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17 Measurability in the Lebesgue Sense Induced by Lattice-
Valued Possibilistic Measures

This chapter may be taken as a continuation of Chapter 15, as it goes on with the investigation of
inner and outer measures induced by lattice-valued monotone and possibilistic measures. Namely, our
attention will be focused to the idea common in the standard real-valued measure theory (cf. [20],
e.g.), when the measure defined on a σ-field of subsets of a basic space is extended to those subsets, for
which the values of their inner and outer measures, induced by the measure in question, coincide (are
identical). In the most common case of Borel measure, ascribing the length |b− a| to each semi-open
interval 〈a, b) of the real line and extended uniquely to the system of Borel subsets of this line, the
further extension leads to the system of subsets measurable in the Lebesgue sense. As a matter of
fact, this system really extends the system of Borel subsets, but still far not each subset of the real line
is measurable in the Lebesgue sense. Let us try to apply this idea to partial lattice-valued monotone
and possibilistic measures.

Definition 17.1 Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set, let R be a nonempty
system of subsets of Ω, let Π be a T -monotone measure on R. A subset A ⊂ Ω is called measurable
in the Lebesgue sense, if the equality Π?(A) = Π?(A) holds.

Denoting by M(Π,R) the system of all L-measurable subsets of Ω, the inclusion R ⊂M(Π,R) is
obvious for each T -monotone measure Π. In general, however, the inequalityR 6= M(Π,R) is the case,
i.e., M(Π,R) non-trivially extends R. Indeed, let A ⊂ B ⊂ C ⊂ Ω be such that A 6= B 6= C, A,C
are in R,Π(A) = Π(C), and B is not in R. Then Π(A) ≤ Π?(B) ≤ Π?(B) = Π(C) holds, so that
Π?(B) = Π?(B), and B ∈M(Π,R)−R follows.

A system S of subsets of Ω is called closed with respect to unions (finite unions, countable unions,
resp.), if for each subsystem ∅ 6= R ⊂ S (each finite ∅ 6= R ⊂ S, each countable ∅ 6= R ⊂ S, resp.) the
set

⋃R =
⋃

R∈RR is in S.

Theorem 17.1 Let T = 〈T,≤〉 be a complete lattice, let R be a system of subsets of a nonempty
set Ω which contains ∅ and Ω and which is closed with respect to unions, let Π be a complete partial
T -possibilistic measure on R. Then also M(Π,R) is closed with respect to unions.

Proof. Let A ⊂ M(Π,R) be a non-empty system of L-measurable subsets of Ω, so that Π?(A) =
Π?(A) holds for each A ∈ A. Consequently, for each A ∈ A and for each A1, A2 ∈ R such that
A1 ⊂ A ⊂ A2 holds, we obtain, due to the assumptions, that the unions

⋃
A∈AA1 and

⋃
A∈AA2 are

in R and the inclusion
⋃

A∈AA1 ⊂
⋃A ⊂ ⋃

A∈AA2 is valid. Hence, an easy calculation yields that

Π

( ⋃

A∈A
A1

)
=

∨

A∈A
Π(A1) ≤

∨{
Π(B) : B ⊂

⋃
A, B ∈ R

}
=

= Π?

(⋃
A

)
≤ Π?

(⋃
A

)
=

∧ {
Π(B) : B ⊃

⋃
A, B ∈ R

}
≤

≤ Π

( ⋃

A∈A
A2

)
=

∨

A∈A
Π(A2). (17.1)

This inequality being valid for each A1, A2 ∈ R such that A1 ⊂ A ⊂ A2 holds, it remains to be
valid when replacing Π(A1) by

∨{Π(B) : B ⊂ A, B ∈ R}, and Π(A2) by
∧{Π(B) : B ⊃ A, B ∈ R},

so that we obtain the inequality

∨

A∈A

(∨
{Π(B) : B ⊂ A, B ∈ R}

)
≤ Π?

(⋃
A

)
≤ Π?

(⋃
A

)
≤

∨

A∈A

(∧
{Π(B) : B ⊃ A, B ∈ R}

)

(17.2)
which can be re-written, using the definitions of inner and outer measures, as
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∨

A∈A
Π?(A) ≤ Π?

(⋃
A

)
≤ Π?

(⋃
A

)
≤

∨

A∈A
Π?(A). (17.3)

As Π?(A) = Π?(A) holds for every A ∈ A, the equality Π?(
⋃A) = Π?(

⋃A) follows, so that⋃A ∈M(Π,R) holds and the assertion is proved. 2

In general, the system of subsets of Ω which are measurable in the Lebesgue sense with respect
to Π and R is not closed on complements unless some more conditions are imposed on the partial
T -possibilistic measure Π on R. In order to describe these conditions explicitly, some auxiliary notions
will be of use.

Let T = 〈T,≤〉 be a complete lattice. A function f : T → T is called non-increasing and continuous
on T , if t1 ≤ t2 implies f(t1) ≥ f(t2) for each t1, t2 ∈ T , and if for each ∅ 6= S ⊂ T the relations

∨

t∈S

f(t) = f

(∧

t∈S

t

)
(= f

(∧
S

)
, abbreviately), (17.4)

∧

t∈S

f(t) = f

(∨

t∈S

t

)
(= f

(∨
S

)
, abbreviately), (17.5)

hold. A partial T -monotone measure Π defined on R ⊂ P(Ω) is called extensional with respect to
complement, if there exists a non-increasing and continuous function f on T such that Π(Ω − A) =
f(Π(A)) for each A ∈ R such that Ω−A is also in R.

Theorem 17.2 Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set, let R be a system of
subsets of Ω which contains ∅ and Ω and is closed with respect to complement, i.e., Ω− A ∈ R holds
for each A ∈ R. Let Π be a partial T -monotone measure on R which is extensional with respect to
complement. Then the system of all subsets of Ω which are measurable in the Lebesgue sense with
respect to Π and R is also closed with respect to complement, so that Ω−A ∈M(Π,R) holds for each
A ∈M(Π,R).

Proof. Let f : T → T be a non-increasing continuous function on T such that Π(Ω− A) = f(Π(A))
holds for each A ∈ R. As R is closed with respect to complements, each set in R can be written as
the complement of another set from R, i.e., A = Ω− (Ω−A), so that the following reasoning is easily
to verify. For each A ⊂ Ω,

Π?(Ω−A) =
∨
{Π(B) : B ⊂ Ω−A, B ∈ R} =

=
∨
{Π(Ω−B) : Ω−B ⊂ Ω−A, B ∈ R} =

=
∨
{f(Π(B)) : B ⊃ A, B ∈ R} =

= f
(∧

{Π(B) : B ⊃ A, B ∈ R}
)

= f(Π?(A)). (17.6)

Dually,

Π?(Ω−A) =
∧
{Π(B) : B ⊃ Ω−A, B ∈ R} =

=
∧
{Π(Ω−B) : Ω−B ⊃ Ω−A, B ∈ R} =

=
∧
{f(Π(B)) : B ⊂ A, B ∈ R} =

= f
(∨

{Π(B) : B ⊂ A, B ∈ R}
)

= f(Π?(A)). (17.7)

Hence, if A ∈M(Π,R), then Π?(A) = Π?(A), so that also Π?(Ω−A) = Π?(Ω−A), consequently,
Ω−A ∈M(Π,R). The assertion is proved. 2
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Theorem 17.3 Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set, let R be a system
of subsets of Ω which contains ∅ and Ω and is closed with respect to unions and complements, so
that

⋃A ∈ R and Ω − A ∈ R holds for each A ∈ R. Let Π be a complete partial T -possibilistic
measure on R which is extensional with respect to complements. Then the system of all subsets of Ω
which are measurable in the Lebesgue sense with respect to Π and R is closed on intersections, so that⋂A ∈M(Π,R) holds for each A ⊂M(Π,R).

