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Lukšan, Ladislav
2006
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Datum staženı́: 01.05.2024
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Abstrakt:

In this report, we propose a class of primal interior point methods for minimization of
composite nonsmooth functions. After a short introduction where composite nonsmooth
functions are defined, we describe two algorithms based on iterative and direct determination
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1 Introduction

Functions which we need to minimize are often non-differentiable and its non-smoothness
is caused by the fact that they contain absolute values or point maxima of differen-
tiable functions. Typical examples are the norms ‖f(x)‖1 a ‖f(x)‖∞ of a smooth map-
ping f : Rn → Rm. Generalizations of these functions are, e.g., functions of the form
F (x) = p(f1(x), . . . , fm(x)), where p : Rm → R is a non-smooth function satisfying
some additional conditions (it should be convex or locally Lipschitz) and f : Rn → Rm

is a smooth mapping. Such functions are usually called composite non-smooth func-
tions and their advantage is the fact that their structure can be often advantageously
used for a construction of efficient numerical algorithms for their minimization. As a
special case we might introduce the Fletcher composite non-smooth functions (see [2])
of the form

F (x) = max
1≤i≤l

pT
i f(x), (1)

where pi ∈ Rm, 1 ≤ i ≤ l, and f : Rn → Rm is a smooth mapping. In this way
we can express the functions max1≤i≤m fi(x), ‖f(x)‖∞, ‖f+(x)‖∞, ‖f(x)‖1, ‖f+(x)‖1,
where f+(x) = [max(f1(x), 0), . . . , max(fm(x), 0)]T , by a suitable choice of the matrix
P = [p1, . . . , pl].

In this contribution we focus our attention on a different class of composite non-
smooth functions defined by the following way.

Definition 1 We say that F (x) is a composite non-smooth function if

F (x) = h(F1(x), . . . , Fm(x)), Fi(x) = max
1≤j≤ni

fij(x), 1 ≤ i ≤ m, (2)

where h : Rm → R and fij : Rn → R, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, are twice continuously
differentiable functions. At the same time, h(z) = h(z1, . . . , zm) is a convex function
such that ∂h(z)/∂zi ≥ hi > 0, 1 ≤ i ≤ m, if x ∈ Rn and z ∈ Z(x), where

Z(x) = {z ∈ Rm : zi ≥ Fi(x), 1 ≤ i ≤ m}.
Conditions put on the function h(z) are relatively strong, but many functions satisfy

them (e.g. h(z) = z1 + . . . + zm). It is clear that we can express in this way all the
functions mentioned above. The absolute values Fi(x) = |fi(x)| can be expressed in
the form Fi(x) = max(fi(x),−fi(x)), in which case Z(x) ⊂ Rm

+ , so the condition
∂h(z)/∂zi ≥ hi > 0 if zi ≥ 0 suffices. To express the functions ‖f(x)‖1, ‖f+(x)‖1 by
(2) is much easier in comparison with (1), since in that case the matrix P contains 2m

columns.
Unconstrained minimization of function (2) is equivalent to the nonlinear program-

ming problem: Minimize the function

h(z1, . . . , zm) (3)

with constraints
fij(x) ≤ zi, 1 ≤ i ≤ m, 1 ≤ j ≤ ni (4)
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(the condition ∂h(z)/∂zi ≥ hi > 0, 1 ≤ i ≤ m, if x ∈ Rn and z ∈ Z(x), is sufficient
for satisfying equalities zi = Fi(x), 1 ≤ i ≤ m at the minimum point). This equivalent
nonlinear programming problem will be solved by the primal interior point method.
For this reason we will apply the Newton minimization method to the barrier function

Bμ(x, z) = h(z) − μ
m∑

i=1

ni∑
j=1

log(zi − fij(x)) (5)

assuming that μ → 0. The notation

Aij(x) = ∇fij(x), Gij(x) = ∇2fij(x)

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, is used. The primal interior point method is based on the
fact that it is easy to find a vector z ∈ Rm satisfying constraints (4). Hence, it is not
necessary to introduce slack variables, add equality constraints, use a penalty function
and iterate the Lagrangian multipliers. In the subsequent sections, we will describe two
approaches which differ in the determination of the minimax vector z ∈ Rm. We focus
on the problems whose structure allows using the sparse matrix technique.

2 Iterative determination of the minimax vector

The necessary conditions for (x, z) to be a minimum of function (5) have the form

∇xBμ(x, z) =
m∑

i=1

ni∑
j=1

Aij(x)
μ

zi − fij(x)
= 0 (6)

and
∂Bμ(x, z)

∂zi
= hi(z) −

ni∑
j=1

μ

zi − fij(x)
= 0, 1 ≤ i ≤ m, (7)

where hi(z) = ∂h(z)/∂zi, 1 ≤ i ≤ m. For solving this system of n + m nonlinear
equations we will use the Newton method whose iteration step can be written in the
form⎡

⎢⎢⎢⎣
W (x, z) −A1(x)v1(x, z) . . . −Am(x)vm(x, z)

−vT
1 (x, z)AT

1 (x) h11(z) + eT
1 v1(x, z) . . . h1m(z)

. . . . . . . . . . . .
−vT

m(x, z)AT
m(x) hm1(z) . . . hmm(z) + eT

mvm(x, z)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

Δx
Δz1

. . .
Δzm

⎤
⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎣
∑m

i=1 Ai(x)ui(x, z)
h1(z) − eT

1 u1(x, z)
. . .

hm(z) − eT
mum(x, z)

⎤
⎥⎥⎥⎦ , (8)

where

W (x, z) =
m∑

i=1

ni∑
j=1

Gij(x)uij(x, z) +
m∑

i=1

ni∑
j=1

Aij(x)vij(x, z)AT
ij(x),
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uij(x, z) =
μ

zi − fij(x)
, vij(x, z) =

μ

(zi − fij(x))2
, hij(z) =

∂2h(z)

∂zi∂zj

for 1 ≤ i ≤ m, 1 ≤ j ≤ ni, and where Ai(x) = [Ai1(x), . . . , Aini
(x)],

ui(x, z) =

⎡
⎢⎣ ui1(x, z)

. . .
uini

(x, z)

⎤
⎥⎦ , vi(x, z) =

⎡
⎢⎣ vi1(x, z)

. . .
vini

(x, z)

⎤
⎥⎦ , ei =

⎡
⎢⎣ 1

. . .
1

⎤
⎥⎦ .

This formula is verified from the differentiation of (6) and (7) by x and z. Setting

C(x, z) = [A1(x)v1(x, z), . . . , Am(x)vm(x, z)], g(x, z) =
m∑

i=1

Ai(x)ui(x, z),

Δz =

⎡
⎢⎣ Δz1

. . .
Δzm

⎤
⎥⎦ , c(x, z) =

⎡
⎢⎣ h1(z) − eT

1 u1(x, z)
. . .

hm(z) − eT
mum(x, z)

⎤
⎥⎦ ,

H(z) = ∇2h(z), V (x, z) = diag(eT
1 v1(x, z), . . . , eT

mvm(x, z)),

we can rewrite equation (8) in the form

[
W (x, z) −C(x, z)

−CT (x, z) H(z) + V (x, z)

] [
Δx
Δz

]
= −

[
g(x, z)
c(x, z)

]
. (9)

Now let us have a large-scale (the number of variables n is large), but partially separable
(the functions fij(x), 1 ≤ i ≤ m, 1 ≤ j ≤ ni, depend on a small number of variables)
problem. Then we can assume that the matrix W (x, z) is sparse and it can be efficiently
decomposed. Two cases will be investigated.

First, if m is small (for example in the minimax problems, where m = 1), we use
the fact that [

W −C
−CT H + V

]−1

=

[
W−1 − W−1C(CTW−1C − H − V )−1CT W−1 −W−1C(CT W−1C − H − V )−1

−(CTW−1C − H − V )−1CTW−1 −(CTW−1C − H − V )−1

]
.

The solution is determined from the formulas

Δz = (CT W−1C − H − V )−1(CTW−1g + c), (10)

Δx = W−1(CΔz − g). (11)

In this case we need to decompose the large sparse matrix W of order n and the small
dense matrix CT W−1C − H − V of order m.

In the second case we assume that the numbers ni, 1 ≤ i ≤ m, are small and the
matrix H(z) is diagonal (as in the sums of absolute values) so the matrix

C(x, z)D−1(x, z)CT (x, z)
Δ
= C(x, z)(H(z) + V (x, z))−1CT (x, z)
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is sparse. Then we can use the fact that

[
W −C

−CT D

]−1

=

[
(W − CD−1CT )−1 (W − CD−1CT )−1CD−1

D−1CT (W − CD−1CT )−1 D−1 + D−1CT (W − CD−1CT )−1CD−1

]
.

The solution is determined from the formulas

Δx = −(W − CD−1CT )−1(g + CD−1c), (12)

Δz = D−1(CT Δx − c). (13)

In this case we need to decompose the large sparse matrix W − CD−1CT of order n.
The inversion of the diagonal matrix D of order m is trivial.

