w |~a〉 > 0) and at the same time(

∀~b ∈ B̄
)(〈

~w
∣∣∣~b
〉
< 0
)

. In this case, the sets Ā and B̄ are called homogenous

linearly separable sets . The set of all homogenously linearly separable tuples of sets(
Ā, B̄

)
will be denoted by the symbol HLSsets .
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Lemma 2.2.4 ([Cov]) Let Ā, B̄ ⊂ <N be finite sets, ~y ∈ <N , ~y 6= ~0. Than pair of sets{
Ā, B̄ ∪ {~y}

}
and

{
Ā ∪ {~y} , B̄

}
are simultaneously homogeneously linearly separable iff

there exists hyperplane, containing zero vector and vector ~y , which separate sets Ā and
B̄ .

Proof:

Let us denote W̄
def
=
{
~w ∈ <n

∣∣∣
(
∀~a ∈ Ā

)
(〈~w |~a〉 < 0) and

(
∀~b ∈ B̄

)(〈
~w
∣∣∣~b
〉
> 0
)}

.

Then the sets Ā a {~y} ∪ B̄ are homogenously linearly separable if and only if there
exists a vector ~wa ∈ W̄ such that 〈~wa |~y 〉 < 0 and the sets {~y} ∪ Ā and B̄ are homoge-
nously linearly separable if and only iff there exists ~wb ∈ W̄ such that 〈~wb |~y 〉 > 0. Hence

if we define a vector ~wab
def
= 〈~wa |~y 〉~wb−〈~wb |~y 〉~wa than it is straightforward that the sets

Ā and B̄ are homogenously linearly separable by hyperplane {~x ∈ <n |〈~x |~wab 〉 = 0} .

Now prove the opposite implication. Let the sets Ā and B̄ be homogenously linearly
separate by hyperplanes containing a vector ~y . Then there exists ~w ~y ∈ W̄ in such a

way that
〈
~w ~y |~y

〉
= 0. By reason that W̄ is an open set, there exists a number ε > 0

such that the vectors ~w ~y+ ε~y and ~w ~y− ε~y belong to the set W̄ . Hence the tuple of sets{
Ā, B̄ ∪ {~y}

}
and

{
Ā ∪ {~y} , B̄

}
are both simultaneously homogenous linearly separable

by hyperplanes passed by vectors ~w ~y + ε~y and ~w ~y − ε~y.
q. e. d.

The following lemma will be useful in explanation of main step of Cover’s lemma proof.

Lemma 2.2.5 Let {~x1, . . . , ~xk} is an set of linearly independent vectors of <n and let
following vectors are defined as:

~yi
def
= ~xi|~x⊥k , ∀i∈{1, . . . , k − 1},

~yk
def
= ~xk.

Then vectors {~y1, . . . , ~yk} are linearly independent.

Proof:
We prove this lemma via contradiction. Let {~y1, . . . , ~yk} be linearly dependent vectors. As
for all i∈{1, . . . , k−1} holds ~yk⊥~yi vectors

{
~y1, . . . , ~yk−1

}
must be linearly dependent.

Hence there exist nontrivial linear combination

k−1∑

i=1

αi~yi = ~0.

Therefore vectors ~yi are defined as orthogonal projection along vector ~xk it holds that

~yi = ~xi − βi~xk.

It implies that
k−1∑

i=1

αi.~xi −
k−1∑

i=1

αiβi~xk = ~0.
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Lecture Notes 2.2. VC-DIMENSION OF LINEAR CONCEPTS

But ~yi 6= ~0, i∈{1, . . . , k − 1}, hence there exist at least two nonzero αi which implies
contradiction with linear independency of vectors {~x1, . . . , ~xk}.

q. e. d.

Theorem 2.2.6 (Cover, [Cov]) Let X̄
def
= {~x1, . . . , ~xd} ⊂ <N are linearly independent

vectors. Than there exists

2
d−1∑

k=0

(
N − 1

k

)

mutually different disjoint splittings of the set X̄ into sets Ā and B̄ whose are
homogeneously linearly separable (i.e. they can be separated via hyperplane which contains
zero vector).

Proof:
We prove this theorem by induction on the number of vectors d and dimension N . Let us
denote the number of mutually different homogenously separable disjoint splittings of the
set X̄ by the symbol C̃ (d,N) . Furthe let us assume that the set Ȳ

def
= X̄∪{~xd+1} fulfills

the assumption of the theorem proved and that Ā , B̄ be arbitrary disjoint splitting
of the set Ȳ . Because of the set X̄ is finite and linear homogenous separator of the
set is defined via nonstrict inequality, at least one ot the tuples

(
Ā ∪ {~xd+1} , B̄

)
and(

Ā, B̄ ∪ {~xd+1}
)

are homogenouly linearly separable sets. In addition, it can occur that
both of these set tuples are simultaneously homogenously linearly separable, therefore it
is reasonable to define the following set:

S̄
def
=
{
Ā ⊂ X

∣∣∣Ā = X̄
.
−B̄ ∧

(
Ā ∪ {~xd+1} , B̄

)
∈ HLSsets ∧

(
Ā, B̄ ∪ {~xd+1}

)
∈ HLSsets

}
.

So if we recapitulate the previous explanation, we see that the number C̃ (d+ 1, N) can

be expressed as the sum of C̃ (d,N) and the number of simultaneously linearly separable
dichotomies

{
Ā ∪ {~xd+1} , B̄

}
and

{
Ā, B̄ ∪ {~xd+1}

}
of the set X̄ ∪ {~xd+1}, e.g.

∣∣S̄
∣∣ .

Applying the statement of the lemma 2.2.4 we deduce that the number of such set tuples
Ā , B̄ is equal to the number of tuples Ā , B̄ , that are homogenously linearly separable
by hyperplane containing the vector ~xd+1. Apparently the sets Ā , B̄ are separated
by such a hyperplane if and only if the sets Ā

′
, B̄

′
are linearly homogenously separated,

where Ā
′

and B̄
′

are orthogonal projection of the sets Ā and B̄ into the orthogonal
complement of the vector ~xd+1.

Owning to the lemma 2.2.5 the sets Ā
′
, B̄

′
contains linear independent vectors (pro-

jections of vectors ~x1, . . . , ~xd into orthogonal complement of the vector ~xd+1). So we can
understand these projections as (N − 1) dimensional vectors (in orthogonal complement
of the vector ~xd+1) and thus we can apply on them the induction assupmtion. Hence we
get the following recursive formula

C̃ (d+ 1, N) = C̃ (d,N) + C̃ (d,N − 1) . (2.5)

On the base of this recursive formula we derive the number of mutually different
disjoint splittings of the set ~x1, . . . , ~xd in two homogenously linearly separable parts.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Evidently C̃ (1, N) = 2 for all N ≥ 1, because one-point set {~x} can be split up in two
homogenously linearly separable tuples of sets {∅, {~x}} and {{~x} , ∅} only.

To illustrate recursive formula for C̃ (d,N) let us write down these values for initial d
and N in the following scheme (the each number in this scheme in a fixed position is equal
to the sum of the number on the left and the number in the position which is immediately
north-west):

d = 1 2 3 4 5 6 7 8
N = 1 2

2 2 4 8
3 2 4 8
4 2 4 8 16
5 2 4 8 16 32
6 2 4 8 16 32 64
7 2 4 8 16 32 64 128

. . .

We can deduce from the above scheme of values C̃ (d,N) that the number C̃ (d,N) is
equal to double of sum of combinatorial numbers. This observation can be easily verified
using equality 2.5 (recall that

(
j
i

)
=
(
j−1
i

)(
j−1
i−1

)
):

N−1∑

k=0

(
d

k

)
=

N−1∑

k=0

(
d− 1

k

)
+

N−2∑

k=0

(
d− 1

k

)
=

N−1∑

k=0

(
d− 1

k

)
+

N−1∑

k=1

(
d− 1

k − 1

)
=

N−1∑

k=0

(
d

k

)
.

q. e. d.
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Lecture Notes 2.3. VC-DIMENSION OF COMPOSED MAPPING

2.3 VC-dimension of composed mapping

For an arbitrary system of (elementar) functions we can define the VC-dimension of such
functions as the VC-dimension of all the sets, which are inverse image of the intervals
(−∞, α〉 . Next, we will show how to use the knowledge of the VC-dimension of such
class concepts to determine upper estimate of VC-dimension of function sets contain a
composition of those elementar functions. First of all, let us define the term composed
mapping, though.

Definition 2.3.1 Let D be a connected directed acyclic graph (DAG) and Ī denote the
set of vertices D. For a vertex j ∈ Ī let the numbers d+

j and d−j denote the number of
edges leading into the vertex j and leading from the vertex j, respectively. Let the following
properties hold:

1. There exists exactly one vertex with d−j = 0. We call this vertex an output
vertex .

2. Let there exist at least one vertex with d+
j = 0. We call such vertex an input

vertex .

3. For each vertex j with d+
j > 0 let there exist a mapping Z̃j :

{
<d

+
j ×Wj

}
→ < ,

where W̄j is a given parametric space of the mapping Z̃j .

4. Let for each noninput vertex j the value vj of the vertex j satisfy the following:

vj = Z̃j

((
vi1 · · · vid+j

,

)
, ~wj

)
,

where vi1 · · · vid+j
are values of vertices from which an edge leads to the vertex j and

~wj ∈ W̄j.

Then,
(
D,
(
Z̃j, W̄j

)
, j ∈ Ī

)
is called composed mapping . Vertex j is an interior

vertex if j is not an input vertex or the output vertex. The number of input vertices is
dimension of composed mapping . Let z be the number of noninput vertices. Each
point in W̄1 × W̄2 · · · × W̄z, is called parametrization of composed mapping .

Example 2.3.1 For example, let s̃ : <3×W̄s×W̄f×W̄g×W̄h → < , where W̄s, W̄f , W̄g, W̄h

are parameter spaces of mappings s̃ , f̃ , g̃ , h̃ , respectively, and

s̃
(
f̃ (x, y, z, ~wf ), g̃

(
y, h̃ (z, ~wh), ~wg

)
, ~ws

)
.

The corresponding graph is sketched in Figure 2.1.

In the following text, we will derive basic upper estimate of the VC-dimension of
composed mapping using the properties of the functions Z̃j . For this purpose, we will
have to operate with parts of composed mapping that will be defined by means of what
is called proper numbering of vertices of composed mapping.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

x y z

f̃ (x, y, z, ~wf ) h̃ (z, ~wh)

g̃
(
y, h̃ (z, ~wh), ~wg

)

s̃
(
f̃ (x, y, z, ~wf ), g̃

(
y, h̃ (z, ~wh), ~wg

)
, ~ws

)

Figure 2.1: Corresponding graph for composed mapping.

Definition 2.3.2 Let G be an acyclic connected directed graph, and noninput vertices
be numbered by natural numbers i ∈ {1, . . . , z} . Then, this numbering is proper
numbering iff each edge leads from a vertex with a smaller number.

Proper numbering of a connected directed acyclic graph will be attained for instance
in such a way whereby, after removing all the nodes having no input edge, we will first
gradually number in a graph thus originated all the nodes having no input edge (this is
possible since the graph is acyclic); these nodes will be removed from the graph, and this
particular procedure will be repeated on the resultant graph, while gradually numbering,
using subsequent numbers.

Definition 2.3.3 Let
(
D,
(
Z̃j, W̄j

)
, j ∈ Ī

)
be a composed mapping with dimension n,

let D has proper numbering with (z − 1) inner vertices, and let the output vertex have
number z. Then, let us define for each j∈{1, . . . , z} the following concept class

Clocj
def
=
{
c̄ ⊂ <d

+
j

∣∣∣(∃~w ∈ Wj)
(
c̄ =

{
~s ∈ <d

+
j

∣∣∣Z̃j (~w,~s) ≤ 0
})}

.

We will call each concept class Clocj a local concept class .

Furthermore, let us denote the value of noninput vertex j∈{1, . . . , z} in dependence
of ω ∈ W̄1 × W̄2 · · · × W̄j and input values ~x ∈ <n of composed mapping as vj,ω, ~x and let
us define partial concept class of composed mapping as the following system of
sets

Cparj
def
=
{
c̄ ⊂ <n

∣∣∣
(
∃ω ∈ W̄1 × W̄2 · · · × W̄j

) (
c̄ =

{
~x ∈ <n

∣∣∣vj,ω, ~x ≤ 0
})}

.

Than we will call the number VCdim (Cparz ) as the VC-dimension of composed
mapping .

In other words, for a given j and Clocj j is a system of all subsets c̄ ∈ <d
+
j such that

there exist parameters in W̄j in such a way that the set c̄ is an inverse image of the

interval (−∞, 0〉 in mapping Z̃j (~w,~s) . Concept classes Cparz are defined in a similar
fashion.
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Lecture Notes 2.3. VC-DIMENSION OF COMPOSED MAPPING

Definition 2.3.4 Let V̄
def
= {~xi, . . . , ~xm} ⊂ <n and let

(
D,
(
Z̃j, W̄j

)
, j ∈ Ī

)
be a com-

posed mapping of the dimension n with (n+ z) vertices and with proper numbering. Fur-

ther, let l∈{1, . . . , z} and for each ω ∈ W̄1 × W̄2 · · · × W̄z let the matrix Rω,V̄ ,l ∈ <l×m
be defined as

Rω,V̄ ,l
i,j

def
= s̃gn

(
vj,ω, ~xi

)
, j∈{1, . . . , l}, i∈{1, . . . ,m} .

Then, we say that two parametrizations ω1 and ω2 are l, V̄ -equivalent if and only if

Rω1,V̄ ,l = Rω2,V̄ ,l .

Lemma 2.3.1 The relation l, V̄ -equivalency defined in 2.3.4 is equivalence relation on
the set W̄1 × W̄2 · · · × W̄l.

Proof:
Reflexivity and symmetry is obvious. Transitivity follows from the fact that if s̃gn (a) =
s̃gn (b) and, at the same time, s̃gn (b) = s̃gn (c), then also s̃gn (a) = s̃gn (c).

q. e. d.

Theorem 2.3.2 Let the symbol Sl,V̄ denote a number of equivalence classes of the l, V̄ -

equivalence, let m be an arbitrary positive integer and V̄
def
= {~x1, . . . , ~xm} ⊂ <n. Then, for

all k∈{1, . . . , z} the following estimation

ΠCpar
k

(m) ≤ Sk,V̄ ≤ ΠCloc
1

(m) · ΠCloc
2

(m) · · · ·ΠCloc
k

(m)

holds.

Proof:
For a fixed k∈{1, . . . , z} let us define the following sets

Γ
def
=
{
Rω,V̄ ,l

∣∣ω ∈ W̄1 × W̄2 · · · × W̄k

}

and

Γj
def
=
{
~z ∈ <m

∣∣∣
(
∃ω ∈ W̄1 × W̄2 · · · × W̄z

)
(∀i∈{1, . . . ,m})

(
~zi = Rω,V̄ ,k

i,j

)}
, j∈{1, . . . , k} .

Obviously, the number of equivalence classes is equal to
∣∣Γ̄
∣∣ and

∣∣Γ̄
∣∣ ≤

∣∣Γ̄1

∣∣ ·
∣∣Γ̄2

∣∣ · . . . ·
∣∣Γ̄k
∣∣

(Γ̄j contains all possible j-th columns of the matrices Rω,V̄ ,k). Further, it is obvious that
each ~z ∈ Γj define disjoint splitting V̄−, V̄+ of the set V̄ , where

V̄− =
{
~xi ∈ V̄ |~zi ≤ 0

}
and V̄+ =

{
~xi ∈ V̄ |~zi > 0

}
.

But the number of such disjoint splittings is less or equal to
∣∣∣ΠCloc

j

(
V̄
)∣∣∣ ≤ ΠCloc

j
(m), so∣∣Γ̄j

∣∣ ≤ ΠCloc
j

(m), j∈{1, . . . , k} . Hence, Sk,V̄ ≤ ΠCloc
1

(m) · ΠCloc
2

(m) · · · ·ΠCloc
k

(m).
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

The inequality
∣∣∣ΠCpar

k

(
V̄
)∣∣∣ ≤ Sk,V̄ follows directly from the definition of the number Sk,V̄

(last column of the matrix Rω,V̄ ,k defines all possible disjoint splittings of the set V̄ ).
But this restriction holds for all V̄ of the size m, which follows ΠCpar

k
(m) ≤ Sk,V̄ .

q. e. d.

Up to this point in our explication we have not used anywhere the properties of partial
mappings Z̃i of a composed mapping; so far we have used only the fact that the graph
of composed mapping is solely acyclic and directed. Theorem 2.3.2 provides instruction
on how to proceed in deriving upper estimate of VC-dimension of more general composed
mappings since it makes it possible to reduce the process of finding such an estimate into
estimates of the VC-dimension of mapping corresponding to the individual nodes of the
graph onlyy. We will illustrate this procedure on a simple example of the composition
mappings. We start with the following lemma.

Lemma 2.3.3 Let {αi}z1 be positive numbers and
∑z

i=1 αi = 1. Then,

−
z∑

i=1

αiln (αi) ≤ ln (z). (2.6)

Proof:
Firstly, let αi = 1

z
, i∈{1, . . . , z} . Then,

−
z∑

i=1

1

z
ln

(
1

z

)
=

z∑

i=1

ln
(
z

1
z

)
= ln (z) ,

e.g. for αi = 1
z
, i∈{1, . . . , z} , equality holds.

Further, let ~s ∈
(

(1, 1, · · · , 1)T
)⊥

. Hence,
∑z

i=1 ~si = 0 and (∀t ∈ <)
(∑z

j=1
1
z

+ t~si = 1
)

.

Let tmin, tmax ∈ < be numbers such that

(∀t ∈ (tmin, tmax)) (∀i∈{1, . . . , z})
(

1

z
+ t~si > 0

)
.

Let us define function f̃ : (tmin, tmax)→ < as

f̃ (t)
def
=

z∑

i=1

(
1

z
+ t~si

)
ln

(
1

z
+ t~si

)
.

Then (recall
∑z

i=1 ~si = 0)

df̃

dt
=

z∑

i=1

~si + ~siln

(
1

z
+ t~si

)
=

z∑

i=1

~siln

(
1

z
+ t~si

)
.

Obviously for t = 0 the following holds:

z∑

i=1

~siln

(
1

z
+ t~si

)
= 0 e.g.

df̃

dt
(0) = 0 .
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Lecture Notes 2.3. VC-DIMENSION OF COMPOSED MAPPING

Because ln (·) is monotonously increasing function, we can write

t > 0 s > 0 ⇒ ~siln
(

1
z

+ t~si
)
> ~siln

(
1
z

)

s < 0 ⇒ ~siln
(

1
z

+ t~si
)
> ~siln

(
1
z

)

t < 0 s > 0 ⇒ ~siln
(

1
z

+ t~si
)
< ~siln

(
1
z

)

s < 0 ⇒ ~siln
(

1
z

+ t~si
)
< ~siln

(
1
z

)
.

If we take into account the fact
∑z

i=1 ~si = 0 it is straightforward that

t > 0⇒
z∑

i=1

~siln

(
1

z
+ t~si

)
> 0 and t < 0⇒

z∑

i=1

~siln

(
1

z
+ t~si

)
< 0.

In other words

(∀t ∈ (tmin, tmax))

(
t 6= 0⇒ df̃

dt
(t) 6= 0

)
.

Finally, let us show that the second derivative of the f̃ in t = 0 is positive:

d

dt

(
df̃

dt

)
=

d

dt

(
z∑

i=1

~siln

(
1

z
+ t~si

))
=

z∑

i=1

~s2
i

1
z

+ t~si
.

f̃ ′′ (0) =
z∑

i=1

z · ~s2
i > 0 .

Hence, the function f̃ has maximum in t = 0 for arbitrary vector ~s ∈
(

(1, 1, · · · , 1)T
)⊥

.

q. e. d.

Theorem 2.3.4 Let
(
D,
(
Z̃j, W̄j

)
, j ∈ Ī

)
be a composed mapping with dimension n,let

w be the number of edges, z be the number of noninput vertices and q
def
= w+z. Further let

for all noninput vertices k is VCdim
(
Clock
)

= d+
k +1 .Then, for any m > max

{
d+
i |i∈{1, . . . , z}

}

is

ΠCpar
z

(m) ≤
(
ezm

q

)q
(2.7)

and further the estimation
VCdim (Cparz ) < 2qlog2 (ez) (2.8)

holds.

Proof:
add Proof 2.7)

Let us assume that proper numbering is defined in the graph D and let d+
i denote the

number of edges leading to the node i. According to the claim of the lemma 2.1.3 the
following estimate holds for each considered i and m ≥ d+

i + 1

ΠCi
(m) ≤

(
em

d+
i + 1

)di++1

,
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

because by assuption is VCdim
(
Clock
)

= d+
k + 1. But then

ΠCL
(m) ≤ ΠC1 (m) · ΠC2 (m) · · · ·ΠCz (m) ≤

z∏

i=1

(
em

d+
i + 1

)d+
i +1

. (2.9)

Obviously it holds

q =
z∑

i=1

(
d+
i + 1

)
(2.10)

and let us set

αi
def
=
d+
i + 1

q
.

By substituting into the estimate 2.6, we come to the expression

z∑

i=1

d+
i + 1

q
ln

(
q

d+
i + 1

)
≤ ln (z).

Hence (multiplying by q and using the equality ln
(
a
b

)
= ln (a)− ln (b))

z∑

i=1

(
d+
i + 1

)
ln

(
1

d+
i + 1

)
≤ qln (z)−

(
z∑

i=1

(
d+
i + 1

)
)

ln (q) = qln (z)− qln (q).

Thus, finally, by delogaritmizing we obtain that

z∏

i=1

(
1

d+
i + 1

)d+
i +1

≤
(
z

q

)q
.

Using the equation 2.10, we can arrange the previous expression into the following form

z∏

i=1

(
em

d+
i + 1

)d+
i +1

≤
(
z

q

)q
·

z∏

i=1

(em)d
+
i +1 =

(
z

q

)q
· (em)q

from which the first proven estimate ensues by substituting into 2.9.
add Proof 2.8)

First, we will prove the inequality for z = 1. Hence, it obviously holds that VCdim (Cpar1 ) =
w + 1 and it holds that

VCdim (Cpar1 ) = w + 1 < 2(1 + w)log2 (ez) .

Further, we will prove the inequality 2.8 or the case z ≥ 2. For each real number a > 4 ,
the following estimates (q > 1) hold

2log2 (a) < a⇔ 2alog2 (a) < a2 ⇔ 2alog2 (a) < 22log2(a) ⇔ (2alog2 (a))q < 22qlog2(a).

If we substitute a
def
= ez, z ≥ 2, then a > 2.71 · z > 4 and we obtain that the inequality

given below always holds
(
ez2qlog2 (ez)

q

)q
< 22qlog2(ez). (2.11)
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Lecture Notes 2.4. VC-DIMENSION OF SYMMETRIC DIFFERENCE

Let VCdim (Cparz ) = m. Then, from the definition of the VC-dimension, m is a maximum
number such that the equality 2m = ΠCpar

z
(m) holds; furthermore, if this inequality holds

for some m, it holds for all natural m which are smaller. But according to the estimate
2.7 and 2.11 it must also hold that

ΠCL
(2qlog2 (ez)) ≤

(
ez2qlog2 (ez)

q

)q
< 22qlog2(ez)

and, therefore, an set of the size 2qlog2 (ez) cannot be shattered by the class Cparz , hence
VCdim (Cparz ) < 2qlog2 (ez).

q. e. d.

2.4 VC-dimension of symmetric difference

Lemma 2.4.1 Let S̄, h̄1, h̄2 ⊂ X̄. Then,

h̄1 ∩ S̄ = h̄2 ∩ S̄ ⇔
(
X̄

.
−h̄1

)
∩ S̄ =

(
X̄

.
−h̄2

)
∩ S̄

Proof:
Let us assume that h̄1∩S̄ 6= h̄2∩S̄. Without loss of generality, let y ∈ h̄1∩S̄ and y 6∈ h̄2∩S̄.

It follows y ∈ h̄1, y ∈ S̄ and y 6∈ h̄2. Hence, y 6∈
(
X̄

.
−h̄1

)
∩ S̄ and y ∈

(
X̄

.
−h̄2

)
∩ S̄.

Therefore, h̄1 ∩ S̄ 6= h̄2 ∩ S̄ implies
(
X̄

.
−h̄1

)
∩ S̄ 6=

(
X̄

.
−h̄2

)
∩ S̄, which completes the

proof.
q. e. d.

Lemma 2.4.2 Let S̄, c̄, h̄1, h̄2 ⊂ X̄. Further, let
(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄ =

(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄ and c̄∩

(
X̄

.
−h̄1

)
∩ S̄ = c̄∩

(
X̄

.
−h̄2

)
∩ S̄ . (2.12)

Then, h̄1 ∩ S̄ = h̄2 ∩ S̄.

