

Electrocoagulation Scaling-Up for Removal of Toxic Metals, Namely Cr6+ and Ni2+.

Krystyník, Pavel 2017

Dostupný z http://www.nusl.cz/ntk/nusl-364407

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).

Datum stažení: 27.09.2024

Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

ELECTROCOAGULATION SCALING-UP FOR REMOVAL OF TOXIC METALS, NAMELY ${\rm Cr}^{6^+}$ AND ${\rm Ni}^{2^+}$

Pavel Krystyník^{a,b}, Petr Kluson^a, Pavel Masinr^c, Jiri Krouzek^c

- ^a Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojova 135/1, 165 02 Prague 6, Czech Republic, (krystynik@icpf.cas.cz)
- ^b Jan Evangelista Purkyne University, Kralova Vysina 7, 400 96 Usti nad Labem, Czech Republic
- ^c Dekonta a.s., Dretovice 109, 273 42 Stehlceves, Czech Republic

Presented cotribution deals with application of electrocoagulation process for removal of Cr^{6+} and other toxic metals, namely Ni^{2+} , Zn^{2+} , Cu^{2+} and Mn^{2+} from contaminated groundwater on the site of former galvanization plant. The industrial effluent has pH ranging from 4.2 to 4.8; RAS (dissolved inorganic salts) is 2540 mg/L and conductivity 488 mS/m.

The optimization experiments were carried out with model effluents in semicontinuous arrangement (40 l/h), they revealed high efficacy in removals of Cr6+ together with its reduction towards Cr^{3+} , and total removal efficacy exceeded 90 %. It was shown that Al electrode was not suitable for Cr^{6+} reduction and removal because Al ions did not revealed reduction effects as Fe electrodes. That is due to Al electrode dissolution towards Al^{3+} whilst Fe is dissolved in form of Fe^{2+} that further oxidizes towards Fe^{3+} and this additional oxidation leads to reduction of Cr^{6+} . Experiments with industrial effluent revealed reduction in Cr_{tot} from 44 mg/L to 0.15 mg/L. Due to low pH, not all metals were removed with 90 %+ efficacy.

Quarter scale experiments were performed in continuous arrangement with a flowrate 100 l/h and iron electrodes. Treated water flew to a fast mixing tank (300 rpm), then slow mixing tank (20 rpm) and finally to a sedimentation tank to separate sludge from treated water. Concentrated sludge was filtered through filterpress with an area of 0.5 m² and it was used for calculation of metallic balance. The sedimentation properties were improved with addition of anionic polymeric flocculant and, if needed, treated effluent was alkalized with Ca(OH)₂. Alkalization lead 99 %+ removal of all presented metals, not just chromium that was successfully removed without alkalization.

A continuous pilot scale unit (0.5 m³/h) was fabricated based on obtained results and it was operated on contaminated industrial site. The removal efficacy of Cr_{tot.} exceeded 99 % and removal efficacies of other metals were higher than 95 %. The concentrated sludge was filter-pressed and treated as a dangerous waste.

Acknowledgements

Financial support of Technology Agency (project No. TA04020130) is gratefully acknowledged.