In every step of the primal interior point method with the iterative determination
of the minimax vector we know the value of the parameter μ and the vectors x ∈ Rn,
z ∈ Rm such that zi > Fi(x), 1 ≤ i ≤ m. Using (10)–(11) or (12)–(13) we determine
direction vectors Δx, Δz and select a step-size α in such a way that

Bμ(x + αΔx, z + αΔz) < Bμ(x, z) (14)

and zi +αΔzi > Fi(x+αΔx), 1 ≤ i ≤ m. Finally, we set x+ = x+αΔx, z+ = z +αΔz
and determine a new value μ+ < μ.

Inequality (14) is satisfied for sufficiently small values of the step-size α, if the
matrix of system (9) is positive definite.

Theorem 1 Let the matrix G =
∑m

i=1

∑ni
j=1 Gijuij be positive definite. Then the matrix

of system (9) is positive definite.

Proof. The matrix of equation (9) is positive definite if and only if the matrix D =
H + V as well as its Schur complement W − CD−1CT are both positive definite. The
matrix D = H+V is positive definite since both matrices H and V are positive definite.
Now we use the fact that the matrix V −1 − D−1 is positive definite, since the matrix
H = D−V is positive definite (see [8]). Thus vT (W−CD−1CT )v ≥ vT (W−CV −1CT )v
∀v ∈ Rn so it suffices to prove that the matrix W − CV −1CT is positive definite. But

W − CV −1CT = G +
m∑

i=1

(
AiViA

T
i − AiViei(e

T
i Viei)

−1(AiViei)
T
)
,

the matrices AiViA
T
i − AiViei(e

T
i Viei)

−1(AiViei)
T , 1 ≤ i ≤ m, are positive semidefinite

by the Schwarz inequality and the matrix G is positive definite by the assumption. �
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3 Direct determination of the minimax vector

Minimization of the barrier function can be considered as the two-level optimization

z(x) = arg min
z∈Z(x)

Bμ(x, z), (15)

x = arg min
x∈Rn

Bμ(x), Bμ(x)
Δ
= Bμ(x, z(x)), (16)

where Z(x) is the set used in Definition 1. Equation (15) serves for a determination of
an optimal vector z(x) ∈ Rm corresponding to a given vector x ∈ Rn. The function
Bμ(x, z) is a convex function of a vector z for a given vector x, since it is a sum of
convex functions h(z) and − log(zi − fij(x)), 1 ≤ i ≤ m, 1 ≤ j ≤ ni. As a stationary
point, its minimum is determined by the set of equations (7).

Theorem 2 The system of equations

hi(z) −
ni∑

j=1

μ

zi − fij(x)
= 0, hi(z) =

∂h(z)

∂zi

, 1 ≤ i ≤ m,

for an arbitrary vector x ∈ Rn and for z ∈ Z(x), has the unique solution z(x) such
that

Fi(x) < zi(x) ≤ Fi(x) + niμ/hi, 1 ≤ i ≤ m.

Proof. Denoting zi = Fi(x) + niμ/hi, 1 ≤ i ≤ m, functions ∂h(z)/∂zi, 1 ≤ i ≤ m,
attain their maximum values hi ≥ hi > 0, 1 ≤ i ≤ m, on the compact set determined
by inequalities Fi(x) ≤ zi ≤ zi, 1 ≤ i ≤ m, since they are continuous there. Denoting
zi = Fi(x) + μ/hi, 1 ≤ i ≤ m, and choosing an arbitrary (sufficiently small) number
ε > 0, the function Bμ(x, z) attains its minimum on the compact set Zε(x) ⊂ int Z(x)
determined by equations zi−εμ/hi ≤ zi ≤ zi+εniμ/hi, 1 ≤ i ≤ m, since it is continuous
on int Z(x). Now we will show that this minimum cannot lie on the boundary of Zε(x).
It is clear that for every point of this boundary there is at least one index 1 ≤ i ≤ m
such that either zi = zi − εμ/hi or zi = zi + εniμ/hi holds. If zi = zi − εμ/hi, then

∂Bμ(x, z)

∂zi
= hi(z) −

ni∑
j=1

μ

zi − fij(x)
≤ hi − μ

zi − εμ/hi − Fi(x)

= hi − μ

(1 − ε)μ/hi

= − εhi

1 − ε
< 0,

so a small increase of the variable zi can decrease the function value of Bμ(x, z). If
zi = zi + εniμ/hi, then

∂Bμ(x, z)

∂zi
= hi(z) −

ni∑
j=1

μ

zi − fij(x)
≥ hi −

niμ

zi + εniμ/hi − Fi(x)

= hi −
niμ

(1 + ε)niμ/hi

=
εhi

1 + ε
> 0,
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so a small decrease of the variable zi can decrease the function value of Bμ(x, z). The
above considerations imply that the minimum of the function Bμ(x, z) is an interior
point of the set Zε(x) and since Bμ(x, z) is continuously differentiable on Zε(x), nec-
essary conditions (7) have to be satisfied. Since the number ε > 0 can be chosen
arbitrarily, the solution satisfies inequalities Fi(x) < zi ≤ zi(x) ≤ zi, 1 ≤ i ≤ m. �

System of equations (7) can be solved by the Newton method started, e.g., from
the point z such that zi = zi, 1 ≤ i ≤ m. If the Hessian matrix of the function h(z) is
diagonal, then system (7) is decomposed on m scalar equations, which can be efficiently
solved by methods described in [4], [5] (see [9]).

If we are able to find a solution of system (7) for an arbitrary vector x ∈ Rn, we
can restrict our attention to the unconstrained minimization of the function Bμ(x) =
Bμ(x, z(x)), which has n variables. It is suitable to know the gradient and the Hessian
matrix of the function Bμ(x).

Theorem 3 One has

∇Bμ(x) =
m∑

i=1

Ai(x)ui(x) (17)

and

∇2Bμ(x) = W (x, z(x)) − C(x, z(x)) (H(z(x)) + V (x, z(x)))−1 CT (x, z(x)), (18)

where W (x, z(x)), C(x, z(x)), H(z(x)), V (x, z(x)) are the matrices used in the previous
section. If the matrix H(z(x)) is diagonal, we can express (18) in the form

∇2Bμ(x) = G(x, z(x)) +
m∑

i=1

Ai(x)Vi(x, z(x))AT
i (x)

−
m∑

i=1

Ai(x)Vi(x, z(x))eie
T
i Vi(x, z(x))AT

i (x)

∂2h(z(x))/∂z2
i + eT

i Vi(x, z(x))ei
,

where Ai(x), Vi(x, z(x)), 1 ≤ i ≤ m, and G(x, z(x)) are the matrices used in the
previous section.

Proof. Differentiating function (5), where z = z(x), we obtain

∇Bμ(x) =
m∑

i=1

∂h(z(x))

∂zi

∂zi(x)

∂x
−

m∑
i=1

ni∑
j=1

μ

zi(x) − fij(x)

(
∂zi(x)

∂x
− ∂fij(x)

∂x

)

=
m∑

i=1

∂zi(x)

∂x

⎛
⎝∂h(z(x))

∂zi
−

ni∑
j=1

μ

zi(x) − fij(x)

⎞
⎠+

m∑
i=1

ni∑
j=1

∂fij(x)

∂x

μ

zi(x) − fij(x)

=
m∑

i=1

ni∑
j=1

Aij(x)uij(x) =
m∑

i=1

Ai(x)ui(x).

Formula (18) can be derived by an additional differentiation of relations (7) and (17).
Simpler way is based on the use of formula (12). Since (7) implies c(x, z(x)) = 0, after
substitution c = 0 into (12) we will obtain the relation

Δx = −
(
W (x, z(x)) − C(x, z(x)) (H(z(x)) + V (x, z(x)))−1 CT (x, z(x))

)−1
g(x, z(x)),
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which confirms a validity of formula (18). �

To determine the Hessian matrix inverse, we can use relations (10)–(11) which, after
substitution c(x, z(x)) = 0, give

(∇2Bμ(x))−1 = W (x, z(x))−1 − W (x, z(x))−1C(x, z(x))(
CT (x, z(x))W−1(x, z(x))C(x, z(x)) − H(z(x)) − V (x, z(x))

)−1

CT (x, z(x))W (x, z(x))−1. (19)

If system (7) is not solved with a sufficient precision, we use (12)–(13) rather than (18)
and (10)–(11) rather than (19) (where the actual vector c(x, z(x)) 
= 0 is substituted).

In every step of the primal interior point method with the direct determination of
the minimax vector we know the value of the parameter μ and the vector x ∈ Rn.
Solving system (7) we determine the vector z(x), using Hessian matrix (18) or its
inverse (19) we determine a direction vector Δx and select a step-size α in such a way
that

Bμ(x + αΔx, z(x + αΔx)) < Bμ(x, z(x)) (20)

(the vector z(x + αΔx) is obtained as a solution of system (7), in which x is replaced
by x + αΔx). Finally, we set x+ = x + αΔx and determine a new value μ+ < μ.
Conditions for the direction vector Δx to be descent are the same as in Theorem 1. It
suffices when the matrix G(x, z(x)) is positive definite.

4 Special cases and numerical experiments

The simplest function of form (2) is the sum

F (x) =
m∑

i=1

Fi(x) =
m∑

i=1

max
1≤j≤ni

fij(x). (21)

In this case, ∂h(z)/∂zi = 1, 1 ≤ i ≤ m, for an arbitrary vector z and the matrix H(z)
is diagonal. System of equations (7) decomposes on m scalar equations

1 −
ni∑

j=1

μ

zi − fij(x)
= 0, 1 ≤ i ≤ m, (22)

whose solutions lie in the intervals

Fi(x) + μ ≤ zi(x) ≤ Fi(x) + niμ, 1 ≤ i ≤ m,

as follows from the proof of Theorem 2 substituting hi = hi = 1. For m = 1 we obtain
the classic minimax problem and the primal interior point method for it is described in
[9]. Table 1, taken from [9], contains a comparison of the primal interior point method
PI described in that contribution with the smoothing method SM described in [13],
the primal-dual interior point method DI described in [6] and the non-smooth equation
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method NE described in [7]. All these methods were realized as the line-search methods
with two modifications: NM denotes the discrete Newton method with the Hessian
matrix computed using the differences by the way described in [1] and VM denotes
the variable metric method with the partitioned updates described in [3]. The tests
were carried out using a collection of 22 test problems introduced in [11] (the source
texts can be downloaded from the web page www.cs.cas.cz/~luksan/test.html as
Test 14). In Table 1, NIT denotes the total number of iterations, NFV denotes the total
number of function evaluations, NFG denotes the total number of gradient evaluations,
NR denotes the total number of restarts, NL denotes the number of problems for which
the lowest known local minimum was not found, NF denotes the number of failures, NT
denotes the number of problems for which some parameters of the method had to be
tuned, and Time denotes the total computational time in seconds.

Method NIT NFV NFG NR NL NF NT Time

PI-NM 1682 3771 11173 325 - - 4 1.75
SM-NM 4213 12632 32451 823 1 - 8 7.78
DI-NM 1718 3561 16989 74 1 - 10 6.11
NE-NM 5159 22195 42161 2363 2 - 14 32.86
PI-VM 1632 2266 1654 23 - - 2 1.00
SM-VM 7192 20710 7214 22 1 - 8 6.42
DI-VM 2172 5283 2172 27 1 - 8 6.97
NE-VM 2756 5667 2756 49 1 - 9 5.31

Table 1. Test 14: minimax with 200 variables

If ni = 2, 1 ≤ i ≤ m, equations (22) are quadratic and their solution has the form

zi(x) = μ +
fi1(x) + fi2(x)

2
+

√√√√μ2 +

(
fi1(x) − fi2(x)

2

)2

, 1 ≤ i ≤ m. (23)

This formula can be used in the case when the function h : Rm → R contains the
absolute values Fi(x) = |fi(x)| = max(fi(x),−fi(x)). Then fi1(x) = fi(x) a fi2(x) =
−fi(x), so that

zi(x) = μ +
√

μ2 + f 2
i (x), 1 ≤ i ≤ m. (24)

The primal interior point method for the sums of absolute values is described in [10].
Table 2 contains a comparison of two realizations of the primal interior point method
(the trust region realization PT and the line-search realization PL) with the primal-
dual interior point method DI described in [6] and the bundle variable metric method
BM described in [12]. These methods were realized in two modifications: NM denotes
the discrete Newton method with the Hessian matrix computed using the differences
and VM denotes the variable metric method with the partitioned updates (BM is
principally the variable metric method, so it could not be realized as NM). The tests
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were again carried out using a collection of 22 test problems introduced in [11]. The
meaning of the columns is the same as in Table 1.

Method NIT NFV NFG NR NL NF NT Time

PT-NM 2784 3329 23741 1 2 - 4 3.72
PL-NM 5093 12659 30350 1 1 - 6 4.49
DI-NM 4565 6301 37310 212 2 - 12 30.63
PT-VM 5390 5578 5414 22 1 1 1 2.31
PL-VM 4145 8669 4167 23 1 1 2 2.75
DI-VM 6903 14259 14259 29 3 - 9 89.37
BM-VM 34079 34111 34111 22 1 1 11 25.72

Table 2. Test 14: sum of absolute values with 200 variables

Tables 1 and 2 indicate that the primal interior point methods are very suitable for
minimization of composite nonsmooth functions. They are more efficient than special
bundle methods and also than general primal-dual interior point methods applied to
problem (3)–(4). This is especially caused by the fact that the primal-dual interior
point methods require the introduction of an additional slack vector s ∈ Rm so that
the resulting optimization problem contains n+2m variables x, z, s, which considerably
increases the computational time.
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