Proof:
We prove the claim by contradiction. Let us assume that h̄1 ∩ S̄ 6= h̄2 ∩ S̄. There is
clearly no loss of generality in assuming y ∈ h̄1 ∩ S̄ and y 6∈ h̄2 ∩ S̄. It follows y ∈ h̄1,

y ∈ S̄ and y 6∈ h̄2. Hence, y 6∈
(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄. So the left part of 2.12 implies that

y 6∈
(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄. At the same time, y ∈ h̄1 ∩ S̄ which follows y 6∈

(
X̄

.
−c̄
)

. So y ∈ c̄.
Recalling previous argumentation, we have

y ∈ c̄, y ∈ S̄, y 6∈ X̄
.
−h̄1, y ∈ X̄

.
−h̄2 .

Put together, these equations leads to

y 6∈ c̄ ∩
(
X̄

.
−h̄1

)
∩ S̄ and y ∈ c̄ ∩

(
X̄

.
−h̄2

)
∩ S̄

which contradicts the right part of 2.12.
q. e. d.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes

Lemma 2.4.3 Let S̄, c̄, h̄1, h̄2 ⊂ X̄. Further, let
[(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄

]
∪
[
c̄ ∩
(
X̄

.
−h̄1

)
∩ S̄
]

=
[(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄

]
∪
[
c̄ ∩
(
X̄

.
−h̄2

)
∩ S̄ .

]

(2.13)
Then,
(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄ =

(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄ and c̄ ∩

(
X̄

.
−h̄1

)
∩ S̄ = c̄ ∩

(
X̄

.
−h̄2

)
∩ S̄ .

Proof:

Let us assume that
(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄ 6=

(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄. For example, let there exist y

such that y ∈
(
X̄

.
−c̄
)
∩ h̄1∩ S̄ and y 6∈

(
X̄

.
−c̄
)
∩ h̄2∩ S̄. In this case, y ∈

(
X̄

.
−c̄
)
∩ h̄1∩ S̄

implies y ∈ X̄
.
−c̄, e.g. y 6∈ c̄, y ∈ h̄1 and y ∈ S̄. Hence, y 6∈

(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄ implies that

y 6∈ h̄2. It means that

y ∈
[(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄

]
∪
[
c̄ ∩
(
X̄

.
−h̄1

)
∩ S̄
]

and
y 6∈

[(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄

]
∪
[
c̄ ∩
(
X̄

.
−h̄2

)
∩ S̄
]

which conclude the proof of the lemma.

q. e. d.

Theorem 2.4.4 Let m ≥ 1, c̄ ⊂ X̄ and H ⊂ 2X̄ , R
def
=
{
h̄4 c̄

∣∣h̄ ∈ H
}

. Then,

1. ΠH (m) = ΠR (m) and

2. VCdim (H) = VCdim (R). (Note that R depends on the concept c̄ .)

Proof:
add 1)

Let h̄1, h̄2 ∈ H and S̄, c̄ ⊂ X̄ be arbitrary but fixed. Then, by the lemma 2.4.1 is

h̄1 ∩ S̄ = h̄2 ∩ S̄ ⇔
(
X̄

.
−h̄1

)
∩ S̄ =

(
X̄

.
−h̄2

)
∩ S̄ . (2.14)

From 2.14 it is apparent that

(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄ =

(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄ and c̄∩

(
X̄

.
−h̄1

)
∩ S̄ = c̄∩

(
X̄

.
−h̄2

)
∩ S̄ . (2.15)

Owing to the lemma 2.4.2 (see 2.12) we are going to see that simultaneous validity of
equalities 2.15 implies both equalities 2.14.
Further, it is clear and straightforward that 2.15 implies the following set equality
[(
X̄

.
−c̄
)
∩ h̄1 ∩ S̄

]
∪
[
c̄ ∩
(
X̄

.
−h̄1

)
∩ S̄
]

=
[(
X̄

.
−c̄
)
∩ h̄2 ∩ S̄

]
∪
[
c̄ ∩
(
X̄

.
−h̄2

)
∩ S̄ .

]

(2.16)
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Lecture Notes 2.4. VC-DIMENSION OF SYMMETRIC DIFFERENCE

Similarly as in the previous text, owning to the lemma 2.4.3 (see 2.13), we can see that
the opposite implication is also true, e.q. that 2.16 implies 2.15. So 2.16 is equivalent to
h̄1 ∩ S̄ = h̄2 ∩ S̄.
Now recall definition of the symmetric difference of the sets c̄ and h̄ ,

h̄4 c̄ =
(
h̄
.
−c̄
)
∪
(
c̄
.
−h̄
)

=
(
h̄ ∩

(
X̄

.
−c̄
))
∪
(
c̄ ∩
(
X̄

.
−h̄
))

.

It follows (use
(
Ā ∪ B̄

)
∩ S̄ =

(
Ā ∩ S̄

)
∪
(
B̄ ∩ S̄

)
)

(
h̄4 c̄

)
∩ S̄ =

[(
h̄ ∩

(
X̄

.
−c̄
))
∩ S̄
]
∪
[(
c̄ ∩
(
X̄

.
−h̄
))
∩ S̄
]
.

So, finally, using the last expression, we can rewrite the equation 2.16 to a more legible
form (

h̄14 c̄
)
∩ S̄ =

(
h̄24 c̄

)
∩ S̄ .

Thus, we have proved that for arbitrary h̄1, h̄2 ∈ H and S̄, c̄ ⊂ X̄ the equivalence

h̄1 ∩ S̄ = h̄2 ∩ S̄ ⇔
(
h̄14 c̄

)
∩ S̄ =

(
h̄24 c̄

)
∩ S̄ (2.17)

is fulfiled.
The rest of the proof goes as follows. For the fixed set S̄ we show that

∣∣ΠH

(
S̄
)∣∣ =∣∣ΠR

(
S̄
)∣∣. To do this let us define a mapping Z̃ : ΠH

(
S̄
)
→ ΠR

(
S̄
)

as

Z̃ (ū)
def
=
(
h̄ū4 c̄

)
∩ S̄ , where h̄ū ∈

{
h̄ ∈ H

∣∣h̄ ∩ S̄ = ū
}
.

First, note that the mapping Z̃ is well defined. Let ū ∈ ΠR

(
S̄
)

and h̄′ū, h̄
′′
ū ∈

{
h̄ ∈ H

∣∣h̄ ∩ S̄ = ū
}

.
Then, owning to 2.17, we get

Z̃ (ū) =
(
h̄′ū4 c̄

)
∩ S̄ =

(
h̄′′ū4 c̄

)
∩ S̄ .

Therefore, the image of the set ū is independent on the choice of the set h̄ū. Also it is
straightforward that equivalence 2.17 implies injectivity of the mapping Z̃ . Finally, let
q̄ ∈ ΠR

(
S̄
)
. Clearly, q̄ is rewritable in the form q̄ =

(
h̄q̄ 4 c̄

)
∩ S̄ and, hence, Z̃

(
h̄q̄
)

=

q̄. In other words, the mapping Z̃ is one-to-one which follows
∣∣ΠH

(
S̄
)∣∣ =

∣∣ΠR

(
S̄
)∣∣

immediately. The set S̄ was chosen arbitrarily, so the definition of the ΠH

(
S̄
)

follows
that for any m ≥ 1 is

ΠH (m) = ΠR (m) .

add 2)

Let us take the alternative definition VCdim (H)
def
= sup {m ∈ N |2m = ΠH (m)}. Since the

first part of the lemma is proved for arbitrary value of m ∈ N , it is straightforward that
for the fixed set c̄ (note that R depends on the set c̄ ) is

sup {m ∈ N |2m = ΠH (m)} = sup {m ∈ N |2m = ΠR (m)} .

q. e. d.
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CHAPTER 2. VAPNIK-CHERVONENKIS DIMENSION Lecture Notes
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Chapter 3

Sample Complexity and
VC–dimension

In this chapter, we will deal with the bottom and upper estimates of the number of exam-
ples necessary for learning algorithms of the complexity m̃ (ε, δ) as has been introduced
in [BEHW89].

One such estimate for a sufficient quantity of enquiries is given in Theorem 1.2.1. In
this chapter, we will show that a dominating role in these estimates is played primarily by
the concept VC-dimension studied above. Proceeding from that particular concept, we
can formulate better estimates of the necessary length of the sample used for generating
a hypothesis approximating the given concept.

First, we will discuss the above-mentioned estimates for a fixed chosen system of
concepts and hypotheses. In the subsequent text, we will consider cases when the given
concepts are distinguished according to the dimension of space whose subsets they are,
and we will analyze sample complexity of learning algorithms with a view to the dimension
of vector spaces containing the given concepts as their subsets. A natural requirement is
to postulate a criterion guaranteeing that the length of the sample m̃ (ε, δ) of learning
algorithm will be upper bound by polynom in the dimension of space.

In conclusion, we will carry out a similar analysis concerning the length of words that
describe the concepts from the given concept system and which, in their essence, express
through their length descriptive complexity of concepts.

3.1 Estimate of the Number of Samples

In this part, we will prove a series of lemmas and theorems, which will be necessary for
the proof of Theorem 3.1.12, giving the lower and upper estimate of sample complexity
for (ε, δ)-algorithms.

Throughout this chapter and in the subsequent ones we will assume that each con-
sidered concept class, just as each considered hypothesis class, would be made up solely
of Borelian sets. For the sake of comprehensiveness, let us recall the term Borelian sets
([Jar55]). Let us assume that Ω s a non-empty system of sets, which is σ-additive, i.e. for
any arbitrary sequence of sets Ān ∈ Ω it holds that

⋃∞
n=1 Ān ∈ Ω. Furthermore, if it holds

that for any arbitrary Ā, B̄ ∈ Ω there is also Ā
.
−B̄ ∈ Ω, we will call the system of sets Ω

45
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

σ-additive circle. It can be illustrated that for each non-empty system of sets Ω there
exists just one smallest σ-additive circle containing Ω (this is precisely the intersection of
all the σ-additive circles comprising the system Ω ). We will call this minimal σ-additive
circle the Borelian circle over the system Ω . Let M be an arbitrary metric space and
let Θ be a Borelian circle over a system of all open sets in M . Then, we will call the
elements of this circle Borelian sets of the space M .

Apart from the requirement regarding the Borelian character of sets which form the
individual concepts it will be necessary for other proofs to characterize in greater detail
the concepts and hypotheses under consideration. This necessary characteristic can be
suitably captured by the term ε-transversal.

Definition 3.1.1 For any arbitrary R ⊂ 2X̄ and for any arbitrary probability density P̃

defined on X̄ and for an arbitrary ε > 0 let us define RP̃ ,ε
def
=
{
r̄ ∈ R

∣∣ProbP̃ (r̄) > ε
}

.

Then, we will call T̄P̃ ,ε ⊂ X̄ ε-transversal R just when

(
∀r̄ ∈ RP̃ ,ε

)(
r̄ ∩ T̄P̃ ,ε 6= ∅

)

Example 3.1.1 Let ā
def
= 〈0, 1〉 and R be a system of all closed intervals on ā and let

P̃ be an uniform probability density on ā . Then, the set of all the points εk, 1 ≤ k ≤ 1
ε

forms the ε-transversal R for any arbitrary value ε > 0.

Example 3.1.2 If R is formed by all the open subsets of the interval ā then - for
uniform probability density - there exists no finite ε-transversal for any ε.

We will examine the probability of the selection of the ε-transversal of the system R
on the basis of arbitrary random selection of points from X̄ . Specifically, we will be
interested in the probability of the event described in the following definition.

Definition 3.1.2 For each m ≥ 1 and ε > 0 let Q̄m,ε denote a set of all
^
x ∈ X̄m such

that the different elements
^
x do not form ε-transversal for R , so

Q̄m,ε
def
=
{
^
x ∈ X̄m

∣∣∣
(
∃r̄ ∈ RP̃ ,ε

)(
^
x ∩ r̄ = ∅

)}
.

Further define the set

J̄2m
ε

def
=
{(

^
x,

^
y
)
∈ X̄m × X̄m

∣∣∣
(
∃r̄ ∈ RP̃ ,ε

)(
^
x ∩ r̄ = ∅ and

∣∣∣
^
y ∩ r̄

∣∣∣ ≥ εm

2

)}
.

In the proofs of the probability properties of learning algorithms we will be interested
primarily in the property of the system of sets R

def
=
{
h̄4 c̄

∣∣h̄ ∈ H
}

, where c̄ is some
fixed concept c̄ ⊂ X̄ and H is the hypothesis class for this particular concept. The
importance of the term ε-transversal is in that if the sample of the concept
c̄ is simultaneously ε-transversal for R , then it contains an counter-example
for each hypothesis whose error – as seen in terms of the target concept c̄ is
greater than ε. To be able to examine the properties of the system R , we will take
into consideration hypothesis classes meeting the following criterion given in the definition
below.
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

Definition 3.1.3 The hypothesis class H is well-behaved if the sets Q̄m,ε and J̄2m
ε

are measurable for any arbitrary probability density P̃ , any arbitrary m ≥ 1, ε > 0 and

any arbitrary system of sets R
def
=
{
h̄4 c̄

∣∣h̄ ∈ H
}

, where c̄ is an arbitrary Borelian sets.