Proof. The conditions of Theorem 17.2 being fulfilled, the equalities

Π?(Ω−A) = f(Π?(A)), Π?(Ω−A) = f(Π?(A)) (17.8)

are valid for every A ⊂ Ω, where f : T → T is the non-increasing function which defines the
extensionality of Π, i.e., such that Π(Ω − A) = f(Π(A)) holds for each A ∈ R. Also the conditions
of Theorem 17.1 are satisfied, so that, for each A ⊂ M(Π,R) and each A ∈ M(Π,R) also

⋃A ∈
M(Π,R) and Ω− A ∈ M(Π,R). Consequently, for the system A− = {Ω− A : A ∈ A} the inclusion
A− ⊂ M(Π,R) follows, hence, also

⋃A− is in M(Π,R), what implies the identity Π?(
⋃A−) =

Π?(
⋃A−). For the intersection

⋂A =
⋂

A∈AA we obtain that

Π?

(⋂
A

)
= f(Π?

(
Ω−

⋂
A

)
) = f(Π?

( ⋃

A∈A
(Ω−A)

)
=

= f(Π?
(⋃

A−
)
) = f(Π?

(⋃
A−

)
) = f(Π?

(
Ω−

⋂
A

)
) = Π?

(⋂
A

)
, (17.9)

hence,
⋂A ∈M(Π,R) follows and the assertion is proved. 2

Consequently, if R is an ample field, i.e., a system of subsets of Ω which is closed with respect to
unions, intersections and complements, and if the conditions of Theorem 19.3 are fulfilled, then also
the system M(Π,R) of all subsets of Ω which are measurable in the Lebesque sense with respect to
Π and R also defines an ample field.

18 Almost-Measurability Induced by Lattice-Valued Possibilis-
tic Measures

Aiming to copy the notion of almost-measurability as introduced above for real-valued partial mono-
tone and possibilistic measures, we arrive at the following definition which will serve as the outgoing
point for our further considerations.

Definition 18.1 Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set, let R be a system
of subsets of Ω containing ∅ and Ω, let Π be a partial T -monotone measure on R, let Π? (Π?, resp.),
be the inner (the outer, resp.) monotone measure induced by Π on P(Ω), let t ∈ T . A set A ⊂ Ω is
called t-almost measurable with respect to R and Π, if the inequality %(Π?(A), Π?(A)) ≤ t holds.

Let us recall that, by (13.20), for each t1, t2 ∈ T ,

%(t1, t2) = (t1 ∧ tC2 ) ∨ (tC1 ∧ t2) (18.1)

and

tC =
∨
{s ∈ T : s ∧ t = 0T } (18.2)

for each t ∈ T . Hence,

%(Π?(A), Π?(A)) = (Π?(A) ∧ (Π?(A))C) ∨ ((Π?(A))C ∧Π?(A)), (18.3)

and we will seeking, below, how to simplify this expression. If t = 1T , every A ⊂ Ω is trivially
almost t-measurable, if t = 0T , t-almost measurability reduces to the L-measurability (measurabil-
ity in the Lebesgue sense) introduced and investigated in Chapter 17. For each A ⊂ Ω the value
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%(Π?(A), Π?(A)) will be called the (degree of) discrepancy of the set A and denoted by dR,Π(A) (or
simply by d(A), if R and Π are fixed or given by the context). Hence, a subset of Ω is t-almost
measurable, if its discrepancy is smaller than or equal to the value t.

Let T = 〈P(X),⊂〉 be the complete lattice defined by the power-set P(X) of all subsets of a space
X, partially ordered by the relation of set-theoretic inclusion. In this case, %(A,B) = A÷B for each
A,B ⊂ X, so that %(A,B) = B − A, if A ⊂ B ⊂ X holds. Inspired by this relation and by the fact
that Π?(A) ≤ Π?(A) holds for each partial T -monotone measure Π on R ⊂ P(Ω) and for each A ⊂ Ω,
we would like to simplify the relation (18.3) to

%(Π?(A), Π?(A)) = Π?(A) ∧ (Π?(A))C . (18.4)

However, this cannot be reached in general without having introduced some more assumptions,
as the relation t1 ∧ (t2)C = 0T for t2 ≤ t1 and, in particular, the relation t1 ∧ (t1)C = 0T does not
hold in general in any complete lattice (let us recall the counter-example with T = {0T , t1, t2, t3,1T }
and with 0T < ti < 1T being the only valid partial-ordering relations on T , cf. Chapter 13 for more
detail). Leaving aside its relations to notions introduced in the foregoing chapters, the following direct
definition will be of use below.

Definition 18.2 A complete lattice T 〈T,≤〉 is called semi-Boolean, if t ∧ tC = 0T holds for each
t ∈ T . If, moreover, t ∨ tC = 1T holds for each t ∈ T , the complete lattice T is called Boolean-like.

Lemma 18.1 If a complete lattice T = 〈T,≤〉 is completely distributive in the sense that

s ∧
(∨

S
)

=
∨

t∈S

(s ∧ t) (18.5)

holds for each s ∈ T and each ∅ 6= S ⊂ T , then T is semi-Boolean (let us note that the relation
s ∧ (

∨
S) ≥ ∨

t∈S(s ∧ t) holds in general, as s ∧ (
∨

S) ≥ s ∧ t is the case for every t ∈ S).

Proof. If T is completely distributive, then for every t ∈ T ,

t ∧ tC = t ∧
∨
{s ∈ T : s ∧ t = 0T } =

∨
{s ∧ t : s ∧ t = 0T } = 0T . (18.6)

2

Lemma 18.2 Let T be a semi-Boolean complete lattice, let Ω be a nonempty set and {∅, Ω} ⊂ R ⊂
P(Ω) a system of sets, let Π : R→ T be a partial T -monotone measure on R. Then, for every A ⊂ Ω
and every A1, A2 ∈ R such that the inclusions A1 ⊂ A ⊂ A2 hold, the relation

dR,Π(A) ≤ Π(A2) ∧ (Π(A1))C (18.7)

is valid.

Proof. As Π?(A) ≤ Π?(A) holds and T is semi-Boolean, we obtain that

Π?(A) ∧ (Π?(A))C ≤ Π?(A) ∧ (Π?(A))C = 0T , (18.8)

so that (18.1) reduces to (18.4). If A1, A2 ∈ R, A1 ⊂ A ⊂ A2 holds, then

Π(A1) ≤ Π?(A) ≤ Π?(A) ≤ Π(A2) (18.9)

follows. However, if t1, t2 ∈ T are such that t1 ≤ t2 is the case, then for each s ∈ T such that
s ∧ t2 = 0T also s ∧ t1 = 0T holds, hence, the inequality

tC1 =
∨
{s ∈ T : s ∧ t1 = 0T } ≥

∨
{s ∈ T : s ∧ t2 = 0T } = tC2 (18.10)

follows. In particular, (Π(A1))C ≥ (Π?(A))C holds, so that

dR,Π(A) = %(Π?(A), Π?(A)) = Π?(A) ∧ (Π?(A))C ≤ Π(A2) ∧ (Π(A1))C (18.11)

results. The assertion is proved. 2
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Theorem 18.1 Let the notations and conditions of Lemma 4.2 hold, let the complete lattice
T = 〈T,≤〉 be Boolean-like. Then, for any A ⊂ Ω,

dR,Π(A) =
∧

A1⊂A, A1∈R


 ∧

A2⊃A, A2∈R
(Π(A2) ∧ (Π(A1))C)


 . (18.12)

Proof. Combining the definition of discrepancy dR,Π(A) with (18.7), we obtain that

Π?(A) ∧ (Π?(A))C = dR,Π(A) ≤
∧

A1⊂A, A1∈R


 ∧

A2⊃A, A2∈R
(Π(A2) ∧ (Π(A1))C)


 =

=
∧

A1⊂A, A1∈R


(Π(A1))C ∧

∧

A2⊃A, A2∈R
Π(A2)


 =

∧

A1⊂A, A1∈R

[
(Π(A1))C ∧Π?(A)

]
=

= Π?(A) ∧
∧

A1⊂A, A1∈R
(Π(A1))C ≤ Π?(A) ∧


 ∨

A1⊂A, A1∈R
Π(A1)




C

=

= Π?(A) ∧ (Π?(A))C . (18.13)

The assertion is proved. 2

Given a complete lattice T = 〈T,≤〉, a system R of subsets of a nonempty space Ω such that
{∅, Ω} ⊂ R, a partial T -monotone measure Π on R and a fixed element t ∈ T , let us denote by
L(R, Π, t) ⊂ P(Ω) the system of all t-almost measurable subsets of Ω. Hence, in symbols,

L(R,Π, t) = {A ⊂ Ω : dR,Π(A) ≤ t}, (18.14)

hence,

L(R, Π, t) = {A ⊂ Ω : Π?(A) ∧ (Π?(A))C ≤ t} (18.15)

supposing that T is completely distributive. Obviously, for each t1, t2 ∈ T such that t1 ≤ t2 holds
the inclusions

R ⊂M(R, Π) = L(R, Π,0T ) ⊂ L(R, Π, t1) ⊂ L(R,Π, t2) ⊂ L(R, Π,1T ) = P (Ω) (18.16)

are valid.

Theorem 18.2 Under the notations and conditions just introduced, the set-theoretic relations valid
for the systems of t-almost measurable subsets of Ω partially copy the lattice operations defined in T ,
namely, for each S ⊂ T ,

⋂

t∈S

L(R, Π, t) = L
(
R, Π,

∧
S

)
, (18.17)

⋃

t∈S

L(R, Π, t) ⊂ L
(
R, Π,

∨
S

)
, (18.18)

let us recall that
∨

S =
∨

t∈S t and
∧

S =
∧

t∈S t.

Proof. As for each t ∈ S the relation
∧

S ≤ t ≤ ∨
S trivially holds, (18.16) implies that the set

inclusions

L
(
R,Π,

∧
S

)
⊂ L(R, Π, t) ⊂ L

(
R, Π,

∨
S

)
(18.19)

and, consequently,
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L
(
R,Π,

∧
S

)
⊂

⋂

t∈S

L(R,Π, t), L
(
R,Π,

∨
S

)
⊃

⋃

t∈S

L(R,Π, t) (18.20)

are also valid. If A ∈ ⋂
t∈S L(R, Π, t), then dR,Π(A) ≤ t holds for each t ∈ S, so that dR,Π(A) ≤∧

S and A ∈ L(R,Π,
∧

S) follow due to the definition of infimum in T . Hence, the inversion of the
first inclusion in (18.20) and, consequently, (18.17) follow, so that the assertion is proved. 2

It is perhaps worth noting explicitly, that the inclusion inverse to (18.18) does not hold in general.
Indeed, let the complete lattice T = 〈T,≤〉 be continuous in 1T in the sense that

∨{t ∈ T : t < 1T } =
1T (let us recall the semi-open interval [0, 1) = {x ∈ [0, 1] : x < 1} with respect to the standard
ordering ≤). Take R = {∅,Ω} with Π(∅) = 0T =

∧
T and Π(Ω) = 1T =

∨
T , let card (Ω) ≥ 2 hold,

so that there exist nonempty proper subsets of Ω. Consequently, for every A ⊂ Ω, ∅ 6= A 6= Ω,

Π?(A) =
∨
{Π(B) : B ⊂ A, B ∈ R} = Π(∅) = 0T , (18.21)

Π?(A) =
∧
{Π(B) : B ⊃ A, B ∈ R} = Π(Ω) = 1T . (18.22)

Moreover,

(0T )C =
∨{

s ∈ T : s ∧
(∧

T
)

=
∧

T
}

=
∨

T = 1T , (18.23)

(1T )C =
∨{

s ∈ T : s ∧
(∨

T
)

=
∧

T
}

=
∧

T = 0T . (18.24)

As Π?(∅) = Π?(∅) = 0T and Π?(Ω) = Π?(Ω) = 1T , we obtain that

dR,Π(∅) = Π?(∅) ∧ (Π?(∅))C = 0T ∧ 1T = 0T , (18.25)

dR,Π(Ω) = Π?(Ω) ∧ (Π?(Ω))C = 1T ∧ 0T = 0T , (18.26)

and

dR,Π(A) = Π?(A) ∧ (Π?(A))C = 1T ∧ 0T = 1T (18.27)

for every ∅ 6= A 6= Ω, A ⊂ Ω. Hence, for every t ∈ T, t < 1T ,

L(R, Π, t) = {A ⊂ Ω : dR,Π(A) ≤ t} = {∅, Ω}, (18.28)

but

L(R, Π,1T ) = P(Ω), (18.29)

so that, for S = T − {1T } ⊂ T , we obtain that

⋃

t∈S

L(R, Π, t) =
⋃

t<1T

L(R, Π, t) = {∅, Ω} 6= L
(
R, Π,

∨
S

)
=

= L
(
R, Π,

∨
t<1T

t

)
= L(R, Π,1T ) = P(Ω). (18.30)

It is almost obvious that the non-symmetric role of union (supremum) and intersection (infimum)
in Theorem 18.2 cannot be removed, if considering a more strict definition of t-almost measurability,
namely, when setting

L(R,Π, t) = {A ⊂ Ω : dR,Π(A) < t}. (18.31)

Indeed, in this case equality holds in (18.18), but (18.17) is violated and only the first inclusion in
(18.20) can be proved.
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Theorem 18.3 Let T = 〈T,≤〉 be a semi-Boolean complete lattice satisfying the following conditions:

s ∧ (t1 ∨ t2) = (s ∧ t1) ∨ (s ∧ t2) (18.32)

and

s ∨
(∧

S
)

=
∧

t∈S

(s ∨ t) (18.33)

for each s, t1, t2 ∈ T and each S ⊂ T (let us note that the inequalities s∧(t1∨t2) ≥ (s∧t1)∨(s∧t2)
and s ∨ (

∧
S) ≤ ∧

t∈S(s ∨ t) are valid in general). Let R ⊂ P(Ω), Ω 6= ∅, be such that {∅, Ω} ⊂ R
and R is closed with respect to unions, i.e., if A,B ∈ R, then also A ∪B ∈ R. Let Π be a partial T -
possibilistic measure on R, let t ∈ T , let L(R, Π, t) be the system of all t-almost measurable subsets of
Ω. Then L(R, Π, t) is closed with respect to unions in the same sense as R, hence, if A,B ∈ L(R,Π, t)
then A ∪B ∈ L(R, Π, t) follows.

Proof. Omitting for the sake of simplicity, the parameters R and Π in dR,Π(·), taking A,B ⊂ Ω and
A1, A2, B1, B2 ∈ R such that the inclusions A1 ⊂ A ⊂ A2 and B1 ⊂ B ⊂ B2 are valid, we obtain that
also A1 ∪B1 ⊂ A ∪B ⊂ A2 ∪B2 holds, hence, we obtain that

d(A ∪B) ≤ (Π(A2 ∪B2)) ∧ (Π(A1 ∪B1))C = (Π(A2) ∨Π(B2)) ∧ (Π(A1) ∨ (B1))C =
= [Π(A2) ∧ (Π(A1) ∨Π(B1))C ] ∨ [Π(B2) ∧ (Π(A1) ∨Π(B1))C ] (18.34)

holds due to the assumptions imposed on T ,R, and Π. For every t1, t2 ∈ T, t1 ≤ t2 implies that
tC1 ≥ tC2 , hence

(Π(A1) ∨Π(B1))C ≤ (Π(A1))C , (Π(A1) ∨Π(B1)) ≤ (Π(B1))C (18.35)

immediately follows. Combining (18.34) with (18.35), we obtain that

d(A ∪B) ≤ [Π(A2) ∧ (Π(A1))C ] ≤ [Π(B2) ∧ (Π(B1))C ]. (18.36)

Consequently,

d(A ∪B) ≤
∧

A1,A2∈R, A1⊂A⊂A2

{
[Π(A2) ∧ (Π(A1))C ] ∨ [Π(B2) ∧ (Π(B1))C ]

}
=

=





∧

A1,A2∈R, A1⊂A⊂A2

[Π(A2) ∧ (Π(A1))C ]



 ∨ [Π(B2) ∧ (Π(B1))C ] (18.37)

due to the conditions (18.32) and (18.33) imposed on T . Applying this operation once more, we
obtain that the inequality

d(A ∪B) ≤




∧

A1,A2∈R, A1⊂A⊂A2

[Π(A2) ∧ (Π(A1))C ]



 ∨





∧

B1,B2∈R, B1⊂B⊂B2

[Π(B2) ∧ (Π(B1))C ]



 =

= d(A) ∨ d(B) ≤ t ∨ t = t (18.38)

also holds. Hence, A ∪B ∈ L(R,Π, t) follows and the assertion is proved. 2

Theorem 18.4 Let T − 〈T,≤〉 be a semi-Boolean distributive complete lattice, let R ⊂ P(Ω) be a
nested system which contains ∅ and Ω, let Π be a partial T -monotone measure on R. Then, for each
t ∈ T , the system L(R, Π, t) of t-almost measurable subsets of Ω is closed with respect to unions and
intersections, i.e., for each A,B ∈ L(Π,R, t), A ∪B and A ∩B are also in L(Π,R, t).
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Proof. Let A,B ⊂ Ω, let A1, A2, B1, B2 ∈ R be such that the inclusions A1 ⊂ A ⊂ A2 and
B1 ⊂ B ⊂ B2 hold. For A ∪ B we obtain that the inclusions A1 ∪ B1 ⊂ A ∪ B ⊂ A2 ∪ B2 and
A1 ∩B1 ⊂ A ∩B ⊂ A2 ∩B2 are also valid. As T is semi-Boolean, (18.18) implies the inequalities

d(A ∪B) ≤ Π(A2 ∪B2) ∧ (Π(A1 ∪B1))C , (18.39)

d(A ∩B) ≤ Π(A2 ∩B2) ∧ (Π(A1 ∩B1))C , (18.40)

omitting, again, the parameters R and Π in dR,Π(·). As R is nested, just the following four
particular cases of the mutual relations between A1, B1 and between A2, B2 are possible.

(i) A1 ⊂ B1 and A2 ⊂ B2. Then A1 ∪B1 = B1, A2 ∪B2 = B2, A1 ∩B1 = A1 and A2 ∩B2 = A2,
so that (18.39) and (18.40) reduce to

d(A ∪B) ≤ Π(B2) ∧ (Π(B1))C , d(A ∩B) ≤ Π(A2) ∧ (Π(A1))C . (18.41)

(ii) A1 ⊃ B1, A2 ⊃ B2 - the same case as (i), just with the roles of A1 and B1 interchanged, so that
the inequalities

d(A ∪B) ≤ Π(A2) ∧ (Π(A1))C , d(A ∩B) ≤ Π(B2) ∧ (Π(B1))C (18.42)

follow.

(iii) A1 ⊂ B1, A2 ⊃ B2. In this case, A1∪B1 = B1, A2∪B2 = A2, A1∩B1 = A1 and A2∩B2 = B2,
so that (18.39) and (18.40) yield

d(A ∪B) ≤ Π(A2) ∧ (Π(B1))C ≤ Π(A2) ∧ (Π(A1))C ., (18.43)

d(A ∩B) ≤ Π(B2) ∧ (Π(A1))C ≤ Π(A2) ∧ (Π(A1))C , (18.44)

as Π(A2) ≥ Π(B2) holds. Finally, if

(iv) A1 ⊃ B1, A2 ⊃ B2, the situation is the same as in (iii), just with the roles of Ai and Bi

interchanged. Hence, (18.43) and (18.44) hold again, just with Ai replaced by Bi for both
i = 1, 2.

Combining all these particular cases together, we obtain that in every case the inequality

d(A ∩B) ≤ [Π(A2) ∧ (Π(A1))C ] ∨ [Π(B2) ∧ (Π(B1))C ] (18.45)

as well as the same inequality for d(A∩B) are valid, no matter which A1, A2, B1, B2 ∈ R satisfying
the given inclusions may be. Hence, as the complete lattice T is supposed to be distributive, we obtain
that

d(A ∪B) ≤
∧

A1⊂A⊂A2, A1,A2∈R


 ∧

B1⊂B⊂B2, B1,B2∈R
([Π(A2) ∧ (Π(A1))C ] ∨ [Π(B2) ∧ (Π(B1))C ])


 =

=


 ∧

A1⊂A⊂A2, A1,A2∈R
[Π(A2) ∧ (Π(A1))C ]


 ∧


 ∧

B1⊂B⊂B2, B1,B2∈R
[Π(B2) ∧Π(B1)C ]


 =

= d(A) ∨ d(B), (18.46)

and similarly we obtain that
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d(A ∩B) ≤ d(A) ∨ d(B) (18.47)

holds. So, if A,B ∈ L(R, Π, t), then d(A) ≤ t, d(B) ≤ t holds, hence d(A∪B) ≤ t and d(A∩B) ≤ t
is valid. Consequently, A ∪B and A ∩B are in L(R,Π, t) and the assertion is proved. 2

Let us analyze, in more detail, the conditions under which complements of t-almost measurable
subsets of the basic space Ω are also t-almost measurable. As done already several times above,
we take an inspiration from the most simple case, when identify mapping on P(Ω) is understood as
T0-valued possibilistic measure, where T0 = 〈P(Ω),⊂〉. Hence, R = P(Ω) and Π : P(Ω) → P(Ω) is
defined simply by Π(A) = A for every A ⊂ Ω. Then pseudo-complement AC agrees with the standard
set-theoretic complement Ω − A and the T0-valued metric % on P(Ω) is defined by the symmetric
difference, so that

%(A,B) = A÷B = (A−B) ∪ (B −A) (18.48)

for every A,B ⊂ Ω. As can be easily checked, %(A,B) = %(Ω−A,Ω−B) holds in general. Indeed,

%(Ω−A, Ω−B) = (Ω−A)÷ (Ω−B) =
= [(Ω−A) ∩ (Ω− (Ω−B))] ∪ [(Ω−B) ∩ (Ω− (Ω−A))] =
= ((Ω−A) ∩B) ∪ ((Ω−B) ∩A) = (B −A) ∪ (A−B) = %(A, B).(18.49)

In particular, if A ⊂ B ⊂ Ω holds, then

%(A,B) = %(Ω−A, Ω−B) = B −A. (18.50)

So, if R ⊂ P(Ω) is closed with respect to complements, if C ⊂ Ω is given, and if a subset A ⊂ Ω is
called C-almost measurable supposing that %(A?, A

?) ⊂ C is the case, we can conclude immediately
that the set Ω−A is also C-almost measurable. Here

A? =
⋃
{B ⊂ A, B ∈ R}, A? =

⋂
{B ⊃ A, B ∈ R}. (18.51)

In what follows, our aim will be to find conditions to be imposed on the complete lattice T = 〈T,≤〉,
and on the partial T -monotone or T -possibilistic measure Π on R, in order to ensure the validity of
a relation like (18.50).

Lemma 18.3 Let T = 〈T,≤〉 be a Boolean-like complete distributive lattice, so that t ∧ tC = 0T and
t ∨ tC = 1T holds for each t ∈ T . Then (tC)C = t for every t ∈ T .

Proof. By definition

(tC)C =
∨
{s ∈ T : s ∧ tC = 0T }. (18.52)

The condition t∧ tC = 0T implies that t is among those s, for which s∧ tC = 0T holds, hence, the
inequality (tC)C ≥ t immediately follows. The condition t ∨ tC = 1T , valid for each t ∈ T , together
with the distributivity of T , yields that

(tC)C = (tC)C ∧ 1T = ((tC)C) ∧ (tC ∨ t) = ((tC)C ∧ tC) ∨ ((tC)C ∧ t) = (tC)C ∧ t, (18.53)

as (tC)C ∧ tC = 0T . Consequently, (tC)C ≤ t and (tC)C = t follow. 2

Remark 18.1 As a matter of fact, for complementary distributive complete lattice T the equality
t ∧ tC = 0T holds in general. Indeed, setting St = {s ∈ T : s ∧ t = 0T }, we obtain that

t ∧ tC = t ∧
∨

St =
∨

s∈St

(s ∧ t) =
∨

s∈St

0T = 0T . (18.54)
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Theorem 18.5 Let T = 〈T,≤〉 be a distributive semi-Boolean complete lattice, let Ω be a nonempty
set and R a system of subsets of Ω containing ∅ and closed with respect to complements, i.e., Ω−A ∈ R
for each A ∈ R (so that Ω ∈ R follows). Let Π : R → T be a partial T -monotone measure on R such
that

Π(B) ∧Π(Ω−B) = 0T , Π(B) ∨Π(Ω−B) = 1T (18.55)

holds for every B ∈ R. Then, for each t ∈ T and each A ⊂ Ω, if A is t-almost measurable, its
complement Ω−A is t-almost measurable as well. In other terms, the system L(R,Π, t) of all t-almost
measurable subsets of Ω is closed with respect to complements.

Proof. Let us prove, first of all, that under the conditions imposed, the relation Π(Ω−B) = (Π(B))C

holds for every B ∈ R. Indeed, Π(B) ∧ Π(Ω− B) = 0T yields that Π(Ω − B) ≤ (Π(B))C holds. On
the other side, however

(Π(B))C = (Π(B))C ∧ 1T = (Π(B))C ∧ (Π(B) ∨Π(Ω−B)) =
= [(Π(B))C ∧Π(B)] ∨ [(Π(B))C ∧Π(Ω−B)]
= (Π(B))C ∧Π(Ω−B), (18.56)

as t∧ tC = 0T holds for each t ∈ T due to the assumption that T is semi-Boolean. Hence, (18.56)
yields the inequality (Π(B))C ≤ Π(Ω−B), so that the inequality Π(Ω−B) = (Π(B))C holds for every
B ∈ R.

Let A ⊂ Ω, let A1, A2 ∈ R be such that A1 ⊂ A ⊂ A2 holds. The conditions of Lemma 18.2 being
satisfied, (18.7) holds, hence

dR,Π(A) ≤ %(A1, A2) = Π(A2) ∧ (Π(A1))C (18.57)

follows. In this case, however, Ω−A1 and Ω−A2 are inR and the inclusion Ω−A2 ⊂ Ω−A ⊂ Ω−A1

is valid, so that the relation

dR,Π(Ω−A) ≤ %(Ω−A2, Ω−A1) = Π(Ω−A1) ∧ (Π(Ω−A2))C = (Π(A1))C ∧Π(A2) = %(A1, A2)
(18.58)

is valid as well. Consequently,

dR,Π(Ω−A) ≤
∧

A1,A2∈R, A1⊂A⊂A2

%(A1, A2) = dR,Π(A) (18.59)

follows. As the roles of sets from R and their respective complements in our reasoning are com-
pletely dual, as a matter of fact the equality dR,Π(A) = dR,Π(Ω − A) results. Hence, if dR,Π(A) ≤ t
is the case, dR,Π(Ω−A) ≤ t holds as well and the assertion is proved. 2

Corollary 18.1 Let T = 〈T,≤〉 be a semi-Boolean complete lattice which is distributive in the sense
that (18.32) and (18.33) hold. Let Ω be a nonempty set and let R be a system of subsets of Ω which
contains ∅ and Ω and which is closed with respect to set-theoretic operations of union and complement
so that, for each A,B ∈ R, also the sets A∪B and Ω−A are in R. Let Π : R→ T be a complete partial
T -possibilistic measure on R which is orthogonal in the sense that (18.55) holds for every B ∈ R.
Then, for each t ∈ T , the system L(R, Π, t) of all t-almost measurable subsets of Ω is closed with
respect to unions, intersections and complements, hence, L(R, Π, t) is a Boolean algebra containing
R.

Proof. The conditions imposed on T ,R, and Π combine those introduced in Theorems 18.3 and 18.5,
so that L(R,Π, t) is closed with respect to unions (Theorem 18.3) and complements (Theorem 18.5).
However, the elementary de Morgan rules yield that A ∩ B = Ω − ((Ω − A) ∪ (Ω − B)), so that for
each A,B ∈ L(R,Π, t) we obtain that
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d(A ∩B) =
∨

C1,C2∈R, C1⊂A∩B⊂C2

(Π(C2) ∧ (Π(C1))C)

= d(Ω− ((Ω−A) ∪ (Ω−B))) =
= d(Ω−A) ∪ (Ω−B)) (by (18.59))
= d(Ω−A) ∨ d(Ω−B)) (by (18.46))
= d(A) ∨ d(B) (by (18.59) again)
= t ∨ t = t1, (18.60)

applying the definition of L(R,Π, t). Hence, A ∩B ∈ L(R, Π, t) and the assertion is proved. 2

19 A Strengthened Version of Inner and Outer Measures

As a matter of fact, the idea of inner and outer measures applied above and borrowed from the standard
measure theory, cf. [20], e.g., is very simple and intuitive. Each subset A ⊂ Ω is approximated by two
subsets B1, B2 ∈ R such that B1 ⊂ A ⊂ B2 holds, hence, the values of a monotone or possibilistic T -
valued measure Π for both B1, B2 are defined. The choice of B1 and B2 is then optimized in the sense
that the distance %(B1, B2) (= Π(B2) ∧ (Π(B1))C under some simplifying conditions introduced and
analyzed in the foregoing chapter) should be as small as possible. In this chapter we will try to modify
this idea in such a way that not only sets from R, but also intersections and unions of such sets can
play the role of inner and outer approximations of the set A in question, even if these intersections and
unions themselves do not belong to R. To simplify our reasoning, we will suppose that T = 〈T,≤〉 is a
complete lattice, so that all the suprema and infima occurring below will be defined, perhaps applying
the conventions

∨ ∅ = 0T and
∧ ∅ = 1T for the empty subset of T . Moreover, we will suppose that Π

is a T -monotone measure on R, so assuring its most elementary relation to the set-theoretic inclusion.

Definition 19.1 Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set, let {∅, Ω} ⊂ R ⊂ P(Ω)
be a system of subsets of Ω, let Π : R → T be a T -monotone measure on R. The strong inner (or
lower) measure Π+ and the strong outer (or upper) measure Π+ induced by Π on P(Ω) are mappings
ascribing to each A ⊂ Ω the values

Π+(A) =
∨

B⊂R,
⋂B⊂A

( ∧

B∈B
Π(B)

)
(19.1)

Π+(A) =
∧

B⊂R,
⋃B⊃A

( ∨

B∈B
Π(B)

)
. (19.2)

Here
⋃B (

⋂B, resp.) denotes the sets
⋃

B∈B B (
⋂

B∈B B, resp.). Let us emphasize the fact that
the sets

⋃B and
⋂B, occurring in (19.1) and (19.2) need not be in R, so that the values Π+(A)

and/or Π+(A) need not be the values ascribed by Π to some sets from R, or at least limits of such
values, as it is the case for Π?(A) and Π?(A).

Lemma 19.1 Under the notations and conditions of Definition 7.1, the inequalities

Π?(A) ≤ Π+(A), Π+(A) ≤ Π?(A) (19.3)

are valid for each A ⊂ Ω.

Proof. Restricting ourselves to such systems B ⊂ R which contain only one set, say C ∈ R, we
obtain easily that

⋃B =
⋂B = C and

Π+(A) ≥
∨

B⊂R, B={C}, ⋂B⊂A

( ∧

B∈B
Π(B)

)
=

∨

C∈R, C⊂A

Π(C) = Π?(C). (19.4)
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Dually,

Π+(A) ≤
∧

B⊂R, B={C}, ⋃B⊃A

( ∨

B∈B
Π(B)

)
=

∧

C∈R, C⊃A

Π(C) = Π?(C). (19.5)

2

However, the intuitive inequality Π?(A) ≤ Π?(A), valid for every A ⊂ Ω as Π is supposed to be a
partial T -monotone measure on R, does not hold true, in general, for Π+ and Π+, as the following
simple example demonstrates. Take R = {∅, B1, B2, B3, Ω}, where B1, B2, B3 are such nonempty
subsets of Ω that B1 is a proper subset of B2 ∪ B3 6= Ω, but neither B1 ⊂ B2 nor B1 ⊂ B3 holds,
moreover, neither B2 ⊂ B3 nor B3 ⊂ B2 is the case, consequently, ∅ 6= B2 ∪ B3 /∈ R follows. Let
T = 〈T,≤〉 be a complete lattice, let Π : R → T be such that Π(∅) = 0T < t2 = Π(B2) = Π(B3) <
t1 = Π(B1) < 1T = Π(Ω) holds for some t1, t2 ∈ T . As can be easily checked, Π is a partial T -
possibilistic measure on R; the only unions of sets from R which are also in R are the trivial ones
∅ ∪Bi and Bi ∪ Ω, i = 1, 2, 3.

For the set B2 ∪B3 we compute easily that

Π?(B2 ∪B3) = Π(B1) = t1 < 1T = Π(Ω) = Π?(B1 ∪B2). (19.6)

The only subsystems of R the unions of which cover B2 ∪ B3 are B1 = {B2, B3} and every B2

containing Ω, so that

Π+(B1 ∪B2) =

( ∨

B∈B1

Π(B)

)
∧

( ∨

B∈B2

Π(B)

)
=

= (Π(B2) ∨Π(B3)) ∧Π(Ω) = (t2 ∨ t2) ∧ 1T = t2 < t1 =
= Π?(B2 ∪B3) ≤ Π+(B2 ∪B2), (19.7)

the last inequality follows from (19.3). The result just obtained obviously follows from the as-
sumption that the possibility degree ascribed to B1 is greater than that ascribed to B2 and B3, even
if these sets, joined together, cover B!. This assumption may be felt rather counter-intuitive, but it
does not violate our definitions, at least at the high degree of generality adopted here.

Let us consider the following way how to strengthen the demand of monotonicity imposed by the
definition of T -monotone measure on the mapping Π : R → T . Again, we limit ourselves to the case
when T = 〈T,≤〉 is a complete lattice.

Definition 19.2 Let T ,Ω and R be as in Definition 19.1. A mapping Π : R → T is called a strong
partial T -monotone measure on R, if Π(∅) = 0T , Π(Ω) = 1T and if, for every nonempty systems
A,B ∈ R such that the inclusion

⋂A ⊂ ⋃B holds, the relation
∧
{Π(A) : A ∈ A} ≤

∨
{Π(B) : B ∈ B} (19.8)

is valid.

Obviously, if A and B are singletons, i.e., if A = {A} and B = {B} for some A,B ∈ R, then⋂A = A,
⋃B = B and the condition imposed on Π reduces to: if A ⊂ B, then Π(A) ≤ Π(B), what is

just the definition of T -monotone measure on R. Also evident is the fact that the mapping Π defined
just before (19.6) is not a strong partial T -monotone measure on the system R in question.

Theorem 19.1 Let the notations and conditions of Definition 19.1 hold, let Π be a strong partial
T -monotone measure on R. Then, for every A ⊂ Ω, the inequality

Π?(A) ≤ Π+(A) ≤ Π+(A) ≤ Π?(A) (19.9)

is valid.
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Proof. Given A ⊂ Ω, let B1,B2 ⊂ R be such systems that the inclusions
⋂B1 ⊂ A ⊂ ⋃B2 holds.

Hence, (19.8) yields that
∧
{Π(B) : B ∈ B1} ≤

∨
{Π(B) : B ∈ B2} (19.10)

holds for each such B1 and B2 so that

Π+(A) =
∨

B1⊂R,
⋂B1⊂A

( ∧

B∈B1

Π(B)

)
≤

∧

B2⊂R,
⋃B2⊃A

( ∨

B∈B2

Π(B)

)
= Π+(A) (19.11)

immediately results. Lemma 19.1 then completes the proof. 2

The conditions imposed on strong monotone measures on R are rather restrictive. E.g., the
equalities

Π
(⋂

A
)

=
∧
{Π(A) : A ∈ A}, Π

(⋃
B

)
=

∨
{Π(B) : B ∈ B} (19.12)

must be valid for each A,B ⊂ R such that
⋂A,

⋃B ∈ R. In particular,
∧{Π(A) : A ∈ A} = 0T

for each A ⊂ R such that
⋂A = ∅, let us recall that we suppose that ∅ ∈ R. Indeed, each strong

monotone measure Π on R is a monotone measure on R, so that
⋂A ∈ R and

⋂A ⊂ A for each
A ∈ A yields that Π(

⋂A) ≤ Π(A), so that Π(
⋂A) ≤ ∧{Π(A) : A ∈ A} holds. On the other side,

when taking B = {⋂B} ⊂ R, we obtain that
⋂A ⊂ ⋃B =

⋂
A is valid, hence, as Π is a strong

monotone measure on R, the inequality
∧{Π(A) : A ∈ A} ≤ ∨{Π(B) : B ∈ B} and, consequently,

the first equality from (19.12) follows. Dually, we obtain that Π(B) ≤ Π(
⋃B) for each B ∈ B and∨{Π(B) : B ∈ B} ≤ Π(

⋃B) hold. Setting A = {⋃B} we obtain that
⋂A =

⋃B ⊂ ⋃B holds, so
that

∧
{Π(A) : A ∈ A} = Π

(⋃
B

)
≤

∨
{Π(B) : B ∈ B} (19.13)

follows. Hence, the other equality in (19.12)) is also proved.
The most trivial example of a strong monotone measure is the identity on the power-set P(Ω),

hence, T = 〈T,≤〉 = 〈P(Ω), C〉 and Π(A) = A for every A ⊂ Ω. Indeed, if A,B ⊂ P(Ω) are such that⋂A ⊂ ⋃B holds, then
∧
{Π(A) : A ∈ A} =

⋂
{A : A ∈ A} =

⋂
A ⊂

⋃
B =

∨
{Π(B) : B ∈ B} (19.14)

trivially follows. As a matter of fact, however, the system of all strong monotone measures on
P(Ω) is restricted just to isomorphisms between Boolean algebra 〈P(Ω),

⋃
,
⋂

, Ω − .〉 and the subset
Π(P(Ω)) = {Π(A) : A ⊂ Ω} ⊂ T , as the next assertion proves.

Theorem 19.2 Let T = 〈T,≤〉 be a Boolean-like complete lattice, let Π be a strong T -monotone mea-
sure on P(Ω). Then the quadruple 〈T0,∨,∧, (·)C〉, where T0 = Π(P(Ω)), ∨ and ∧ are the supremum
and infimum operations induced by ≤ in T , and (·)C is the pseudo-complement operation in T ¹ T0

(hence, (t)C =
∨{s ∈ T0 : s ∧ t = 0T }), defines a Boolean algebra and Π is an isomorphism between

the Boolean algebras 〈P(Ω),∪,∩, Ω− ·〉 and 〈T0,∨,∧, (·)C〉 .

Proof. Let t1.t2, t3 ∈ T0. Then there exist A,B, C ⊂ Ω such that t1 = Π(A), t2 = Π(B) and
t3 = Π(C). As Π is a strong monotone measure on P(Ω), the relations

t1 ∧ t2 = Π(A) ∧Π(B) = Π(A ∩B) = t2 ∧ t1,

t1 ∨ t2 = Π(A) ∨Π(B) = Π(A ∪B) = t2 ∨ t1,

(t1 ∧ t2) ∧ t3 = (Π(A) ∧Π(B)) ∧Π(C) = Π(A ∩B ∩ C) =
= Π(A) ∧ (Π(B) ∧Π(C)) = t1 ∧ (t2 ∧ t3), (19.15)

and
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(t1 ∨ t2) ∨ t3 = (Π(A) ∨Π(B)) ∨Π(C) = Π(A ∪B ∪ C) =
= Π(A) ∨ (Π(B) ∨Π(C)) = t1 ∨ (t2 ∨ t3) (19.16)

easily follow from (19.12). Hence, the suprema and infima of elements from T0 are in T0 and both
the operations are commutative and associative. We can also easily deduce that

(t1 ∧ t2) ∨ t2 = (Π(A) ∧Π(B)) ∨Π(B) = Π(A ∩B) ∨Π(B) =
= Π((A ∩B) ∪B) = Π(B) = t2 (19.17)

and, dually

(t1 ∨ t2) ∧ t2 = (Π(A) ∨Π(B)) ∧Π(B)) = Π(A ∪B) ∧Π(B) =
= Π((A ∪B) ∩B) = Π(B) = t2. (19.18)

Moreover,

t1 ∧ (t2 ∨ t3) = Π(A) ∧ (Π(B) ∨Π(C)) = Π(A) ∧Π(B ∪ C) =
= Π((A ∩ (B ∪ C)) = Π((A ∩B) ∪ (A ∩ C)) =
= Π(A ∩B) ∨Π(A ∩ C) =
= (Π(A) ∧Π(B)) ∨ (Π(A) ∧Π(C)) = (t1 ∧ t2) ∨ (t1 ∧ t3) (19.19)

and

t1 ∨ (t2 ∧ t3) = Π(A) ∨ (Π(B) ∧Π(C)) = Π(A ∪ (B ∩ C)) =
= Π((A ∪B) ∩ (A ∪ C)) = Π((A ∪B) ∧Π(A ∪ C) =
= (Π(A) ∨Π(B)) ∧ (Π(A) ∨Π(C)) = (t1 ∨ t2) ∧ (t1 ∨ t3). (19.20)

As T = 〈T,≤〉 is Boolean-like, t ∧ (t)C = 0T and t ∨ (t)C = 1T holds for every t ∈ T , so that

(t1 ∧ (t1)C) ∨ t2 = 0T ∨ t2 = t2 = t2 ∧ 1T = t2 ∧ (t1 ∨ (t1)C) (19.21)

easily follows. All the axions of Boolean algebras (cf. [42], e.g.) are satisfied and Π defines
an isomorphism between the Boolean algebras 〈P(Ω),∪,∩, Ω − ·〉 and 〈T0,∨,∧, (·)C〉. Indeed, the
inequality

(t)C =
∨
{s ∈ T0 : s ∧ t = 0T } ≤

∨
{s ∈ T : s ∧ t = 0T } = tC (19.22)

obviously holds, on the other side, if t1 = Π(A), then Π(A) ∧ Π(Ω − A) = Π(∅) = 0T , so that
t1)C ≥ Π(Ω−A) and t1 ∨ (t1)C = Π(A)∨Π(Ω−A) = Π(Ω) = 1T follows. The assertion is proved. 2

An intuitive example of strong monotone measure defined on the whole power-set P(Ω) may read
as follows. Let ω0 ∈ Ω be fixed, let T = 〈{0, 1},≤〉 be the most simple binary set of values, let
Π : P(Ω) → {0, 1} be such that Π(A) = 1, if ω0 ∈ A, Π(A) = 0 otherwise, i.e., if ω0 ∈ Ω−A, A ⊂ Ω.
Let A,B be such systems of subsets of Ω, that

⋂A ⊂ ⋃B holds. If there exists B0 ∈ B such that
ω0 ∈ B0, so that Π(B0) = 1, then

∨{Π(B) : B ∈ B0} = 1 as well and the inequality
∧{Π(A) : A ∈

A} ≤ ∨{Π(B) : B ∈ B} holds trivially. If ω0 ∈ B is not the case no matter which B ∈ B is taken, then
ω0 ∈

⋃B and, consequently, ω0 ∈
⋂A do not hold. Hence, there exists A0 ∈ A which does not contain

ω0, so that Π(A0) = 0 and the inequality 0 =
∧{Π(A) : A ∈ A} ≤ ∨{Π(B) : B ∈ B} again trivially

follows, so that Π is a strong monotone measure on P(Ω). As can be easily verified, the same is the
case when Π is defined in a slightly generalized way, namely, if Π(A) = 1 iff A? ⊂ A holds, where A? is
a proper nonempty subset of Ω (not just a singleton, as above), hence Π(A) = 0 iff A? ∩ (Ω−A) 6= ∅.
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On the other side, if Π is defined in such a way that Π(A) = 1 iff A∩A? 6= ∅, then in general Π is not
a strong monotone measure on P(Ω), as there exists A ⊂ Ω such that A∩A? 6= ∅ and (Ω−A)∩A? 6= ∅
(supposing that A? is not a singleton), so that Π(A) = Π(Ω−A) = 1 > Π(A ∩ (Ω−A)) = Π(∅) = 0.

Contrary to this example, let us consider the following modification of the most simple set-valued
strong monotone measure defined by the identity on P(Ω) (as introduced above). Again, fix ω0 ∈ Ω,
take T = 〈T,≤〉 = 〈P(Ω),⊂〉, and set Π(A) = A, if ω0 ∈ A, Π(A) = 0 otherwise, i.e., if ω0 ∈
Ω − A, A ⊂ Ω. Obviously, Π defines a monotone measure on P(Ω). Indeed, if A ⊂ B ⊂ Ω and
Π(A) = 0, the inequality Π(A) ≤ Π(B) holds trivially. If Π(A) = 1, then ω0 ∈ A and, consequently,
ω0 ∈ B and Π(B) = 1 follows, so that, again, Π(A) ≤ Π(B) holds. However, in general, Π is not a
strong monotone measure on P(Ω). Let B ⊂ P(Ω) be such that there exists ω1 ∈ Ω, ω1 6= ω0, and
B1 ∈ B with this property: ω0 ∈ B and ω1 ∈ Ω−B for every B ∈ B, B 6= B1, and ω0 ∈ Ω−B1. Take
A = {⋃B} ⊂ P(Ω), so that

⋂A =
⋂B ⊂ ⋃B is trivially satisfied. In this case,

∧{Π(A) : A ∈ A} =
Π(

⋃B) =
⋃B, as ω0 ∈

⋃B (we suppose that B1 is not the only set in B), and

∨
{Π(B) : B ∈ B} =

∨
{Π(B) : B ∈ B − {B1}} =

⋃
{B : B ∈ B − {B1}} =

⋃
B − {B1}, (19.23)

as Π(B1) = ∅ and Π(B) = B for every B ∈ B, B 6= B1. However, ω1 ∈
⋃B = Π(

⋃B) =
∧{Π(A) :

A ∈ A} holds, but ω1 ∈
⋃

(B − {B1}) =
∨{Π(B) : B ∈ B} does not hold. Hence, the inclusion∧{Π(A) : A ∈ A} ⊂ ∨{Π(B) : B ∈ B} is not valid, so that Π is not a strong monotone measure on

P(Ω).

Theorem 19.3 Let T = 〈T,≤ 〉 be a complete lattice, let R be a system of subsets of a nonempty
set Ω such that {∅,Ω} ⊂ R, let Π : R → T be a partial T -monotone measure on R such that the set
function Π+ : P(Ω) → T , defined by

Π+(A) =
∧

B⊂R,
⋃B⊃A

( ∨

B∈B
Π(B)

)
(19.24)

for every A ⊂ Ω, conservatively extends Π from R to P(Ω), hence, Π+(A) = Π(A) for every A ∈ R.
Then Π is a complete partial T -possibilistic measure on R. Let R0 = {⋃S : S ⊂ R} be the system of
all unions of sets from R, let Π0 : R0 → T be the mapping defined for every A ∈ R0, A =

⋃S,S ⊂ R,
by

Π0(A) =
∨
{Π(B) : B ∈ S}. (19.25)

Then Π0 is a uniquely defined complete partial T -possibilistic measure on R0, extending conser-
vatively Π from R to R0.

Proof. Let the conditions of Theorem 19.3 hold, let A ⊂ Ω, A ∈ R. Take B0 = {A} ⊂ R, then∨{Π(B) : B ∈ B0} = Π(A), so that

Π(A) = Π+(A) =
∧

B⊂R,
⋃B⊃A

(∨
{Π(B) : B ∈ B}

)
≤

∨
{Π(B) : B ∈ B0} = Π(A) (19.26)

follows. Consequently, the inequality
∨
{Π(B) : B ∈ B} ≥ Π(A) (19.27)

holds for each B ⊂ R such that
⋃B ⊃ A. Let B ⊂ R be such that

⋃B ∈ R. Setting A =
⋃B in

(19.27) we obtain that
∨{Π(B) : B ∈ B} ≥ Π(

⋃B) holds. However, B ⊂ ⋃B is valid for each B ∈ B
and Π is a partial T -possibilistic measure on R, so that the inequalities Π(B) ≤ Π(

⋃B),
∨{Π(B) :

B ∈ B} ≤ Π(
⋃B) and, consequently, the equality Π(

⋃B) =
∨{Π(B) : B ∈ B} follow. Hence, Π is a

complete partial T -possibilistic measure on R.
Considering R0 and Π0 : R0 → T defined as above, we have to prove, first of all, that the definition

(19.25) is correct, i.e., that the relation
∨{Π(B) : B ∈ S1} =

∨{Π(C) : C ∈ S2} is valid for every
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S1, S2 ⊂ R such that
⋃S1 =

⋃S2. However, this equality immediately follows from (19.27), as both
the inclusions

⋃S1 ⊃
⋃S2 and

⋃S2 ⊃
⋃S1 hold simultaneously. Given A ∈ R, the system SA = {A}

is one of those for which
⋃SA = A, so that

Π+(A) =
∨
{Π(B) : B ∈ SA} = Π(A), (19.28)

hence, Π+ conservatively extends Π from R to R0.
Let S0 ⊂ R0 be a system of subsets of Ω such that each of them is a union of sets from R. Given

A ∈ S0, let SA ⊂ R be a system of subsets from R such that
⋃SA = A. Let S? ⊂ R be the system

of subsets from R containing just the sets occurring in some SA, hence, S? =
⋃{SA : A ∈ S0}.

Obviously

⋃
S? =

⋃

B∈S?

B =
⋃

A∈S0

( ⋃

B∈SA

B

)
∈ R0, (19.29)

so that, due to (7.28), the relation

Π?
(⋃

S?
)

=
∨
{Π(B) : B ∈ S?} =

∨

A∈S0

( ∨

B∈SA

Π(B)

)
=

∨

A∈S0

Π+(A) (19.30)

follows, so that Π+ is a complete partial T -possibilistic measure on R0 and the assertion is proved.
2

When summarizing our considerations concerning the set functions Π+ and Π+, induced by the
partial T -fuzzy or possibilistic measure Π, we may perhaps conclude that their role as possible al-
ternatives to and improvements of the inner and the outer measures Π? and Π? is rather limited. It
follows from the fact that the inequality Π?(A) ≤ Π+(A) ≤ Π+(A) ≤ Π?(A) for every A ⊂ Ω, and
the equality Π+(A) = Π+(A) = Π(A) for every A ∈ R, which should be intuitively valid in this case,
are valid only under rather strong and far from being intuitive supplementary conditions. Moreover,
the set function Π+ satisfies the condition Π+(

⋂A) =
∧{Π+(A), A ∈ A}, A ⊂ P(Ω), which is too

strong even for T -partial possibilistic measures when just the inequality Π(
⋂A) ≤ ∧{Π(A) : A ∈ A}

can be proved. Hence, it looks like quite reasonable to postpone a more detailed investigation of set
functions Π+ and Π+ till the time when some new and qualitatively different interpretation of (or
semantic for) them is suggested, proving the qualities of these set functions as good approximations
and extensions of the original partial T -monotone or possibilistic measures.

20 Extensions of Partial Lattice-Valued Possibilistic Measures
from Nested Domains

Our goal, in what follows, will be to re-consider the problems presented in Chapter 5 for the case of
lattice-valued possibilistic measure. In more detail, we will consider a partial lattice-valued possibilistic
measure defined on a nested system of subsets of the universe of discourse, aiming to extend this
measure to the whole power-set over this universe. To this end, we will apply the idea on which
outer measures rely, covering each subset of this universe, as tightly as possible in the sense of set
inclusion, by a set from the definition domain of the partial lattice-valued possibilistic measure under
consideration. Various ways how to combine such approaches when having at hand more partial
possibilistic measures of this kind will be also considered and analyzed.

For the reader’s convenience, let us recall some notions to be of use in what follows. Let T =
〈T,≤T 〉 be a partially ordered (p.o.) set, let ∧T and ∨T denote the infimum and the supremum
operations induced by ≤T on T . Set 0T =

∧
T T and 1T =

∨
T T (and call them the zero and the

unit elements of T ) supposing that they are defined in T .
A partially ordered set I = 〈I,≤I〉 is called a lower semilattice, if for each α, β ∈ I the infimum

α ∧I β is defined in I. A lower semilattice I = 〈I,≤I〉 is called complete, if for each ∅ 6= J ⊂ I the
infimum ∧IJ is defined. Consequently, in each complete lower semilattice I the zero element 1T is
defined.

16



Let Ω be a nonempty set, let R be a nonempty system of subsets of Ω, let T = 〈T,≤T 〉 be a
p.o.set. A mapping ϕ : R→ T is called a T -valued monotone measure on R, if

(i) ϕ(∅) = 0T supposing that φ ∈ R and 0T is defined,

(ii) ