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1 Introduction

In this report we present a new family of limited-memory variationally-derived variable
metric (VM) line search methods for unconstrained minimization. VM line search
methods (see [6], [3]) are iterative. Starting with an initial point x0 ∈ RN , they
generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0, where
the direction vectors dk ∈ RN are required to be descent, i.e. gT

k dk < 0, k ≥ 0, and the
stepsizes tk are chosen in such a way that tk > 0 and

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1.1)

k ≥ 0, with 0 < ε1 < 1/2 and ε1 < ε2 < 1, where fk = f(xk), gk = ∇f(xk). We denote
yk = gk+1 − gk, k ≥ 0 and by ‖.‖F the Frobenius matrix norm.

We describe a new family of limited-memory methods with some minimum change
properties in Section 2 and prove their quadratic termination property. In Section 3 we
give a correction formula, which significantly improves efficiency of all methods from
the new family. Numerical results are presented in Section 4.

2 A new family of limited-memory methods

We proceed from the shifted VM methods, see [10]-[12], which appeared to be a very
efficient tool. Unfortunately, their efficiency is not so good for ill-conditioned problems
in comparison with e.g. the Nocedal method based on the Strang formula, see [9] or
with the matrix variant of this method after [2]. The cause of this drawback probably
consists in the fact that shifted VM updates are not invariant under linear transforma-
tions (significance of the invariance property of methods for solution of ill-conditioned
problems is discussed in [3]).

Our new methods are based on approximations H̄k = UkU
T
k , k > 0, H̄0 = 0, of the

inverse Hessian matrix, which are invariant under linear transformations, where Uk are
N×min(k, m) rectangular matrices, 1 ≤ m � N , obtained by limited-memory updates
with scaling parameters γk > 0 (see [6]) that satisfy the quasi-Newton condition (in
the generalized form)

H̄k+1yk = �ksk, (2.1)

where �k > 0 is a nonquadratic correction parameter (see [6]). Although we use the
unit values of γk and �k in almost all cases, we will consider also non-unit values in
the subsequent analysis as it is usual in case of VM methods (see [6]). We present this
basic update in Section 2.1.

To have matrices H̄k invariant, we use updates (related to the standard Broyden
class updates, see [3]), which can be expressed in the sketch form H̄k+1 = γkH̄k +
[ dk, Ukûk, Ukv̂k]Mk, k ≥ 0, where Mk is 3×N matrix and ûk, v̂k ∈ Rm. Unfortunately,
having matrices H̄k obtained by means of such updates, vectors −H̄kgk cannot be
directly used as the direction vectors dk, since they lie in range(Uk) and thus also
H̄k+1gk+1 ∈ range(Uk), k ≥ 1, and method degenerates.

Therefore we use nonsingular corrected matrices Hk instead of H̄k, k ≥ 0, H0 = I,
to calculate direction vectors dk = −Hkgk. Since the mere adding of matrix ζkI to

1



H̄k+1, ζk > 0, k ≥ 0, violates the quasi-Newton condition, we derive a class of simple
corrections in Section 2.2 (note that another correction will be described in Section 3).
In Section 2.3 we discuss some special choices of the vector parameter for this correction
class. In Section 2.4 we show that methods from the family, obtained in this way, have
quadratic termination property.

For given rk ∈ RN , rT
k yk �= 0, we denote by Vrk

the projection matrix I−rky
T
k/r

T
k yk.

To simplify the notation we frequently omit index k and replace index k+1 by symbol +
and index k−1 by symbol −. In the subsequent analysis we use the following notation

B = H−1, b = sT y, ā = yT H̄y, b̄ = sTBH̄y, c̄ = sTBH̄Bs, δ̄ = āc̄ − b̄2.

Note that b > 0 by (1.1) and that the Schwarz inequality implies δ̄ ≥ 0.

2.1 Variationally-derived invariant limited-memory method

Standard VM methods can be obtained by solving a certain variational problem - we
find an update with the minimum change of VM matrix in the sense of some norm
(see [6]). Using the product form of the update similarly as in [11], we can extend this
approach to limited-memory methods to derive a very efficient class of methods. First
we give the following general theorem, where the quasi-Newton condition U+UT

+y =
H̄+y = �s is equivalently replaced by

UT
+y =

√
γz, U+(

√
γz) = �s, zT z = (�/γ)b (2.2)

(the first two conditions imply the third one).

Theorem 2.1. Let T be a symmetric positive definite matrix, � > 0, γ > 0, z ∈ Rm,
1 ≤ m ≤ N , and denote U the set of N × m matrices. Then the unique solution to

min{ϕ(U+) : U+ ∈ U} s.t. (2.2), ϕ(U+) = yT Ty ‖T−1/2(U+ −√
γU)‖2

F , (2.3)

is
1√
γ
U+ =

szT

b
+

(
I − TyyT

yTTy

)
U

(
I − zzT

zT z

)
(2.4)

and for this solution the value of ϕ(U+)/γ is

1

γ
ϕ(U+) = |UT y − z|2 +

yTTy

zT z
vT T−1v, v =

(
I − TyyT

yTTy

)( �

γ
s − Uz

)
. (2.5)

Proof. We can proceed quite analogically as in the proof of Theorem 2.3 in [11] and
then use (2.2). �

Denoting p = Ty, (2.4) yields the following projection form of limited-memory
update, which shows the meaning of parameters z, Ty

1

γ
H̄+ =

�

γ

ssT

b
+ VpU

(
I − zzT

zT z

)
UT V T

p (2.6)

by H̄+ = U+UT
+ , zT (I − zzT /zT z) = 0 and (I − zzT /zT z)2 = I − zzT /zT z.
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For vector p lying in the subspace generated by vectors s, H̄y and Uz we can
show that updates (2.4) and (2.6) are invariant under linear transformations, i.e. they
preserve the same transformation property of H̄ = UUT as inverse Hessian.

Theorem 2.2. Consider a change of variables x̃ = Rx + r, where R is N × N non-
singular matrix, r ∈ RN . Let vector p lie in the subspace generated by vectors s, H̄y
and Uz and suppose that z, γ and coefficients in the linear combination of vectors s,
H̄y and Uz forming p are invariant under the transformation x → x̃, i.e. they are not
influenced by this transformation. Then for Ũ = RU matrix U+ given by (2.4) also
transforms to Ũ+ = RU+.

Proof. Since steps transform like points and the chain rule gives that gradients g, g+

and true Hessian G transform to g̃ = R−T g, g̃+ = R−T g+ and G̃ = R−T GR−1, we get
s̃ = Rs, ỹ = R−T y and b̃ = s̃T ỹ = sT y = b.

Suppose that Ũ = RU . Then H̄y and Uz transform to Ũ ŨT ỹ = RUUT y = RH̄y
and Ũ z̃ = RUz by z̃ = z, thus we have p̃ = Rp, p̃T ỹ = pT y and RVp = R−RpyT /pT y =

R − p̃ỹTR/p̃T ỹ =
(
I − p̃ỹT /p̃T ỹ

)
R

Δ
= Ṽp̃R.

Substituting for these quantities to (2.4) in the transformed space, we obtain√
1

γ̃
Ũ+ =

s̃z̃T

b̃
+ Ṽp̃Ũ

(
I − z̃z̃T

z̃T z̃

)
= R

[
szT

b
+ VpU

(
I − zzT

zTz

)]
,

therefore Ũ+ = RU+ by (2.4) and γ̃ = γ. �

In the special case

p =
λ

b
s +

1 − λ

ā
H̄y, ā �= 0, p =

1

b
s otherwise (2.7)

(in view of ā = |UT y|2 this choice satisfies the assumptions of Theorem 2.2, since b̃ = b
and ŨT ỹ = UT y, see the proof of Theorem 2.2) we can easily compare (2.6) with
the scaled Broyden class update with parameter η = λ2, whose usual form for any
symmetric matrix A is (see [6])

1

γ
ABC

+ = A +
�

γ

ssT

b
− AyyTA

a
+

λ2

a

(
a

b
s − Ay

)(
a

b
s − Ay

)T

, (2.8)

where a = yTAy �= 0 (if a = 0 we can choose λ = 1, i.e. the BFGS update in the form
(1/γ)ABFGS

+ = (�/γ)ssT /b + VsAV T
s , see [6]), which can be readily rewritten, using

straightforward arrangements and comparing corresponding terms, in the following
quasi-product form

1

γ
ABC

+ =
�

γ

ssT

b
+

(
I −

(
λ

b
s +

1−λ

a
Ay
)
yT

)
A

(
I − y

(
λ

b
s +

1−λ

a
Ay
)T
)
. (2.9)

Observing that U(I − zzT/zT z) UT = H̄ − UzzT UT/zT z and pT y = 1 by (2.7), we can
use (2.6), (2.7) and (2.9) with A = UUT and a = ā to obtain

1

γ
H̄+ =

1

γ
H̄BC

+ − VpUz(VpUz)T

zT z
. (2.10)
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Update (2.9) can be advantageously used for starting iterations. Setting U+ =[√
�/b s

]
in the first iteration, every update (2.9) modifies U and adds one column√

�/b s to U+. With the exception of the starting iterations we will assume that ma-
trix U has m ≥ 1 columns in all iterations.

In view of (2.2) we can write (2.4) in the form

1√
γ
U+ = U − Ty

yT Ty
yT U +

[
s − γ

�

(
Uz − yTUz

yTTy
Ty

)]
zT

b
, (2.11)

which is more suitable for calculation.
To choose parameter z, we utilize analogy with standard VM methods. Setting

H = SST and replacing U by N × N matrix S, we can use Theorem 2.1 for the
standard scaled Broyden class update (see [6]) of matrix H = B−1. Then (2.4) will be
replaced by

1√
γ
S+ =

szT

b
+

(
I − TyyT

yT Ty

)
S

(
I − zzT

zT z

)
, (2.12)

where zT z = (�/γ)b by (2.2) and the following assertion holds. Note that scaling of
Ty has no influence on vector Ty/yTTy.

Lemma 2.1. Every update (2.12) with z = α1S
T y + α2S

T Bs, Ty = β1s + β2Hy,
satisfying zT z = (�/γ)b and bβ1 + aβ2 > 0 (i.e. yT Ty > 0), belongs to the scaled
Broyden class with

η = b
bβ2

1 − a(γ/�)(α1β1 − α2β2)
2

(bβ1 + aβ2)2
. (2.13)

Proof. See Lemma 2.2 in [11]. �

Thus we concentrate here on the choice z = α1U
T y + α2U

T Bs, α2 �= 0, which can
be written in the form z = α1U

T y − α2t UT g by s = −tHg, where t is the stepsize.
Since z must satisfy the condition zT z = (�/γ)b, we have

z = ±
√√√√�

γ

b

āθ2 + 2b̄θ + c̄
(UTBs + θ UTy), (2.14)

where θ = α1/α2. The following lemma gives simple conditions for z to be invariant
under linear transformations. Note that the standard unit values of �, γ, used in our
numerical experiments, satisfy this conditions.

Lemma 2.2. Let numbers �, γ and ratio θ/t are invariant under transformation of
variables x̃ = Rx + r, where R is N ×N nonsingular matrix and r ∈ RN , and suppose
that Ũ = RU . Then vector z given by (2.14) is invariant under this transformation.

Proof. In the proof of Theorem 2.2 we proved that b̃ = b, ỹ = R−T y and g̃ = R−T g,
which yields invariance of vectors UT y, UT g and therefore also (UTBs + θ UT y)/t =
−UT g + (θ/t)UT y. Since ā = |UT y|2, b̄ = (UT Bs)T UT y = −t(UT g)TUT y, c̄ =
|UT Bs|2 = t2|UT g|2, we deduce that the term āθ2 + 2b̄θ + c̄, divided by t2, is also
invariant, which completes the proof. �
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In our numerical experiments we use the choice θ = −b̄/ā for ā �= 0 (if ā = 0,
we do not update), which gives good results. Then θ/t is invariant, see the proof of
Lemma 2.2, and (2.14) gives

z = ±
√

�

γ

b

āδ̄
(ā UTBs − b̄ UTy). (2.15)

Moreover, in this case we have yTUz = 0 and VpUz = Uz, thus relations (2.10), (2.11)
can be simplified.

2.2 Variationally-derived simple correction

Similarly as in shifted VM methods, see [12], [10], we add a multiple of the unit
matrix to U+UT

+ , which is singular, to obtain the direction vector. However, here this
modification of VM matrix violates the quasi-Newton condition (2.1). We will find
the minimum correction (in the sense of Frobenius matrix norm) of matrix H̄+ + ζI,
ζ > 0, in order that the resultant matrix H+ may satisfy the quasi-Newton condition
H+y = �s. First we give the projection variant of the well-known Greenstadt’s theorem,
see [4].

Theorem 2.3. Let M, W be symmetric matrices, W positive definite, � > 0, q = Wy
and denote M the set of N × N symmetric matrices. Then the unique solution to

min{‖W−1/2(M+ − M)W−1/2‖F : M+ ∈ M} s.t. M+y = �s (2.16)

is determined by the relation Vq (M+ − M) V T
q = 0 and can be written in the form

M+ = E + Vq (M − E) V T
q , (2.17)

where E is any symmetric matrix satisfying Ey = �s, e.g. E = (�/b)ssT .

Proof. Denoting w = (M+ − M)y = �s − My, the unique solution to (2.16) is
(see [4])

M+ = M +
wqT + qwT

qT y
− wT y

(qT y)2
qqT . (2.18)

Using w = −(M − E)y, wTy = −yT(M − E)y and identity

Vq(M − E)V T
q = M − E − (M − E)yqT + qyT(M − E)

qT y
+

yT(M − E)y

(qT y)2
qqT ,

we immediately obtain (2.17) from (2.18); for E = M+ we get Vq (M+ − M) V T
q = 0. �

In the case M = H̄++ζI, relation (2.17) can be simplified. The resulting correction
(2.19) together with update (2.4) give the new family of limited-memory VM methods.
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Theorem 2.4. Let W be a symmetric positive definite matrix, ζ > 0, � > 0, q = Wy
and denote M the set of N ×N symmetric matrices. Suppose that matrix H̄+ satisfies
the quasi-Newton condition (2.1). Then the unique solution to

min{‖W−1/2(H+ − H̄+ − ζI)W−1/2‖F : H+ ∈ M} s.t. H+y = �s

is
H+ = H̄+ + ζVqV

T
q . (2.19)

Proof. Using Theorem 2.3 with M = H̄+ + ζI, M+ = H+ , we get

H+ = E + Vq

(
H̄+ + ζI − E

)
V T

q , (2.20)

where E is symmetric matrix and Ey = �s = H̄+y by (2.1). Thus (H̄+ − E)y = 0,
which yields Vq(H̄+ −E) = H̄+ −E, and we immediately obtain (2.19) from (2.20). �

To choose parameter ζ , the good choice is ζ = �b/yTy, which minimizes |(H̄+−ζI)y|
and which is widely used for the scaling in the first iteration of VM methods, see [6].
We can obtain slightly better results, when we respect the current approximation H̄
of the inverse Hessian, e.g. by the choice

ζ =
� b

yTy + ω ā
(2.21)

with suitable ω > 0; we obtained good results with ω ∈ [2, 20], e.g. ω = 4.
As regards parameter q, we can utilize comparison with the scaled Broyden class

(see [6]). First we show that for vector q lying in the subspace generated by the vectors
s and My, update (2.17) belongs to the Broyden class update (see also a similar result
in [5] or [6] for the inverse matrix updating).

Lemma 2.3. Let A be a symmetric matrix, γ > 0, � > 0 and denote a = yTAy. Then
every update (2.17) with M = γA, M+ = A+, q = s − αAy, a �= 0 and α a �= b
represents the scaled Broyden class update with

η =
b2

(b − αa)2

(
1 − α2 �

γ

a

b

)
. (2.22)

Proof. With M = γA, M+ = A+ and E = (�/b)ssT we can write update (2.17) in the
form

1

γ
A+ =

�

γ

ssT

b
+ VqAV T

q − �

γ

Vqss
T V T

q

b
. (2.23)

Setting λ = b/(b−αa) we have α = −(1−λ)b/(λa) and (λ/b)q = (λ/b)s+((1−λ)/a)Ay.
Using (2.9), we can thus express (2.23) without the last term equivalently as (2.8). Since
qT y = b/λ and (1 − λ)b/a = −λα, we get

Vqs = s − λq = (1 − λ)
(
s − b

a
Ay
)

= (1 − λ)
b

a

(
a

b
s − Ay

)
= −λα v,
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where v = (a/b)s − Ay. Therefore the last term in (2.23) is −(δ/a)vvT , where
δ = λ2α2(�/γ)a/b. Comparing it with (2.8), we see that (2.23) represents the scaled
Broyden class update with parameter η=λ2 − δ, which implies (2.22). �

The following lemma enables us to determine vector q in such a way that correction
(2.19) represents the Broyden class update of H̄+ + ζI with parameter η.

Lemma 2.4. Let � > 0, ζ > 0, κ = ζ yTy/b, η > −�/(� + κ) and let matrix H̄+ satisfy
the quasi-Newton condition (2.1). Then correction (2.19) with q = s − σy, where

σ =
b

yTy

(
1 ±

√
� + κ

� + ηκ

)
(2.24)

represents the non-scaled Broyden class update of matrix H̄+ + ζI with parameter η
and nonquadratic correction �.

Proof. It follows from η > −�/(�+κ) that �+ ηκ > �−�κ/(�+κ) = �2/(�+κ), thus

the right-hand side in (2.24) is well defined and �
√

(� + κ)/(� + ηκ) < � + κ, which

yields ζ + � σ = (b/yTy)
[
� + κ ± �

√
(� + κ)/(� + ηκ)

]
> 0 by (2.24) and ζ = κ b/yTy.

Vector q is proportional to q̄ = s − α(H̄+ + ζI)y, where α = σ/(ζ + � σ), since

q̄ = (1 − �α)s − αζy =
ζ

ζ + � σ
s − ζσ

ζ + � σ
y =

ζ

ζ + � σ
q

by (2.1), therefore Vq = Vq̄. It follows from Theorem 2.4 and Theorem 2.3 that correc-
tion (2.19) is a special case of update (2.17) for M = H̄+ + ζI.

In order to can use Lemma 2.3 for A = H̄+ + ζI, we show that yTAy �= 0 and
α yTAy �= b. By (2.1) we have yTAy = b(�+κ) > 0 and α yTAy/b = (κσ+�σ)/(ζ +� σ),
which cannot be equal to unit, since σ cannot be equal to b/yTy = ζ/κ by (2.24). Using
Lemma 2.3 with γ = 1, a = b(� + κ) and α = σ/(ζ + � σ), we obtain

η =
1 − α2�(� + κ)

(1 − α(� + κ))2
=

(ζ + � σ)2 − σ2�(� + κ)

(ζ + � σ − σ(� + κ))2
=

ζ2 + 2 ζσ�− σ2κ�

ζ2 − 2 ζσκ + σ2κ2

and consequently the quadratic equation σ2κ(� + ηκ) − 2σζ(� + ηκ) + ζ2(η − 1) = 0
with the solution

σ =
ζ

κ
± ζ

κ

√
1 +

κ(1 − η)

� + ηκ
,

which gives (2.24) by κ = ζ yTy/b. �

If we choose q = s, i.e. η = 1, we get the BFGS update. Better results were
obtained with the special formula, which is based on analogy with the shifted VM
methods (see [12]) and on the following lemma.

Lemma 2.5. Let � > 0, ζ > 0, κ = ζ yTy/b, š = s − (b/yTy)y, η > −�/(� + κ) and
suppose that q = s − σy, where σ is given by (2.24). Then

ζVqV
T
q = ζVsV

T
s +

(η − 1)κ2

(� + κ)b
ššT . (2.25)
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Proof. Denoting â = yTy, we get qTy = b − σâ �= 0 by (2.24). Therefore we can write

VqV
T
q = I − qyT + yqT

qTy
+

â

(qTy)2
qqT = I +

â

(qTy)2

(
q − qTy

â
y
)(

q − qTy

â
y
)T

− yyT

â

and similarly VsV
T
s = I+(â/b2)ššT−yyT/â. Since q−(qTy/â)y = s−σy−(b/â−σ)y = š,

we obtain

VqV
T
q = VsV

T
s +

(
â

(b − σâ)2
− â

b2

)
ššT .

Using (2.24) and ζ = κb/â, we get

ζ
(

â

(b − σâ)2
− â

b2

)
=

κ

b

(
1

(1 − σâ/b)2
− 1

)
=

κ

b

(
� + ηκ

� + κ
− 1

)
=

η − 1

b

κ2

� + κ
,

which gives (2.25). �

Assuming, in virtue of analogy with the shifted VM methods, that the matrices ssT

and ššT have a similar character, we see from (2.6), that the adding of the correction
matrix VqV

T
q to H̄+ in (2.19) corresponds to the adding of the number (η−1)κ2/(�+κ)

to the nonquadratic correction parameter �. Denoting the total by �̄, we have η =
1 + (�̄ − �)(� + κ)/κ2. Our numerical experiments indicate that we should choose
η ∈ [0, 1] (note that for any η ≥ 0 matrix H+ in (2.19) is positive definite in view of
the Broyden class updates properties, see e.g. [3]). To have η ≥ 0, we need

�̄ ≥ � − κ2/(� + κ) = (�2 + �κ − κ2)/(� + κ) ≥ �2/(� + κ) ≥ �/2

in view of κ ≤ � by (2.21). Since the suitable value of �̄/� for the shifted VM updates
is e.g. ζ−/(ζ− + ζ) (see [12]), which is less than 1/2 for ζ > ζ−, we scale this value to
have η ≥ 0 more often. This leads to the formula

η = min

[
1, max

[
0 , 1 + �

� + κ

κ2

(
1.2 ζ−
ζ− + ζ

− 1
)]]

. (2.26)

2.3 Relationship between updates with minimum change property

In this section we describe properties of variationally-derived update (2.17) for some
other interesting choices of vector q. We do not concern with the correction term ζI,
since from (2.17) we can see that the adding ζI to matrix M causes the adding of the
term ζVqV

T
q to matrix M+.

In case that A = H̄ = UUT , we can use Theorem 2.3 to find such vector q that the
solution to problem (2.16) also represents the solution to problem (2.3) with Ty = q.

Theorem 2.5. Let W be a symmetric positive definite matrix, H̄ = UUT , � > 0, γ > 0,
q = Wy and z ∈ Rm any vector satisfying zT z = (�/γ)b. Then for q = (�/γ)s ± Uz
the Frobenius norm ‖W−1/2(H̄+ − γH̄)W−1/2‖F reaches its minimum on the set of
symmetric matrices H̄+ satisfying H̄+y = �s, if and only if H̄+ = U+UT

+ , where U+ is
given by (2.4) with Ty = q, which can be for q = (�/γ)s − Uz written in the form

1√
γ
U+ = U +

q(z − UT y)T

qT y
= U +

q(z − UT y)T

(z − UT y)Tz
. (2.27)
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Proof. Using Theorem 2.3 with M = γH̄ , M+ = H̄+ and E = (�/b)ssT we can see
that the only minimizing matrix H̄+ satisfies

1

γ
H̄+ =

�

γ

ssT

b
+ Vq

(
H̄ − �

γ

ssT

b

)
V T

q .

By Vqq = 0 we have Vqs = ∓(γ/�)VqUz. Using zT z = (�/γ)b, it gives

1

γ
H̄+ =

�

γ

ssT

b
+ Vq

(
H̄ − UzzT UT

zT z

)
V T

q

=

[
szT

b
+ VqU

(
I − zzT

zT z

)] [
szT

b
+ VqU

(
I − zzT

zT z

)]T

by zT (I − zzT /zT z) = 0 and (I − zzT /zT z)2 = I − zzT /zT z, which gives (2.4) with
Ty = q.

If q = (�/γ)s − Uz, we have (γ/�)VqUz = Vqs by Vqq = 0 and for U+ defined this
way we obtain from (2.4) by zT z = (�/γ)b

1√
γ
U+ = VqU +

szT

b
− VqUzzT

zT z
= VqU +

(s − Vqs)z
T

b
= U − qyT U

qT y
+

qzT

qT y
,

which yields (2.27). �

We can obtain similar result for any symmetric matrix A and find such vector q
that the solution to problem (2.16) can be expressed in the product form.

Theorem 2.6. Let A, W be symmetric matrices, W positive definite, � > 0, γ > 0,
q = Wy and r ∈ RN any vector satisfying rTAr = (�/γ)b. Then for q = (�/γ)s ± Ar
the Frobenius norm ‖W−1/2(A+ − γA)W−1/2‖F reaches its minimum on the set of
symmetric matrices A+ satisfying A+y = �s, if and only if (1/γ)A+ = CACT , where

C =
srT

b
+ Vq

(
I − ArrT

rT Ar

)
. (2.28)

If q = (�/γ)s − Ar, we can write (2.28) in the form

C = I +
q(r − y)T

qT y
= I +

q(r − y)T

(r − y)TAr
. (2.29)

Proof. Using Theorem 2.3 with M = γA, M+ = A+ and E = (�/b)ssT we can see
that the only minimizing matrix A+ satisfies

1

γ
A+ =

�

γ

ssT

b
+ Vq

(
A − �

γ

ssT

b

)
V T

q .

By Vqq = 0 we have Vqs = ∓(γ/�)VqAr. Using rTAr = (�/γ)b, it gives

1

γ
A+ =

�

γ

ssT

b
+ Vq

(
A − ArrTA

rTAr

)
V T

q

=

[
srT

b
+ Vq

(
I − ArrT

rT Ar

)]
A

[
srT

b
+ Vq

(
I − ArrT

rT Ar

)]T
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by (I−ArrT/rTAr)Ar = 0 and (I−ArrT/rTAr)A(I−ArrT/rTAr)T = A−ArrTA/rTAr,
which gives (2.28).

If q = (�/γ)s−Ar, we have VqAr = (�/γ)Vqs by Vqq = 0 and from (2.28) we obtain

C = Vq +
srT

b
− VqArrT

rTAr
= Vq +

(s − Vqs)r
T

b
= I − qyT

qT y
+

qrT

qT y
,

by rTAr = (�/γ)b, which yields (2.29). �

Using this theorem we can obtain the product form for many variationally-derived

VM updates, e.g. the choice r = ±
√

(�/γ)b/sTBs Bs with A = H and A+ = H+ gives

the product form of the BFGS update, see [6].

2.4 Quadratic termination property

In this section we give conditions for our family of limited-memory VM methods with
exact line searches to terminate on a quadratic function in at most N iterations.

Theorem 2.7. Let m ∈ N be given and let Q : RN → R be a strictly convex quadratic
function Q(x) = 1

2
(x−x∗)T G(x−x∗), where G is an N ×N symmetric positive definite

matrix. Suppose that ζk > 0, �k > 0, γk > 0, k ≥ 0, and that for x0 ∈ RN iterations
xk+1 are generated by the method

xk+1 = xk + tkdk, dk = −Hkgk, gk = ∇Q(xk) = G(xk − x∗) (2.30)

k ≥ 0, with exact line searches, i.e. gT
k+1dk = 0, where

H0 = I, Hk+1 = Uk+1U
T
k+1 + ζkVqk

V T
qk

, k ≥ 0, (2.31)

N × min(k, m) matrices Uk, k > 0, satisfy

U1 =

(√
�0

b0

s0

)
,

1

γk

Uk+1U
T
k+1 =

�k

γk

sks
T
k

bk

+ Vpk
UkU

T
k V T

pk
, 0 < k < m, (2.32)

1

γk
Uk+1U

T
k+1 =

�k

γk

sks
T
k

bk
+ Vpk

Uk

(
I − zkz

T
k

zT
k zk

)
UT

k V T
pk

, k ≥ m, (2.33)

vectors zk∈ Rm, k≥ m, satisfy zT
kzk = (�k/γk)bk, vectors pk, k> 0, lie in range([Uk, sk])

and satisfy pT
k yk �= 0, vectors qk for k > 0 lie in span{sk, UkU

T
k yk} and satisfy qT

k yk �= 0
and vector q0 = s0. Then there exists a number k̄ ≤ N with gk̄ = 0 and xk̄ = x∗.

Proof. We assume that gk �= 0, k < N and show that then gN = 0. First we prove by
induction that for k = 0, . . . , N − 1 matrix Hk is well defined and the following hold

(α) gT
k di = 0, i < k, (β) gT

k Ui = 0, 1 ≤ i ≤ k, (γ) gT
k dk < 0, tk > 0,

(δ) dT
k Gdi = 0, i < k, (ε) gi ∈ span{di, dj}, i ≤ k,

where j = max(i−1, 0). For k = 0, (α), (β) and (δ) are vacuous, H0 = I by (2.31) and
(ε) is true, since d0 = −g0 by (2.30). Thus we have gT

0 d0 = −gT
0 g0 < 0, which yields

t0 > 0 by convexity of Q. Suppose that these relations hold for k < N − 1.
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(a) The exact line search gives dT
k gk+1 = 0, thus bk = sT

k yk = −tk dT
k gk > 0 by (γ)

and matrix Hk+1 is well defined. Since yk = Gsk by (2.30), we get gT
k+1di =

gT
k di + yT

k di = sT
k Gdi = 0 by (α) and (δ) for i < k, thus (α) also holds for k + 1.

(b) Due to (a) and (2.32) we have gT
k+1U1 = 0. By induction, let gT

k+1Ui = 0 for some
1 ≤ i ≤ k. Since gT

k+1si = 0 by (a) and pi ∈ range([Ui, si]), we obtain gT
k+1pi = 0,

which yields V T
pi

gk+1 = gk+1 and UT
i V T

pi
gk+1 = 0. Using (2.32) or (2.33) we get

|UT
i+1gk+1|2 = 0, which completes the induction and (β) also holds for k + 1.

(c) It follows from (b) that UT
k gk+1 = UT

k gk = 0, which yields UT
k yk = 0. In view

of q0 = s0 and qi ∈ span{si, UiU
T
i yi}, i > 0, we have qk = αkdk, αk ∈ R, thus

gT
k+1qk = 0 by (a) and V T

qk
gk+1 = gk+1. From (2.31) we get

−dk+1 = Hk+1gk+1 = ζkVqk
V T

qk
gk+1 = ζkVqk

gk+1 = ζk

(
gk+1 − gT

k+1yk

qT
k yk

qk

)
(2.34)

by (b), thus gT
k+1dk+1 = −ζk|gk+1|2 < 0 and tk+1 > 0, i.e. (γ) also holds for k +1.

(d) From (2.34) we obtain dT
k+1yk = 0, thus dT

k+1Gsk = 0. For i < k it follows from
qk = αkdk, αk ∈ R, which we proved in (c), that qT

k Gsi = 0 by (δ). It follows
from (ε) that yi ∈ span{d0, . . . , dk} and (2.34) gets −dT

k+1Gsi = ζkg
T
k+1Gsi =

ζkg
T
k+1yi = 0 by (a), thus (δ) also holds for k + 1.

(e) It follows directly from (2.34) and qk = αkdk that (ε) also holds for k + 1.

Now we establish gN = 0. Proceeding as in (a) for k = N − 1, we get gT
Ndi = 0 for all

i < N . Since vectors d0, . . . , dN−1 are conjugate to the positive definite matrix G, they
are independent, thus gN = 0 and xN = x∗ by (2.30) and positive definiteness of G. �

3 Correction formula

Efficiency of all methods from our new family can be increased, if we use additional
correction of matrix H+ for the calculation of the direction vector d+.

Corrections in Section 2.2 respect only the latest vectors sk, yk. Thus for k > 0
we can again correct (without scaling) the resulting matrices Ȟk+1 = H̄k+1 + ζkVqk

V T
qk

,
obtained from (2.19), using previous vectors si, yi, i = k − j, . . . , k − 1, j ≤ k. Our
experiments indicate that the choice j = 1 brings the maximum improvement. Note
that the correcting of matrix H̄k+1 + ζkI instead of Ȟk+1 does not give so good results.

Replacing q by s, the correction formula (2.17) has the simple form

M+ =
�

b
ssT + VsMV T

s (3.1)

by VsEV T
s = E −� ssT/b, which holds for any symmetric matrix E satisfying Ey = �s,

thus we confine in this section to this formula. To correct matrix Ȟ+, we use (3.1) first
with vectors s−, y− and then again with s, y. This leads to the formula

H+ = �
ssT

b
+ Vs

[
�−

s−sT
−

b−
+ V −

s

(
H̄+ + ζVqV

T
q

)
(V −

s )T

]
V T

s , (3.2)
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where V −
s = I − s−yT

−/b−, which is less sensitive to the choice of ζ than (2.19).
To calculate the direction vector d+ = −H+g+, we can utilize the Strang formula,

see [9], which can be for H+ given by (3.2) written as the following algorithm:

(1) α1 = −sTg+/b, u = −g+ − α1y,
(2) α2 = sT

−u/b−, u := u − α2y−,
(3) u := H̄+u + ζVqV

T
q u,

(4) β1 = yT
−u/b−, u := u + (�−α2 − β1)s−,

(5) β2 = yTu/b, d+= u + (� α1 − β2)s.

4 Computational experiments

Our new limited-memory VM methods were tested, using the collection of sparse,
usually ill-conditioned problems for large-scale nonlinear least squares from [7] (Test 15
without problem 18, which was very sensitive to the choice of the maximum stepsize
in linesearch, i.e. 21 problems) with N = 500 and 1000, m = 10, � = γ = 1, the final
precision ‖g(x�)‖∞ ≤ 10−5 and ζ given by (2.21) with ω = 4.

N = 500 N = 1000
ηp Corr-0 Corr-1 Corr-2 Corr-q Corr-0 Corr-1 Corr-2 Corr-q

0.0 (2)76916 32504 22626 24016 (3)99957 (1)58904 44608 (1)47204
0.1 (3)99032 36058 21839 35756 (3)98270 (1)54494 42649 (1)47483
0.2 (2)97170 29488 23732 29310 (3)89898 (1)52368 36178 (1)44115
0.3 (1)79978 28232 18388 18913 (3)80087 47524 33076 38030
0.4 (1)70460 24686 18098 17673 (3)78498 44069 32403 34437
0.5 60947 22532 17440 17181 (3)88918 41558 32808 31874
0.6 56612 21240 17800 17164 (2)76264 38805 31854 30784
0.7 52465 20289 17421 17021 (2)72626 39860 32345 30802
0.8 51613 20623 17682 17076 (1)69807 37501 32292 32499
0.9 50877 20548 18102 17424 (2)69802 38641 32926 31385
1.0 49672 20500 18109 17913 (1)68603 38510 33539 32456
1.1 52395 20994 18694 18470 (1)65676 41284 35103 33053
1.2 51270 21444 19230 18372 (1)68711 41332 35649 34028
1.3 (1)50064 21899 19289 19890 (2)67976 41491 36155 34776
1.4 (1)52255 21900 19737 19695 (2)67340 43758 35793 35998
1.5 (1)51094 22808 20487 20060 (2)66220 42906 36775 36323
2.0 (1)50776 24318 21710 21639 (2)66594 46139 40279 39199
3.0 (1)54714 28641 24634 24675 (2)68680 (1)54531 45366 44785

BNS 18444 33131

Table 1. Comparison of various correction methods.

The following procedure for computing of matrices Uk+1, k ≥ 0, was used (details
are described in Section 2.1):
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(1) If k = 0, set U1 =
[√

1/b0 s0

]
.

(2) If 0 < k < m, set Uk+1 =
[
Vsk

Uk,
√

1/bk sk

]
.

(3) If k ≥ m, set

Uk+1 = Uk − pk

pT
k yk

yT
k Uk +

sk − Ukzk

bk

zT
k

with the chosen parameter pk and zk given by (2.15).

Results of these experiments are given in three tables, where ηp = λ2 is the value
of parameter η of the Broyden class used to determine parameter p by (2.7) and ηq is
the value of this parameter used in (2.24) to determine parameter q = s − σy.

ηp

ηq 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 -343 -394 -967 -813 -538 32 141
0.1 211 -1154 -1028 -1100 -880 -585 -188
0.2 2424 1902 1759 2088 1869 2268 2746
0.3 -492 -1064 -1136 -992 -1036 -901 -939
0.4 -599 -1069 -718 -1160 -668 -934 -512
0.5 -493 -722 -727 -665 -487 -516 -399
0.6 -251 -648 -798 -965 -750 -176 -371
0.7 -342 -764 -441 -320 -474 -749 -284
0.8 -481 -706 -857 -579 -449 -497 -606
0.9 -872 -759 -370 -559 -820 275 -135
1.0 -346 -1004 -644 -1023 -762 -342 -335
1.1 1939 1265 2326 791 2444 1958 1910
1.2 1024 700 719 1452 967 1479 1982
1.3 -322 -410 -785 -872 -332 333 174
1.4 -600 -718 -839 -1324 -959 -811 222
1.5 -596 -436 -912 -937 -770 -285 307
1.6 -256 -474 -365 -370 -517 -86 203
1.7 -61 -430 -526 -158 -356 -211 85
1.8 -206 -102 -240 -618 -412 71 359
1.9 -293 -235 -169 -332 32 23 607
2.0 150 -396 85 259 336 222 684
2.5 467 357 863 701 890 1274 356
3.0 7698 5036 4903 4337 4218 3577 3541

(2.26) -771 -1263 -1280 -1423 -1368 -1020 -531

Table 2. Comparison with BNS for N=500.

In Table 1 we compare the method after [2] (BNS) with our new family, using
various values of ηp and the following correction methods: Corr-0 – the adding of
matrix ζI to H̄+, Corr-1 – correction (2.19), Corr-2 – correction (3.2). We use ηq = 1
(i.e. q = s) in columns Corr-0, Corr-1 and Corr-2 and ηq given by (2.26) in columns
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Corr-q together with correction (3.2). We present the total numbers of function and
also gradient evaluations (over all problems), preceded by the number of problems (in
parentheses, if any occurred) which were not solved successfully (usually if the number
of evaluations reached its limit, which was here 19000 evaluations).

In Table 2 and Table 3 we give the differences np,q − nBNS , where np,q is the total
number of function and also gradient evaluations (over all problems) for selected values
of ηp and ηq with correction (3.2) and nBNS is the number of evaluations for method
BNS (negative values indicate that our method is better than BNS). In the last row
we present this difference for ηq given by (2.26).

ηp

ηq 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0 1916 -912 -681 -876 -119 -744 116
0.1 1052 -732 -974 -1647 -1043 -1215 320
0.2 903 -187 -1669 -1708 -1219 -28 -567
0.3 793 -363 -975 -1731 -289 360 -484
0.4 925 -1398 -1708 -1554 -1184 -498 -482
0.5 -757 -644 -965 -1729 -1380 -926 -207
0.6 1 -1396 -1291 -835 -1044 -767 190
0.7 -195 -901 -356 -1019 -1482 -398 -454
0.8 -770 -690 -1763 -886 -1009 -256 -977
0.9 8 -821 -939 -674 -696 -764 657
1.0 -728 -323 -1277 -786 -839 -205 408
1.1 -773 115 183 48 -411 -619 736
1.2 269 155 -670 295 -649 -113 647
1.3 51 150 -234 -527 -158 -323 1381
1.4 498 298 -522 246 -383 696 2533
1.5 377 -181 -29 908 1323 441 1310
1.6 1072 1135 766 -39 853 1307 2065
1.7 825 874 -199 79 607 1108 3370
1.8 1334 1147 667 1064 821 3854 2908
1.9 1470 486 1863 1047 1973 2609 3156
2.0 2164 767 994 2035 2577 2869 3036
2.5 2284 3821 3325 3337 3838 4929 5167
3.0 4570 4457 3423 4106 5172 4430 4818

(2.26) 1306 -1257 -2347 -2329 -632 -1746 -675

Table 3. Comparison with BNS for N=1000.

In these numerical experiments, limited-memory VM methods from our new family
with suitable values of parameters ηp (e.g. ηp = 0.7) and ηq (e.g. ηq given by (2.26))
give better results than method BNS.
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For a better comparison with method BNS, we performed additional tests with
problems from the widely used CUTE collection [1] with various dimensions N and the
final precision ‖g(x�)‖∞ ≤ 10−6. The results are given in Table 4, where Corr-LMM is
limited-memory VM methods from our new family with ηp = ηq = 0.5 and correction
(3.2) (the other parameters are the same as above), NIT is the number of iterations,
NFV the number of function and also gradient evaluations and Time the computer
time in seconds.

CUTE Corr-LMM BNS
Problem N NIT NFV Time NIT NFV Time
ARWHEAD 5000 8 18 0.19 8 18 0.18
BDQRTIC 5000 216 301 1.49 145 220 1.04
BROWNAL 500 7 16 0.30 6 16 0.29
BROYDN7D 2000 2830 2858 10.28 2953 3021 10.03
BRYBND 5000 31 40 0.34 31 42 0.30
CHAINWOO 1000 414 467 0.36 429 469 0.36
COSINE 5000 21 30 0.19 14 19 0.14
CRAGGLVY 5000 88 101 0.77 84 101 0.69
CURLY10 1000 5428 5436 3.97 5827 5975 3.37
CURLY20 1000 5813 5818 5.05 6720 6907 5.06
CURLY30 1000 6537 6544 6.84 6831 7010 6.08
DIXMAANA 3000 10 14 0.06 9 13 0.06
DIXMAANB 3000 13 17 0.06 7 11 0.03
DIXMAANC 3000 12 16 0.06 9 13 0.06
DIXMAAND 3000 15 19 0.06 11 15 0.05
DIXMAANE 3000 392 396 1.08 237 249 0.55
DIXMAANF 3000 328 332 0.89 180 188 0.43
DIXMAANG 3000 345 349 0.80 178 187 0.44
DIXMAANH 3000 299 303 0.80 183 192 0.47
DIXMAANI 3000 2649 2653 6.88 855 877 1.97
DIXMAANJ 3000 776 780 1.97 340 351 0.84
DIXMAANK 3000 596 573 1.41 314 326 0.70
DIXMAANL 3000 541 545 1.42 221 230 0.52
DQRTIC 5000 966 907 2.86 235 236 0.52
EDENSCH 5000 26 28 0.25 25 29 0.23
EG2 1000 4 9 0.01 4 9 0.02
ENGVAL1 5000 23 40 0.24 26 35 0.20
EXTROSNB 5000 39 43 0.27 40 46 0.32
FLETCBV2 1000 1246 1248 1.33 1162 1182 1.14
FLETCHCR 1000 68 73 0.08 50 58 0.08
FMINSRF2 1024 405 408 2.33 332 340 1.73

Table 4a: Comparison with BNS for CUTE
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CUTE Corr-LMM BNS
Problem N NIT NFV Time NIT NFV Time
FMINSURF 1024 513 517 2.97 462 477 2.50
FREUROTH 5000 22 47 0.31 24 32 0.27
GENHUMPS 1000 2424 2698 4.58 1802 2271 3.70
GENROSE 1000 2088 2199 1.63 2106 2374 1.58
LIARWHD 1000 21 29 0.16 23 28 0.19
MOREBV 5000 114 116 0.45 112 116 0.39
MSQRTALS 529 3136 3142 6.81 2880 2947 6.08
NCB20 510 783 845 4.38 505 561 2.81
NCB20B 1010 2087 2204 11.27 1584 1715 8.61
NONCVXU2 1000 2492 2493 2.45 3603 3685 3.06
NONCVXUN 1000 23993 23994 23.42 - >50000 -
NONDIA 5000 14 19 0.19 25 30 0.27
NONDQUAR 5000 16080 16090 49.25 3210 3588 8.42
PENALTY1 1000 61 69 0.00 64 72 0.05
PENALTY3 100 61 91 0.63 56 92 0.66
POWELLSG 5000 45 57 0.09 37 46 0.14
POWER 1000 489 496 0.13 104 110 0.02
QUARTC 5000 966 967 2.70 235 236 0.52
SBRYBND 5000 - - - - - -
SCHMVETT 5000 35 37 0.39 36 42 0.38
SCOSINE 5000 - - - - - -
SINQUAD 5000 288 386 2.25 250 338 1.83
SPARSINE 1000 9396 9400 11.20 9347 9726 9.66
SPARSQUR 1000 35 41 0.06 37 43 0.05
SPMSRTLS 4999 201 204 1.24 213 223 1.14
SROSENBR 5000 12 19 0.08 18 23 0.11
TOINTGSS 5000 4 6 0.11 4 7 0.08
TQUARTIC 5000 19 25 0.17 21 30 0.20
VARDIM 1000 24 41 0.02 33 40 0.03
VAREIGVL 1000 143 146 0.14 164 171 0.16
WOODS 4000 34 41 0.14 28 33 0.11

Table 4b: Comparison with BNS for CUTE

Our limited numerical experiments indicate that methods from our new family can
compete with the well-known BNS method.

References

[1] I. Bongartz, A.R. Conn, N. Gould, P.L. Toint: CUTE: constrained and uncon-
strained testing environment , ACM Transactions on Mathematical Software 21
(1995), 123-160.

16



[2] R.H. Byrd, J. Nocedal, R.B. Schnabel: Representation of quasi-Newton matrices
and their use in limited memory methods , Math. Programming 63 (1994) 129-156.

[3] R. Fletcher: Practical Methods of Optimization, John Wiley & Sons, Chichester,
1987.

[4] J. Greenstadt, Variations on variable metric methods, Math. Comput. 24 (1970)
1-22.

[5] J. Huschens, On the use of product structure in secant methods for nonlinear least
squares problems, SIAM J. Optim. 4 (1994), 108-129.
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