An overwhelming majority of concept classes and hypothesis classes commonly used
is well-behaved. One of the possibilities of verification of this particular property is to
verify universal separability.

Definition 3.1.4 The hypothesis class H ⊂ 2X̄ is universally separable , if there
exists a countable subset T of the class H such that for all h̄ ∈ H there exists a sequence
{h̄i}∞1 of sets from T such that

(
∀x ∈ X̄

)
(∃n ≥ 1)

(
(∀i ≥ n)

(
x ∈ h̄i if and only if x ∈ h̄

))
.

The implication formulated in the following theorem holds.

Theorem 3.1.1 If H is universally separable, then H is well-behaved.

Proof:
Let c̄ ⊂ X̄ be a Borelian set and R

def
=
{
h̄4 c̄

∣∣h̄ ∈ H
}

. We will show that the sets Q̄m,ε

and J̄2m
ε are Borelian. Proof will be given only for Q̄m,ε, being similar for J̄2m

ε .
Since H is universally separable, it ensues from the definition that R is universally

separable as well. Let T ⊂ R be a set from the definition of universal separability. Let
{γi}∞1 be a descending sequence of positive numbers converging to zero, {εi}∞1 be a
descending sequence of positive numbers converging to ε > 0. Let us define for each
i, j ≥ 1

Ti,j
def
=
{
t̄ ∈ T

∣∣(∃r̄ ∈ R)
(
ProbP̃ (r̄) ≥ εi and ProbP̃ (t̄4 r̄) ≤ γj

)}
.

We will show that the following equality holds:

Q̄m,ε =
∞⋃

i=1

∞⋂

j=1

⋂

t̄∈Ti,j

{
^
x ∈ X̄m

∣∣∣^x ∩ t̄ = ∅
}
.

add inclusion ⊃:)

for
^
x from the set on the right there exists such t̄ ∈ Ti,j, where

^
x ∩ t̄ = ∅ furthermore,

εi − γj > ε. For each such t̄ there is t̄ ∈ R and ProbP̃ (t̄) > ε, therefore
^
x ∈ Q̄m,ε.

add inclusion ⊂:)

For each
^
x ∈ Q̄m,ε there exists i ≥ 1 in such a way that for some r̄ ∈ R there is

^
x ∩ r̄ = ∅

and ProbP̃ (r̄) > εi. Since R is universally separable there exists in T a sequence
of sets converging, in terms of points, to r̄ (in the sense of the definition of universal
separability ), hence for each j ≥ 1 there exists t̄ ∈ T, for which ProbP̃ (t̄4 r̄) ≤ γj a
^
x ∩ t̄ =

^
x ∩ r̄ = ∅. Therefore, x̄ is in the set on the right.

Hence Q̄m,ε is a Borelian set and the theorem is valid.
q. e. d.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

We will now prove the following technical lemmas providing elementary inequalities
necessary for estimates of the model complexity of learning algorithms (let us establish a

convention that P̃m is probability density defined on the cartesian product X̄m , derived
from probability density P̃ defined on X̄ ). Chebyshev’s inequality will be used for the
proof of the immediately following lemma 1

Lemma 3.1.2 Let X̄ be a probability space, m ∈ N , r̄ ⊂ X̄, such that Prob (r̄) ≥ ε
def
= 2

m
.

Then, the probability that an m–member independent selection of points from X̄ will
contain at least one point from r̄ is greater than 1

2
.

Proof:
The proof is based on the application of Chebyshev’s inequality. Let Ã be a random
variable equal to the number of elements belonging to r̄ during implementation of
m independent random selections from X̄ . This random variable Ã has a binomic
distribution. 2 .

For the sake of simplicity let us assume that the set r̄ has probability ε (this can
be assumed because if probability of the set r̄ is greater, the theorem being proved
holds all the more). Then, the random variable Ã has mean value µ = mε and variance
σ2 = mε(1− ε). Having substituted into Chebyshev’s inequality, we get

Prob
(∣∣∣Ã−mε

∣∣∣ ≥ λ
)
≤ mε(1− ε)

λ2
<
mε

λ2
.

If we substitute m = 2
ε

a λ
def
= 2, we get

Prob
(∣∣∣Ã− 2

∣∣∣ ≥ 2
)

def
= γ <

1

2
.

1Chebyshev’s theorem, (see e.g. [And85])

Let Ṽ be an arbitrary random variable with a mean value µ and variance σ2. Then, it holds that

(∀λ > 0)

(
Prob

(∣∣∣Ṽ − µ
∣∣∣ ≥ λ

)
≤ σ2

λ2

)
. (3.1)

2Let event Ā occur with probability p, then supplementary event X̄
.
−Ā will occur with probability

1 − p. Let B̃k,n be a phenomenon whereby phenomenon Ā occurred precisely k–times out of n

independent attempts. Then, the random variable B̃k,n has a binomic distribution

Prob
(
B̃k,n

)
=

(
n

k

)
pk (1− p)n−k .

Mean value of this distribution is equal to

Ẽ
(
B̃k,n

)
=

n∑

k=0

k

(
n

k

)
pk (1− p)n−k = np

and variance is equal to

D̃2
(
B̃k,n

)
= Ẽ

((
B̃k,n − Ẽ

(
B̃k,n

))2)
= np(1− p).
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

Therefore, the following formula obviously holds for opposite event

Prob
(∣∣∣Ã− 2

∣∣∣ < 2
)

= 1− γ > 1

2
.

Since Ã assumes solely positive integer values, it ensues from the inequality
∣∣∣Ã− 2

∣∣∣
that že Ã assumes one of the values 1, 2, 3 with a probability greater than 1

2
.

q. e. d.

Before formulating the lemma, which gives an upper bound combinatorial estimate of
the probability of the set J̄2m

ε , we still have to show special properties of the integral of
multiple-variable functions.

Definition 3.1.5 Let π be permutation of the set {1, 2, · · · , n} and (~x1, ~x2, · · · , ~xn) ∈ <n.
Then define

~xπ
def
=
(
~xπ̃(1), ~xπ̃(2), · · · , ~xπ̃(n)

)
.

To show special properties of positive functions with permuted variables we need the
following lemma

Lemma 3.1.3 Let n ≥ 1 be a natural number and

K̄
def
=

{
~a ∈ <n

∣∣∣∣∣~ai ≥ 0, i∈{1, . . . , n}, and
n∑

i=1

~ai ≤ 1

}
.

Then

~a ∈ K̄ ⇒
n∑

i=1

i · ~ai ≤ n .

Proof:
Obviously, the lemma is true for all vectors ~a ∈ K̄ of the form ~a = (0, 0, · · · , 0, ~an)T ,
where 0 ≤ ~an ≤ 1. Further let us assume that there exists an index j∈{1, . . . , n− 1}
such that 0 < ~aj. In such a case, ~an ≤ 1− ~aj < 1. Now let us define vector ~b ∈ <n as

~bi
def
=





~ai i 6∈ {j, n}
0 for i = j
~an + ~aj i = n .

Obviously, ~b ∈ K̄ and

n∑

i=1

i · ~bi −
n∑

i=1

i · ~ai = (n− j) ~aj > 0 .

So the maximum of the sum
∑n

i=1 i · ~ai can not be reached at any vector ~a ∈ K̄ except

the vector (0, 0, · · · , 0, 1)T . It is straightforward that this maximal value is equal to n.
q. e. d.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

Lemma 3.1.4 Let f̃ : <n → {0, 1} and p̃ : <n → < be a nonnegative function,∫
<n p̃ (~x)dx = 1 and

∫
<n f̃ (~x)dx exists. Let Ω̄ be the set of all permutations of the

{1, 2, · · · , n}. Then,

∫

<n

∑

π̃∈Ω̄

(
f̃ (~xπ̃)p̃ (~xπ̃)

)
d~x ≤ max

~x∈<n

{∑

π̃∈Ω̄

f̃ (~xπ̃)

}
. (3.2)

Proof:
Let us define index set

M̄
def
=

{
0, 1, 2, · · · , max

~x∈<n

{∑

π̃∈Ω̄

f̃ (~xπ̃)

}}

and sets

D̄i
def
=

{
~x ∈ <n

∣∣∣∣∣
∑

π̃∈Ω̄

f̃ (~xπ̃) = i

}
and Π̄~x

def
=
{
~y ∈ <n

∣∣(∃π̃ ∈ Ω̄
)

(~y = ~xπ̃)
}
.

for any i ∈ M̄ and ~x ∈ <n.
Obviously, D̄i ∩ D̄j = ∅, i 6= j, i, j ∈ M̄ , and ∪i∈M̄D̄i = <n. Further because Ω̄ is the
set of all permutations for any ~y ∈ Π̄~x is Π̄~y = Π̄~x. So if ~x ∈ D̄i then Π̄~x ⊂ D̄i.
Further define relation R as

~xR~y ⇔ ~y ∈ Π̄~x ,

where ~x, ~y ∈ <n. Let ~x, ~y, ~z ∈ <n. It is straightforward that ~xR~x (identity permu-
tation), ~xR~y ⇒ ~yR~x (inverse permutation) and ~xR~y, ~yR~z ⇒ ~xR~z (composition of
corresponding permutations). In other words, R is equivalence relation on <n and Π̄~x
are equivalence classes of the equivalence R. Further, let

Z̄i
def
=
{

Π̄~x
∣∣~x ∈ D̄i

}
, i ∈ M̄ .

Because Π̄~x are equivalence classes, all sets in Z̄i form disjoint splitting of the set D̄i, e.g.

D̄i = ∪t̄∈Z̄i t̄ , i ∈ M̄ . (3.3)

Now, for any equivalence class t̄ define

Ῡt̄
def
=
{
~x ∈ t̄

∣∣∣f̃ (~x) = 1
}
. (3.4)

Clearly, if ~x ∈ D̄i, then size of the set ῩΠ̄ ~x
is i. Hence

∫

D̄i

[∑

π̃∈Ω̄

f̃ (~xπ̃)p̃ (~xπ̃)

]
d~x

3.3
=

∫

∪t̄∈Z̄i t̄

[∑

π̃∈Ω̄

f̃ (~xπ̃)p̃ (~xπ̃)

]
d~x

3.4
=

3.4
=

∫

∪t̄∈Z̄i t̄


∑

~x∈Ῡt̄

p̃ (~x)


 d~x

3.5

≤ i ·
∫

Āi

p̃ (~x)d~x
3.5

≤ i ·
∫

D̄i

p̃ (~x)d~x ,

50 F. Hakl ICS Prague, Tech. Rep. 1227



©
F

.
H

ak
l,

IC
S

C
A

S
,

P
ra

gu
e,

T
ec

h
.

R
ep

.
№

12
27

,
D

ec
20

15

©
F

.
H

ak
l,

IC
S

C
A

S
,

P
ra

gu
e,

T
ec

h
.

R
ep

.
№

12
27

,
D

ec
20

15

Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

where the sets Āi are defined as

Āi
def
=



~x ∈ D̄i

∣∣∣∣∣∣
~x = max

~y∈ῩΠ̄ ~x

{p̃ (~y)}



 ⊂ D̄i , i ∈ M̄ . (3.5)

Finally, for all i ∈ M̄
.
−{0} (note that

∫
D̄0

(∑
π̃∈Ω̄ f̃ (~xπ̃)p̃ (~xπ̃)d~x

)
is zero) put

αi
def
=

∫

D̄i

p̃ (~x)d~x .

Due to the fact that D̄i form disjoint splitting of <n and
∫
<n p̃ (~x)d~x = 1, we have that

αi ≥ 0, i ∈ M̄
.
−{0}, and

∑|M̄|
i=1 αi ≤ 1. If we apply lemma 3.1.3, we get 3.2.

q. e. d.

Lemma 3.1.5 Let R be a non-empty class concept on X̄ , and P̃ probability density
on X̄ for which Q̄m,ε and J̄2m

ε are measurable for arbitrary m ≥ 1 and ε > 0. Then:

1. it holds for each ε > 0 and m ≥ 2
ε

that

ProbP̃m
(
Q̄m,ε

)
< 2ProbP̃ 2m

(
J̄2m
ε

)
,

2. it holds for each ε > 0 and m ≥ 1 that

ProbP̃ 2m

(
J̄2m
ε

)
≤ ΠR (2m) 2−

εm
2 .

Proof:
add 1)

We will show ProbP̃ 2m

(
J̄2m
ε

)
> 1

2
ProbP̃m

(
Q̄m,ε

)
. Let χ̃B̄ denote a characteristic function

of the set B̄ . Then, according to Fubini’s theorem

ProbP̃ 2m

(
J̄2m
ε

)
=

∫

X̄2m

χ̃J̄2m
ε

(
^
x

2m
)
dP̃ 2m

(
^
x

2m
)

=

∫
^
x∈X̄m

(∫
^
y ∈X̄m

χ̃J̄2m
ε

(
^
x,

^
y
)
dP̃m

(
^
y
))

dP̃m
(
^
x
)
≥

≥
∫
^
x∈Q̄m,ε

(∫
^
y ∈X̄m

χ̃J̄2m
ε

(
^
x,

^
y
)
dP̃m

(
^
y
))

dP̃m
(
^
x
)
.

Let
^
x ∈ Q̄m,ε. Then definition of Q̄m,ε follows that there exists an r̄^x ∈ RP̃ ,ε such that

^
x ∩ r̄^x = ∅. Further let the set K̄

r̄^
x

2m,ε be defined as

K̄
r̄^
x

2m,ε
def
=
{(

^
x,

^
y
)
∈ X̄m × X̄m

∣∣∣
(
^
x ∩ r̄^x = ∅ and

∣∣∣
^
y ∩ r̄^x

∣∣∣ ≥ εm

2

)}
.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

Obviously K̄
r̄^
x

2m,ε ⊂ J̄2m
ε , and therefore

ProbP̃ 2m

(
J̄2m
ε

)
≥
∫
^
x∈Q̄m,ε

(∫
^
y ∈X̄m

˜χ
K̄
r̄^
x

2m,ε

(
^
x,

^
y
)
dP̃m

(
^
y
))

dP̃m
(
^
x
)
.

For each fixed
^
x ∈ Q̄m,ε the inner integral represents the probability that in m independent

selections of bionomically distributed variable there occurs an event with probability ε at
least mε

2
times. According to lemma 3.1.2, for an arbitrary m ≥ 2

ε
, this probability is

greater than 1
2
. Hence, we get

ProbP̃ 2m

(
J̄2m
ε

)
>

∫
^
x∈Q̄m,ε

1

2
dP̃m

(
^
x
)

=
1

2
ProbP̃m

(
Q̄m
ε

)
.

add 2)

Let Ω̄
def
= {σ1, . . . , σ2m!} be the set of all permutation of the set {1, . . . , 2m}. Evidently

ProbP̃ 2m

(
J̄2m
ε

)
=

∫

X̄2m

χ̃J̄2m
ε

(
^
x

2m
)
dP̃ 2m

(
^
x

2m
)

=

∫

X̄2m

χ̃J̄2m
ε

(
^
x

2m

σj

)
dP̃ 2m

(
^
x

2m

σj

)

for all the permutations σj, j∈{1, . . . , 2m!} , where the symbol
^
x

2m

σj
denotes

^
x

2m
with a

permutated order of elements, and χ̃ (ā) is a characteristic function of the set ā . Hence,
it ensues that

ProbP̃ 2m

(
J̄2m
ε

)
=

∫

X̄2m

1

(2m)!

∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)
dP̃ 2m

(
^
x

2m

σj

)
.

Using the theorem contained in the formula 3.2 and the fact that
∫
X̄2m dP̃

2m
(
^
x
)

= 1, we

get

∫

X̄2m

1

(2m)!

∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)
dP̃ 2m

(
^
x

2m

σj

)
≤ 1

2m!
max
^
x∈X̄2m




∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)


 . (3.6)

It is, therefore, sufficient for proof if we demonstrate the validity of the estimate

1

2m!

∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)
≤ ΠR (2m) 2−

εm
2

for any arbitrary
^
x

2m
∈ X̄2m.

Let us take fixed
^
x ∈ X̄2m and define the set

Ψ̄^
x

def
=
{
r̄ ∈ RP̃ ,ε

∣∣∣
(
∃σ ∈ Ω̄

) (
if

^
x

2m

σ
def
=
(
^
z ,

^
y
)
, then r̄ ∩ ^

z = ∅ and
∣∣∣r̄ ∩

^
y
∣∣∣ ≥ mε

2

)}
.

Further, let us define for each r̄ ∈ Ψ̄^
x the set

Θ̄^
x ,r̄

def
=
{
σ ∈ Ω̄

∣∣∣ if
^
x

2m

σ
def
=
(
^
z ,

^
y
)
, then r̄ ∩ ^

z = ∅ and
∣∣∣r̄ ∩

^
y
∣∣∣ ≥ mε

2

}
. (3.7)
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

Let us establish cardinality of the set Θ̄^
x ,r̄

. Let us denote l
def
=
∣∣∣r̄ ∩ ^

x
∣∣∣ =

∣∣∣r̄ ∩
^
y
∣∣∣. Let

us now discuss the question in how many ways it is possible to permutate elements in
^
x in a way to meet the conditions of 3.7 (for an r̄ given fixed ). The number of these
possibilities is evidently equal to the number of ways in which l points may be placed

in m positions in
^
y multiplied by the number of permutations (2m − l) of points not

belonging to r̄ , multiplied by the number of permutations of l points that belong to r̄

and which are already in selected positions
^
y . Hence,

∣∣∣Θ̄^
x ,r̄

∣∣∣ =

(
m

l

)
· (2m− l)! · l! . (3.8)

Further, the number of different points in
^
x at most equals the number 2m, and it

follows that with the help of all sets in RP̃ ,ε we can create at best ΠR (2m) of different sets

in the form of r̄∩^x. Hence, the estimate holds (in fact it is
{
v̄
∣∣∣
(
∃r̄ ∈ Ψ̄^

x

) (
v̄ = r̄ ∩ ^

x
)}
⊂

ΠR

(
^
x
)

) ∣∣Ψ̄^
x

∣∣ ≤ ΠR (2m) .

We are concerned, as our target, with the number of permutations σ such for which
^
x

2m

σ ∈ J̄2m
ε . However, this number equals the cardinality of the set

⋃
r̄∈Ψ̄^

x
Θ̄^
x ,r̄

, so we

can write
∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)
≤

∣∣∣∣∣∣
⋃

r̄∈Ψ̄^
x

Θ̄^
x ,r̄

∣∣∣∣∣∣
≤
∣∣∣Θ̄^

x ,r̄

∣∣∣
∣∣Ψ̄^

x

∣∣ .

If we recall the definition of the set J̄2m
ε (see 3.1.2), we can see that l =

∣∣∣r̄ ∩
^
y
∣∣∣ ≥ mε

2
. So

we get

1

(2m)!

∣∣∣Θ̄^
x ,r̄

∣∣∣
∣∣Ψ̄^

x

∣∣ 3.8
=

(
m
l

)
(

2m
l

)
∣∣Ψ̄^

x

∣∣ =
m(m− 1) · · · (m− l + 1)

2m(2m− 1) · · · (2m− l + 1)

∣∣Ψ̄^
x

∣∣ ≤ 1

2l
∣∣Ψ̄^

x

∣∣ ≤ 1

2
mε
2

∣∣Ψ̄^
x

∣∣

which directly implies that

1

(2m)!

∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)
≤ ΠR (2m) 2−

mε
2 .

Because
^
x was chosen arbitrarily,

1

2m!
max
^
x∈X̄2m




∑

σj∈Ω̄

χ̃J̄2m
ε

(
^
x

2m

σj

)


 ≤ ΠR (2m) 2−

mε
2 ,

which together with 3.6 completes the proof.
q. e. d.

The previous lemma makes it possible to obtain upper estimate of probability of an
event when, based on a random sample, we do not obtain ε-transversal for the sets in
error sets R .
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

It is evident, on the basis of lemma 2.1.3, that if the VC-dimension of the hypothesis
class H is finite, then the number ΠH (m) is polynomially bounded in view of m. That
is why the asymptomatic behavior of the expression ΠH (2m) 2−

εm
2 in the neighborhood

of infinity is given by the exponential member, and obviously this value approaches zero
for large values of m very rapidly. Now we will estimate the size m (hence length of the
sample) so that the expression 2ΠH (2m) 2−

εm
2 is smaller than the number δ.

Lemma 3.1.6 Let α, β,m be positive numbers, m ≥ αl̃og2 (e) 3 and m ≥ αl̃og2 (βm).
Then,

(∀t > 0)
(
m+ t > αl̃og2 (β (m+ t))

)
. (3.9)

Proof:
Let us define a function f̃ (m)

def
= m− αl̃og2 (βm). Then,

f̃ ′ (m) = 1− αl̃og2 (e)

m
.

Hence

f̃ ′ (m) = 0 ⇒ m = αl̃og2 (e)

and obviously for all m > αl̃og2 (e) the function f̃ (m) is monotone increasing. At the

same time, f̃ (m) is positive.
q. e. d.

Lemma 3.1.7 Let α, β, ε be positive numbers, 1
ε
≥ αl̃og2 (e) and 1

ε
≥ αl̃og2

(
β
ε

)
. Then,

(∀t ∈ (0, ε))

(
1

ε− t
> αl̃og2

(
β

ε− t

))
. (3.10)

Proof:
It is obvious that 1

ε−t = 1
ε

+ t
(ε−t)ε . Let m = 1

ε
. For such m prepositions of the lemma

3.1.6 are satisfied, which follows the proof.
q. e. d.

3 l̃og2 (e) = 1

l̃n(2)
=' 1.44269504088896
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

0.0 0.2 0.4 0.6 0.8 1.0 1.2
ε

0

2

4

6

8

10

12

14

ω
(ε

)

ω(1) = 12.610894152

Solution of equation 1/ε=(16e/ω2 ) ·log2 (ω/ε)

+ 0.0 +0.01 +0.02 +0.03 +0.04

0.00 – 1.81 2.46 2.94 3.33
0.05 3.67 3.97 4.25 4.50 4.73
0.10 4.95 5.15 5.35 5.53 5.71
0.15 5.88 6.04 6.19 6.34 6.49
0.20 6.63 6.76 6.90 7.02 7.15
0.25 7.27 7.39 7.51 7.62 7.73
0.30 7.84 7.94 8.05 8.15 8.25
0.35 8.35 8.44 8.54 8.63 8.72
0.40 8.81 8.90 8.98 9.07 9.15
0.45 9.24 9.32 9.40 9.48 9.56

Figure 3.1: Graph of the solution of equation 1
ε

= 16e
ω2(ε)

log2

(
ω(ε)
ε

)
. The corresponding

source code in python language is listed in Appendix 4.1.1.

Lemma 3.1.8 Let m be a natural number, 0 < ε < 1 and

m ≥ max

{
4

ε
log2

(
2

δ

)
,
8d

ε
log2

(
12.611

ε

)}
. (3.11)

Then, 2Φd,2m2−
εm
2 ≤ δ.

Proof:

The lemma 2.1.3 postulates the inequality Φd,2m ≤
(

2em
d

)d
, thus it suffices to show that

2
(

2em
d

)d ≤ δ2
mε
2 . This is equivalent to the inequality

mε

2
≥ dlog2

(
2me

d

)
+ log2

(
2

δ

)
.

The first condition on m in 3.11 implies mε
4
≥ log2

(
2
δ

)
, so the rest of the proof is reduced

to showing
mε

4
≥ dlog2

(
2me

d

)
. (3.12)

To do so, let us define (see graph on Figure 3.1)

αε
def
=

16e

12.6112
, βε

def
= 12.611 .

It is obvious that

(∀ε ∈ (0, 1〉)
(

1

ε
≥ 1 >

16e

12.6112
log2 (e) = αεlog2 (e) ' 0.394539011

)
. (3.13)

At the same time numerical calculation shows (again see graph on Figure 3.1) that for
ε = 1 is

1

ε
≥ 16e

12.6112
log2

(
12.611

ε

)
. (3.14)
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

Inequalities 3.13 and 3.14 follows that both assumptions of the lemma 3.1.7 are true and
hence the inequality 3.14 is valid for any ε ∈ (0, 1〉.
Further let us define

αm
def
=

4d

ε
, βm

def
=

2e

d
, m =

8d

ε
log2

(
12.611

ε

)
.

Hence we get for any ε ∈ (0, 1〉

1

ε
≥ 16e

12.6112
log2

(
12.611

ε

)
⇔ 2log2

(
12.611

ε

)
≥ log2

(
16e

ε
log2

(
12.611

ε

))
⇔

⇔ 8d

ε
log2

(
12.611

ε

)
≥ 4d

ε
log2

(
16e

ε
log2

(
12.611

ε

))
⇔ m ≥ αmlog2 (βmm) . (3.15)

At the same time, for any 0 < ε < 1 it is straightforward that

m =
8d

ε
log2

(
12.611

ε

)
≥ 4d

ε
log2 (e) = αmlog2 (e) . (3.16)

Resembly as in the previous case inequalities 3.15 and 3.16 follows that both assumptions
of the lemma 3.1.6 are true and hence the last inequality 3.15 is valid for any

m ≥ 8d

ε
log2

(
12.611

ε

)
.

But

m ≥ αmlog2 (βmm)⇔ mε

4
≥ dlog2

(
2me

d

)
,

and finally
mε

2
=
mε

4
+
mε

4
≥ dlog2

(
2me

d

)
+ log2

(
2

δ

)
.

q. e. d.

Lemma 3.1.9 Let the matrix Z be a real matrix of the type m×n and let it hold that

(∀i∈{1, . . . ,m})
(∑n

j=1
Z i,j

n
> α

)
. Then, there exists j0∈{1, . . . , n} so that

m∑

i=1

Zi,j0

m
> α.

Proof:
Proof will be made by means of contradiction. It ensues from the assumption of the
lemma that

∑m
i=1

∑n
j=1Zi,j > αnm. If the lemma’s theorem did not hold, then – on the

contrary –
∑n

j=1

∑m
i=1Zi,j < αmn would have to hold, which is a contradiction.

q. e. d.
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

Lemma 3.1.10 Let X̄
def
= {x1, . . . , xd} be a finite set, k ∈ {1, . . . , d} , and 0 ≤ ω ≤ 1

Further let

P
def
=
{
ā ⊂ X̄ ||ā| ≥ k

}
and Q

def
=
{
b̄ ⊂ X̄

∣∣1 ≤
∣∣b̄
∣∣ < k

}
.

Let us randomly select a set s̄ ⊂ X̄ and let the probability of getting s̄ ∈ P be equal to ω.
Finally, let us denote the average size of selected sets as ρ. Then,

ρ ≤ k · (1− ω) + d · ω . (3.17)

Further, let on the set X̄ be defined uniform probability P̃ and let ϑ denotes average
probability of the selected sets. Than

ϑ ≤ k

d
· (1− ω) + ω . (3.18)

Proof:
Denote selected sets as C

def
= {c̄1, . . . , c̄p}, where p is the number of trials. Obviously

ρ =

∑p
i=1 |c̄i|
p

=

∑
c̄i∈Q |c̄i|
p

+

∑
c̄i∈P |c̄i|
p

≤

≤ k · |{i |c̄i ∈ Q}|
p

+
d · |{i |c̄i ∈ P}|

p
= k · (1− ω) + d · ω .

The proof of the second estimation is straightforward.
q. e. d.

Lemma 3.1.11 Let for any ~z ∈ {0, 1}n the symbol n+(~z) denotes the number of ones in
~z . Than

1

2n

∑

~z∈{0,1}n
n+(~z) =

n

2
.

Proof:
Let ~o ∈ {0, 1}n is defined as ~o

def
= (1, 1, · · · , 1) and let Ā, B̄ be sets such that for all ~a ∈ Ā

is the vector − (~a− ~o) ∈ B̄ and for all ~b ∈ B̄ is the vector −
(
~b− ~o

)
∈ Ā. Hence the

sets Ā , B̄ form disjoint splitting of the set {0, 1}n and in addition
∣∣Ā
∣∣ =

∣∣B̄
∣∣. So we

have

1

2n

∑

~z∈{0,1}n
n+(~z) =

1

2n

∑

~a∈Ā

n+(~a)− n+(~a− ~o) =
1

2n

∑

~a∈Ā

n =
1

2n
· 2n

2
· n =

n

2
.

q. e. d.

The lemmas and theorems postulated above make it possible directly to prove the
fundamental theorem of this part. However, let us omit in our considerations the trivial
cases described in the following definition.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

Definition 3.1.6 Concept class C defined over the set X̄ is called nontrivial
concept class iff

(∃c̄1, c̄2 ∈ C) such that c̄1 6= c̄2 and
(
c̄1 ∩ c̄2 6= ∅ or c̄1 ∪ c̄2 6= X̄

)
.

Concept class is called trivial concept class in other cases.

So what is a trivial concept class? If we negate definition condition, we get

(∀c̄1, c̄2 ∈ C)
(
c̄1 = c̄2 or

(
c̄1 ∩ c̄2 = ∅ and c̄1 ∪ c̄2 = X̄

))
.

Clearly, we can reformulate the definition 3.1.6 in the form that the concept class is
trivial if and only if it consists of one concept only, or has two concepts whose form
disjoint splitting of the set X̄ .

c̄1 ∩ c̄2

c̄2
.
−c̄1 c̄2

.
−c̄1

X̄
.
−{c̄1 ∪ c̄2}

Figure 3.2: Two necessary minimal contents of nontrivial concept classes (stained areas
must be nonempty sets).

It can be expected that we focus on nontrivial classes. The next theorem postulates upper
bound on necessary queries that have to be provided by an environment (we mean some
kind of supervision) to learning algoritm to be an (ε, δ)-algorithm, which is the main result
of the standard PAC learning theory.

Theorem 3.1.12 Let C be a nontrivial, well-behaved concept class. Then, the following
holds:

1. If VCdim (C) = d and d <∞ then

(a) for any 0 < ε < 1
2

there is no (ε, δ)-learning algorithm which exploits less than

max

(
1− ε
ε

ln

(
1

δ

)
, d (1− 2 (ε (1− δ) + δ))

)
(3.19)

queries.

(b) for arbitrary 0 < ε < 1, any learning algorithm using at least

max

(
4

ε
log2

(
2

δ

)
,
8d

ε
log2

(
12.611

ε

))
(3.20)

queries and returning a consistent hypothesis only is an (ε, δ)-learning algo-
rithm.
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

2. C is uniformly learnable if and only if VCdim (C) <∞.

Proof:
Let C be a nontrivial concept class and let VCdim (C) = d be finite.

add Proof of 3.19)

Let 0 < ε < 1
2

and m
def
= max

(
1−ε
ε

ln
(

1
δ

)
, d (1− 2 (ε (1− δ) + δ))

)
. We have to prove that

any arbitrary learning algorithm for C must exploit at least m queries. Proof will be
divided into the following steps:

Proof for the first member of the estimate: Proof of the estimate given by the first
member in 3.19 will be made for the following two cases:

Case 1: C contains at least two different concepts c̄1 and c̄2 which have a non-
empty intersection. Let A∗ be a learning algorithm for C and let us denote
ā

def
= c̄1 ∩ c̄2 and b̄

def
= c̄2

.
−c̄1. Let P̃ be such a probability density on X̄

that ProbP̃
(
b̄
) def

= ε, ProbP̃ (ā) = 1 − ε and let the probability of all the other
elements from X̄ be zero. In view of the probability density thus defined,
we can assume in further text – without loss of generality – that X̄

def
= ā ∪ b̄,

C
def
=
{
ā, X̄

}
and H

def
=
{
∅, ā, b̄, X̄

}
.

According to the first bound of the number of selected samples, m ≤ 1−ε
ε

ln
(

1
δ

)
.

Using the inequality 4

1− ε
ε

<
−1

ln (1− ε)
,

we get

m <
−1

ln (1− ε)
ln

(
1

δ

)
,

mln (1− ε) > ln (δ),

(1− ε)m > δ.

The last inequality says that the probability of selecting all the samples from
the set ā is greater than δ.

All the possible learning algorithms for the concept class C can obviously be
divided into two groups:

4Power series of the function ln (1− ε) is

ln (1− ε) = −ε− ε2

2
− ε3

3
− ε4

4
. . . , for − 1 < ε < 1.

Taking into mind that this power series is absolute convergent (we can multiply it by any polynomial
and apply arbitrary bracketing), we have

(1− ε)ln (1− ε) = −ε+

(
ε2 − ε2

2

)
+

(
ε3

2
− ε3

3

)
+

(
ε4

3
− ε4

4

)
+ . . . > −ε,

because 0 < ε < 1, and hence all the numbers in brackets are positive. So (1 − ε)ln (1− ε) > −ε, which
can be expressed as

1− ε
ε

<
−1

ln (1− ε)
.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

1. algorithms which, in case of selecting precisely m samples from ā , generate
hypothesis ā . Such algorithms produce for the target concept X̄ a
hypothesis with an error equal to ProbP̃

(
b̄
)

= ε.

2. algorithms, which – in this instance – generate hypothesis b̄ , X̄ or ∅.
However, since – according to the assumption of the theorem ε < 1

2
– such

algorithms produce, in case of the target concept ā , an error at least
equal to ε.

We have, therefore, shown that there exists the concept class C such that
for any learning algorithm A∗ there exists the target concept ( x̄ in the
group 1.) and ā in the group 2.)) for which we get the hypothesis with error
greater than ε with probability greater than δ. Thus, there cannot exist an
(ε, δ)-learning algorithm for C , requiring less than 1−ε

ε
ln
(

1
δ

)
queries.

Case 2: C contains at least two different concepts c̄1 and c̄2 for which c̄1∪ c̄2 6= X̄.
Let us put ā

def
= X̄

.
− (c̄1 ∩ c̄2) and b̄

def
= c̄1. Let us define probability density

P̃ just as in the previous case, e.g. ProbP̃
(
b̄
) def

= ε, ProbP̃ (ā) = 1 − ε and

the probability of all the other elements from X̄ is zero. Put X̄
def
= ā ∪ b̄,

C
def
=
{
b̄, ∅
}

, H
def
=
{
∅, ā, b̄, X̄

}
. Further, let us take into consideration random

selection of m negative samples which are all from the set ā . The rest of the
proof is in the same manner as in the preceding case.

Proof for the second member of the estimate: Now what remains to be done is to
prove the validity of the second estimate in the expression 3.19. Since C is a
nontrivial class concept, VCdim (C) = d is equal at least to 1. Therefore, there
exists a d-element subset Γ̄ ⊂ X̄, which is shattered by the class concept C . Let
probability density P̃ be uniform on the set Γ̄ and zero on its complement to the
set X̄ (thanks to this selection the entire proof is based solely on the combinatorial
properties of finite sets). In view of this probability density we can again put –

without loss of to generality – X̄
def
= Γ̄ and C

def
= 2Γ̄. Let us assume that some

learning algorithm A∗ has obtained a sample of the length of m elements from

the set X̄ , and let us denote this sample
(
^
x, ~z

)
,
^
x ∈ X̄m, while the number of

mutually different elements xi in the sample
^
x is l. Let us define the set system

of all concepts consistent with the sample
(
^
x, ~z

)

B(
^
x ,~z)

def
=
{
c̄ ∈ C

∣∣∣c̄ is consistent with
(
^
x, ~z

)}
.

If we subtract
^
x from X̄ , there remains a set of the size (d− l), which has 2d−l

subsets. Each of these subsets, unified with
^
x , is a consistent hypothesis for the

sample
^
x . Thus,

∣∣∣B(
^
x ,~z)

∣∣∣ = 2d−l. Let us consider that the algorithm A∗ always

produce consistent hypotheses. Therefore
(
∃h̄ ∈ B(

^
x ,~z)

)(
∀c̄ ∈ B(

^
x ,~z)

)(
Ã∗
((

^
x, ~z

)
= h̄

))
,

in the other words, for the sample
(
^
x, ~z

)
the algorithm A∗ must generate a

hypothesis from B(
^
x ,~z) identical one for all the target concepts from B(

^
x ,~z) (the

60 F. Hakl ICS Prague, Tech. Rep. 1227
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

result of the algorithm depends solely on its definition and on the sample used).
The number of elements in which this hypothesis can differ from the target concept
equals d − l. To explain this fact in a detail we can denote those elements as
{y1, . . . , yd−l} = X̄ − ^

x. Obviously, all points yi can be placed into sets h̄ ∩ c̄,
X̄

.
−
(
h̄ ∪ c̄

)
and h̄4c̄ arbitrarily. Therefore all subset of {y1, . . . , yd−l} are contained

inside such as outside of sets h̄ 4 c̄ for c̄ ∈ B(
^
x ,~z). Because the probability of

each element yi is equal to the value 1
d

we can estimate mean error of the generated
hypothesis over all the target concepts in B(

^
x ,~z) as (see lemma 3.1.11)

1

2d−l

∑

c̄∈B
(^x , ~z)

∣∣h̄4 c̄
∣∣

d
=

1

2d−l

∑

~z∈{0,1}d−l

n+ (~z)

d
3.1.11
=

d− l
2d
≥ d−m

2d
.

For this moment let us define for each target concept c̄ ∈ B(
^
x ,~z) and each hypothesis

h̄ ∈ B(
^
x ,~z) the number

Z c̄,h̄
def
= eP̃

(
c̄, h̄
)
.

As we explained above, obviously it holds that

(
∀h̄ ∈ B(

^
x ,~z)

)



∑

c̄∈B
(^x , ~z)

Z c̄,h̄∣∣∣B(
^
x ,~z)

∣∣∣
>
d−m

2d


 .

According to (lemma 3.1.9) there exists target concept b̄ ∈ B(
^
x ,~z) with average

error at least d−m
2d

(in the sense that for random choice of
^
x ∈ X̄m the average error

of generated hypotheses is at least d−m
2d

. In other words, there exists a concept in
relation to which all the consistent hypotheses have mean error ρ

ρ ≥ d−m
2d

. (3.21)

Finally let us define

E
def
=
{
h̄ ∈ B(

^
x ,~z)

∣∣eP̃
(
b̄, h̄
)
≥ ε
}

, S̄
def
=
{(

^
x, ~z

)
is a sample of b̄ and

^
x ∈ Xm

}
,

and

P
def
=
{(

^
x, ~z

)
∈ S̄

∣∣∣Ã∗
((

^
x, ~z

))
∈ E

}
, Q

def
=
{(

^
x, ~z

)
∈ S̄

∣∣∣Ã∗
((

^
x, ~z

))
6∈ E

}
.

Let us assume, that the probability of the set P be equal to δ ∈ (0, 1) and recall
that all hypotheses in the set system E are produced by the learning algorithm A∗

as a response to the samples from P . So ProbP̃ (P) = ProbP̃ (E). Now let us
assume that ProbP̃ (E) = δ − γ, where γ ∈ (0, δ). Hence we can estimate average
probability of the produced hypothesis over all samples from the set S̄ using the
lemma 3.1.10 (note that the probability on X̄ is assumed to be uniform) and the
3.21 as

ε (1− δ) + δ > ε (1− (δ − γ)) + (δ − γ)
3.18

≥ ρ
3.21

≥ d−m
2d

.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

It follows that
m > d(1− 2(ε(1− δ) + δ) ,

which contradicts the second part of upperbound in the assumption 3.19. So
ProbP̃ (E) ≥ δ.

add Proof of the estimate 3.20)
Let c̄ ∈ C be fixed and let

m ≥ max

{
4

ε
log2

(
2

δ

)
,
8d

ε
log2

(
12.611

ε

)}

and
Q̄m,ε =

{
^
x ∈ X̄m

∣∣∣
(
∃r̄ ∈ RP̃ ,ε

)(
^
x ∩ r̄ = ∅

)}
.

If we recall the definiton 3.1.2, the lemma 3.1.5, the theorem 2.4.4 and the lemma 3.1.8
we get

ProbP̃
(
Q̄m,ε

) 3.1.5

≤ 2ΠR (2m) 2−
εm
2

2.4.4
= 2ΠH (2m) 2−

εm
2

3.1.8

≤ δ ,

where R
def
=
{
h̄4 c̄

∣∣h̄ ∈ H
}

. Due to the fact that the algorithm A∗ produces consistent
hypotheses only we can write

h̄ = Ã∗
((

^
x, ~z

))
and eP̃

(
c̄, h̄
)
> ε ⇒ ^

x ∈ Q̄m,ε .

But the probability of the set Q̄m,ε is less than ε which concludes the proof of this part.
add Proof of the part 2)

Let us assume that VCdim (C)
def
= +∞. Obviously, in this case it is possible for every natural

d to perform a sequence of steps in the proof of the second part of the estimate 3.19.
However, if we select the values ε and δ such that the expression (1− 2 (ε (1− δ) + δ))
is positive, we get for this particular selection of ε, δ that there exists no (ε, δ)-learning
algorithm for any fixed chosen length of samples.

Conversely, on the basis of the validity of the estimate 3.20 it is possible to construct
an (ε, δ)-learning algorithm in such a way that we first well-order, in whatever fashion,
the hypotheses class H (each set can be well-ordered, see the Zermelo’s theorem, e.g.
[PBKN90], p. 44, and let us further recall that in case of well-ordering, there exist no
incomparable elements in the set). Then, we assign to each sample from S̄C the first con-
cept (in view of the actual ordering) which is consistent with it. That this sample exists
ensues from the inclusion C ⊂ H. According to 3.20, this algorithm is an (ε, δ)-learning
algorithm.

q. e. d.

Obviously, this theorem is much stronger than the theorem 1.2.1 since the value |C|
in the upper estimate has now been replaced by the value VCdim (C) which may be
substantially smaller. And in addition, this theorem is apllicable in the case of infinite
set X̄ and infinite concept class C .

Example 3.1.3 Let X̄ , C and A∗ be defined in the same manner as in the
example1.2.1. Hence VCdim (C) = 1 and if

m ≥
(

4

ε
log2

(
2

δ

)
,
8

ε
log2

(
12.611

ε

))
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

then the learning algorithm A∗ is (ε, δ)-learning algorithm.

Example 3.1.4 Let X̄ , C and A∗ be defined in the same manner as in the
example1.2.2. Hence VCdim (C) = 2n and if

m ≥
(

4

ε
log2

(
2

δ

)
,
16n

ε
log2

(
12.611

ε

))

then the learning algorithm A∗ is (ε, δ)-learning algorithm.

Note that in the both cases discussed above the bellow bound on the m is independent
on the number k (e.g. on the size of the space X̄ ).

3.1.1 Delta rule learning algorithm

As an example of consistent learning algorithm, let us now study the so-called delta
rule algorithm which is able to find a separation hyperplane for a given tuple of linearly
separable sets of Euclidean space.

Definition 3.1.7 Let (~x1, y1) , . . . , (~xm, ym) be a given sequence of tuples in <n×{−1,+1},
t ≥ 1. Further, let vector’s sequence {~wi}∞1 satisfy the following recursive formulas

1. put ~w1
def
= ~0, k = 1

2. let k = k + 1 and J̄
def
= {j∈{1, . . . ,m} |s̃gn (〈~wk |~xj 〉) 6= yj }

(a) if J̄ = ∅ put ~wk+1 = ~wk and STOP,

(b) else let jk ∈ J̄ be arbitrary. Then put

~wk+1
def
= ~wk + yjk~xjk

and REPEAT step 2).

Then we say that this sequence arose by application of delta rule on (~x1, y1) , . . . , (~xm, ym).

A basic properties of the delta rule algorithm sumarizes the next theorem:

Theorem 3.1.13 Assume that sequence {~wi}∞1 arose by application of delta rule and let

there exists a vector ~̂w such that for all indexes i∈{1, . . . ,m} holds s̃gn
(〈

~̂w |~xi
〉)

= yi.

Further let

α
def
= max

i∈{1,...,m}

{
‖~xi‖2} and β

def
= min

i∈{1,...,m}

{∣∣∣
〈
~̂w |~xi

〉∣∣∣
}
> 0 .

Then there exists an natural number z > 0 satisfying ~wz+1 = ~wz and z can be estimated
as

z ≤
α
∥∥∥ ~̂w
∥∥∥

2

β2
+ 1 .
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

Proof:
By definition of delta rule it is obvious that for arbitrary k > 1 for which ~wk 6= ~wk−1

holds

~wk =
k−1∑

p=1

~̈xjp , where ~̈xjp
def
=

{
~xjp pro yjp = 1
−~xjp pro yjp = −1

.

Further let us assume that k > t. By the fact that s̃gn
(〈

~̂w
∣∣~xjp

〉)
6= yjp and by

definition of ~̈xjp the inequality
〈
~̂w
∣∣∣~̈xjp

〉
> 0 is true for all vectors ~̈xjp . Thus we can write

the estimation
〈
~̂w |~wk

〉
=

k−1∑

p=1

〈
~̂w
∣∣∣~̈xjp

〉
≥ (k − 1) β > 0.

Hence, we get
∣∣∣
〈
~̂w |~wk

〉∣∣∣
2

≥ (k − 1)2 β2. Further, using Schwartz inequality
∣∣∣
〈
~a
∣∣∣~b
〉∣∣∣

2

≤
‖a‖2‖b‖2 we finally show

β2 (k − 1)2

∥∥∥ ~̂w
∥∥∥

2 ≤ ‖~wk‖2. (3.22)

But, at the same time, for any k is

~wk = ~wk−1 + ~̈xjk−1
,

and after square

‖~wk‖2 = ‖~wk−1‖2 + 2
〈
~wk−1

∣∣∣~̈xjk−1

〉
+
∥∥∥~̈xjk−1

∥∥∥
2

.

By properties of delta rule algorithm must be s̃gn
(〈
~wk−1

∣∣~xjk−1

〉)
6= yjk−1

and therefore〈
~wk−1

∣∣∣~̈xjk−1

〉
≤ 0. Hence, the previous inequality one could rewrite to the form

‖~wk‖2 − ‖~wk−1‖2 ≤
∥∥∥~̈xjk−1

∥∥∥
2

. (3.23)

Now, let as sum up equations 3.23 over all j∈{1, . . . , k} (remember that ~w1 = ~0 ). We
get

‖~wk‖2 ≤
k−1∑

p=1

∥∥∥~̈xjp
∥∥∥

2

≤ (k − 1)α.

Blended together the last inequality and inequality 3.22 we can coclude

β2 (k − 1)2

∥∥∥ ~̂w
∥∥∥

2 ≤ (k − 1)α

and finally

k − 1 ≤
α
∥∥∥ ~̂w
∥∥∥

2

β2
.
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

There is a constant independent on the value of k on the right side of the last expression.
It follows that an z > 0 mentioned in the statement of the theorem must exists.

q. e. d.

Our chiev interest is to illustrate by examples the PAC learning model. Reconsider
now the definition of delta rule learning algorithm. Let us change step 2.(b) in defini-
tion 3.1.7 by ”else let jk = min

{
J̄
}

. Then put” . To do it so, we get deterministic
version of delta rule algorithm and we can apply bellow bound to sufficient number of
examples used by (ε, δ)-algorithm. Obviously, each vector ~w produced by delta rule al-
gorithm is homogenous linear separator of positive and negative patterns in the sequence
~x1, ~x2, · · · , ~xm. Hence corresponding concept class C is the set of all halfspaces with
zero vector in its border and C = H. As we already shown, VCdim (C) = n, which implies
that we need at least

m ≥ max

(
4

ε
log2

(
2

δ

)
,
8n

ε
log2

(
12.611

ε

))

to keep the delta rule process to be (ε, δ)-algorithm.

3.1.2 Lover bound for maximal steps of delta rule algorithm.

From another point of view the statement of the Theorem 3.1.13 only says that the delta
rule algorithm is finite process without any posibility to estimate the number of necessary
iterations. Unfortunately, as we explain in the following text the number of delta rule
iterations can not be upper bounded by polynomial in n.

Definition 3.1.8 Let Ā, B̄ ⊂ <n. Then the tuple (~w, t) ∈ <n×< is linear separator
of sets Ā , B̄ iff

(
∀~a ∈ Ā

)
(〈~a |~w 〉 < t) and

(
∀~b ∈ B̄

)(〈
~b |~w

〉
> t
)
.

Lemma 3.1.14 Let Ā ⊂ {−1,+1}n, B̄
def
= {−1,+1}n

.
−Ā and (~w, t) be a linear separator

of sets Ā and B̄ . Then there exists a linear separator (~w∗, t) of sets Ā , B̄ such that

(∀~x, ~y ∈ {−1,+1}n) (~x 6= ~y ⇒ 〈~w∗ |~x〉 6= 〈~w∗ |~y 〉) . (3.24)

Proof:

Let (~w, t) be an arbitrary linear separator of sets Ā and B̄ . Further, let there exists
~y, ~z ∈ {−1,+1}n such that ~x 6= ~y and 〈~w |~x〉 = 〈~w |~y 〉.
Now let us define a positive number β as

0 < 2β < min
~r,~s∈{−1,+1}n

{|〈~w |~r 〉 − 〈~w |~s〉| > 0} .

Because ~x 6= ~y, there exists an index k for which ~xk 6= ~yk. Put ~w∗ = ~w+ β~ek, where ~ek
has all coordinates zero except k-th, which is 1. Due to definition of number β the tuples
(~w∗, t) is linear separator of sets Ā and B̄ and at the same time

(∀~r,~s ∈ {−1,+1}n) (〈~w |~r 〉 6= 〈~w |~s〉 ⇒ 〈~w∗ |~r 〉 6= 〈~w∗ |~s〉)
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

and
|〈~w∗ |~x〉 − 〈~w∗ |~y 〉| ≥ 2β ,

so the number of tuples ~y, ~z for which 〈~w |~x〉 = 〈~w |~y 〉 is decreased at least by 1. Obvi-
ously we can repeat this construction till all such tuples ~y, ~z are exhausted.

q. e. d.

Based on the previous lemma we can define recursive algorithm which allows us to
postulate exponential lower bound on the number of hypercube vertices dichotomies.
Thist recursive algorithm is illustrated on the Fig. 3.3.

Figure 3.3: Construction of 2k+1 dichotomies derived from a fixed dichotomy of {−1,+1}k
(for k = 2).

Theorem 3.1.15 The number of linearly separable dichotomies of the cube {−1,+1}n

is larger than 2
n(n−1)

2 .

Proof:
We proceed the proof by induction on n. The case n = 1 is clear because there exist
4 linearly separable dichotomies of {−1,+1} exactly. So we suppose that n ≥ 1 and
that statement holds for this n. Let

(
Ā, B̄

)
be a fixed linearly separable dichotomy of the

cube {−1,+1}n . As follows from the lemma 3.1.14 we can assume that corresponding
linear separator (~w∗, t) fullfils the condition 3.24. So there exists 2n mutually different
real numbers ωi, i∈{1, . . . , 2n} , such that ωi < ωi+1, i∈{1, . . . , 2n − 1} , and

{ω1, ω2, · · · , ω2n} = {ω |ω = 〈~w∗ |~x〉, ~x ∈ {−1,+1}n}

Let us define

t0
def
= ω1 − 1, ti

def
=
ωi + ωi+1

2
, i∈{1, . . . , 2n − 1}, t2n

def
= ω2n + 1,

Ā−
def
=
{

(~a,−1) ∈ {−1,+1}n+1
∣∣~a ∈ Ā

}
, B̄−

def
=
{(
~b,−1

)
∈ {−1,+1}n+1

∣∣∣~b ∈ B̄
}
,

and let for all i∈{0, . . . , 2n} is

Ā+
ti

def
=
{

(~x,+1) ∈ {−1,+1}n+1 |〈~w∗ |~x〉 < ti
}
, B̄+

ti

def
=
{

(~x,+1) ∈ {−1,+1}n+1 |〈~w∗ |~x〉 > ti
}
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

and
C̄A
i = Ā− ∪ Ā+

ti
, C̄B

i = B̄− ∪ B̄+
ti
.

Obviously, a tuple
(
C̄A
i , C̄

B
i

)
is a dichotomy of the cube {−1,+1}n+1 . Further we show

that ((
~w∗,

t− ti
2

)
,
t+ ti

2

)
. (3.25)

is a linear separator of
(
C̄A
i , C̄

B
i

)
.

Let ~x ∈ Ā−. Then
(
∃~a ∈ Ā

)
(~x = (~a,−1)) . Hence

〈(
~w∗,

t− ti
2

)
|(~a,−1)

〉
= 〈~w∗ |~a〉 − t− ti

2
< t− t− ti

2
=
t+ ti

2
.

Let ~x ∈ Ā+
ti . Then (∃~y ∈ {−1,+1}n) (~x = (~y, 1) and 〈~w∗ |~y 〉 < ti) . Hence
〈(

~w∗,
t− ti

2

)
|(~y, 1)

〉
= 〈~w∗ |~y 〉+

t− ti
2

< ti +
t− ti

2
=
t+ ti

2
.

Let ~x ∈ B̄−. Then
(
∃~b ∈ B̄

) (
~x =

(
~b,−1

))
. Hence

〈(
~w∗,

t− ti
2

) ∣∣∣
(
~b,−1

)〉
=
〈
~w∗
∣∣∣~b
〉
− t− ti

2
> t− t− ti

2
=
t+ ti

2
.

Let ~x ∈ B̄+
ti . Then (∃~y ∈ {−1,+1}n) (~x = (~y, 1) and 〈~w∗ |~y 〉 > ti) . Hence
〈(

~w∗,
t− ti

2

)
|(~y, 1)

〉
= 〈~w∗ |~y 〉+

t− ti
2

> ti +
t− ti

2
=
t+ ti

2
.

The previous four inequalities follows, that the tuple 3.25 is a linear separator of
the

(
C̄A
i , C̄

B
i

)
. Thus for a given dichotomy

(
Ā, B̄

)
of {−1,+1}n we obtained 2n + 1

mutually different dichotomies of the {−1,+1}n+1 . In addition, it is obvious that for
different dichotomies

(
Ā
′
, B̄

′)
of {−1,+1}n derived dichotomies of {−1,+1}n+1 differs

in corresponding sets Ā− and B̄−.
Finally, let Kn denotes the number of all linearly separable dichotomies of the set

{−1,+1}n . Hence we proved recursive formula Kn+1 ≥ (2n + 1)Kn. As we mentioned
K1 = 4, so

Kn ≥
n−1∏

i=0

(
2i + 1

)
>

n−1∏

i=0

2i = 2
n(n−1)

2 .

q. e. d.

The previous theorem follows the fact that there exists linearly separable splitting
of the cube {−1,+1}n with integer linear separator whose indices can not be upper
bounded by any polynomial in n.

Theorem 3.1.16 There exists a linearly separable dichotomy of the {−1,+1}n such
that any integer linear separator (~w, t) of this dichotomy satisfies estimation

2
n−2

2 ≤
n∑

k=1

|~wk|+ |t| .
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes

Proof:
Let us prove bellow bound. Denote

P̄n
def
=
{(
Ā, B̄

) ∣∣(Ā, B̄
)

is linearly separable splitting of {−1,+1}n
}
.

Further let for all
(
Ā, B̄

)
∈ P̄n is

W̄(Ā,B̄)
def
=
{

(~w, t) ∈ <n ×<
∣∣(~w, t) is integer linear separator of

(
Ā, B̄

)}
.

Finally define integer function ζ̃ (n) as

ζ̃ (n)
def
= max

(Ā,B̄)∈P̄n

{
min

( ~w,t)∈W̄(Ā,B̄)

{⌈
log2

(
n∑

k=1

|~wk|+ |t|

)⌉}}
.

Definition of the function ζ̃ (n) follows that for any dichotomy
(
Ā, B̄

)
∈ P̄n there

exists an integer linear separator (~w, t) ∈ W̄(Ā,B̄) which has all indices bounded to the

interval
(
−2ζ̃(n), 2ζ̃(n)

)
.

Using binary notation we need at most ζ̃ (n) + 1 bits (including sign) to store each
indices of the linear separator. Hence, to store whole linear separator, e.g. n+ 1 indices,
(n+ 1)(ζ̃ (n) + 1) bits is sufficient.

This amount of bits allow to store at most 2(n+1)(ζ̃(n)+1) different linear separators. At

the same time, by the theorem 3.1.15, there exists more than 2
n(n−1)

2 different linearly
separable dichotomies. Hence we get inequality

2(n+1)(ζ̃(n)+1) ≥ 2
n(n−1)

2 .

Therefore (n+ 1)(ζ̃ (n) + 1) ≥ n(n−1)
2

and

ζ̃ (n) + 1 ≥ n(n− 1)

2(n+ 1)
=
n− 2

2
+

1

n+ 1
>
n− 2

2
.

.
q. e. d.

Example 3.1.5 Let X̄
def
= {−1,+1}n and

C =
{
Ā ⊂ {−1,+1}n

∣∣∣Ā and
(
{−1,+1}n

.
−Ā
)

are linearly separable
}
.

Let c̄ ∈ C be such a set, that any integer linear separator (~w, t) of the sets c̄ and

{−1,+1}n
.
−c̄ satisfies 2

n−2
2 ≤

∑n
k=1 |~wk| + |t|. Let us use delta rule as a learning al-

gorithm to find (~w, t). The algorithm stops when return a consistent hypothesis and this
happens after finite number of steps. But in each step of delta rule algorithm absolute

values of the weight vector ~w can increase by one only, so we need at least 2
n−2
n

n+1
steps of

delta rule algorithm.
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Lecture Notes 3.1. ESTIMATE OF THE NUMBER OF SAMPLES

3.1.3 Linear separation and linear programming

Definition 3.1.9 (Mangasarian LP) Let Ā
def
= {~a1, . . . , ~ai} and B̄

def
=
{
~b1, . . . ,~bj

}
be

a finite subsets of the <n . Then Mangasarian linear problem is defined as the
problem find vectors ~y ∈ <i, ~z ∈ <j, ~w ∈ <n and t ∈ < that minimizes

i∑

α=1

~yα +

j∑

β=1

~zβ

subject to
~yα + 〈~w |~aα 〉 − t ≥ 1 for α∈{1, . . . , i}
~zβ −

〈
~w
∣∣∣~bβ
〉

+ t ≥ 1 for β∈{1, . . . , j}
~yα ≥ 0 for α∈{1, . . . , i}
~zβ ≥ 0 for β∈{1, . . . , j} .

Theorem 3.1.17 Let Ā
def
= {~a1, . . . , ~ai} and B̄

def
=
{
~b1, . . . ,~bj

}
be a finite subsets of the

<n . Then

1. There exists a linear separator of the sets Ā and B̄ if and only if the optimal
value of the corresponding Mangasarian LP is zero.

2. If the optimal value of the corresponding Mangasarian LP is zero and (~y∗, ~z∗, ~w∗, t∗)
is optimal solution, than (~w∗, t∗) is linear separator of the sets Ā and B̄ .

Proof:
add 1 ⇒)

Let (~w, t) be linear separator of the sets Ā and B̄ . It means that 〈~w |~aα 〉 − t > 0,

α∈{1, . . . , i} , and
〈
~w
∣∣∣~bβ
〉
− t < 0, β∈{1, . . . , j} . Let

ω
def
= min

{
min {〈~w |~aα 〉 − t |α∈{1, . . . , i}},min

{
−
〈
~w
∣∣∣~bβ
〉

+ t |β∈{1, . . . , j}
}}

.

Clearly, ω > 0 and 〈~w |~aα 〉 − t ≥ ω, α ∈ {1, . . . , i} , and
〈
~w
∣∣∣~bβ
〉
− t ≤ ω. So

〈
~w
ω
|~aα
〉
− t

ω
≥ 1, α∈{1, . . . , i} ,

〈
~w
ω

∣∣∣~bβ
〉
− t

ω
≤ 1. So

(
~0, ~0,

~w
ω
, t
ω

)
is the solution of

the corresponding Mangasarian LP with optimal value 0.
add 1 ⇐ and 2)

Let (~y∗, ~z∗, ~w∗, t∗) is an optimal solution with zero optimal value. It follows that ~y = ~0
and ~z = ~0. Hence a tuple (~w, t) is a linear separator of the sets Ā and B̄ .

q. e. d.
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CHAPTER 3. SAMPLE COMPLEXITY AND VC–DIMENSION Lecture Notes
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Chapter 4

Appendices

4.1 Source codes

4.1.1 Python code for ω(ε) solver

The python code listed bellow were used to compute table and graph on the Fig. 3.1.

#!/usr/bin/python

import string, os, os.path, time, re, random, shutil, sys

import matplotlib.pyplot as plt

import numpy as np

import math

omega = []

epsilon = []

eps = 0.001

step = 0.001

e = 2.71828182845905

log2e = 1.442695040888963387

result = 1.0

while eps <= 1.0 + step :

epsilon.append(eps)

iter = result

residum = 1000000000

while residum > 0.00000000001 : # Newton iterations method $x_{n+1}=x_n-f(x)/f’(x)

value = 1/eps - log2e*math.log(iter/eps)*16*e/iter/iter

derivative = (2*math.log(iter/eps) - 1.0)*log2e*16*e/iter/iter/iter

iter = iter - value/derivative

residum = abs(1/eps - log2e*math.log(iter/eps)*16*e/iter/iter)

result = iter

omega.append(result)

eps += step
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CHAPTER 4. APPENDICES Lecture Notes

######### COMPUTE TABLE #########

def get_index(r,c) : # r row , c column

value = c*0.01 + r*0.05

index = int(value*1000)

return index-1

text_row = u’0.00 ’

col = 0

while col < 5 :

text_row = text_row + " & %8s"%(col*0.01)

col += 1

print "%s \\\\ \\hline"%(text_row)

text_row = u’0.00 ’

row = 0

col = 0

while row < 10 :

while col < 5 :

index = get_index(row,col)

res = unicode("%.2f"%(omega[index]))

if col == 0 and row == 0 : res = u’--’

text_row = text_row + " & %8s"%(res)

col += 1

col = 0

print "%s \\\\"%(text_row)

text_row = "%.2f "%((float(row)+1)/20)

row += 1

print "\\hline"

######### MAKE PLOT #########

plt.title(u’Solution of equation $1/\epsilon=(16e/\omega^2)\cdot\

\log_2(\omega/\epsilon)$’)

plt.xlabel(u’$\epsilon$’)

plt.ylabel(u’$\omega(\epsilon)$’)

plt.text(0.8,13.0,u’$\omega(1)$ = 12.610894152’)

plt.grid(True)

plt.plot(epsilon,omega)

plt.savefig(u’omega-as-function-epsilon.pdf’,

dpi=75, facecolor=’w’, edgecolor=’w’, orientation=’portrait’,

papertype=’a4’,format=None,transparent=False)

plt.show()
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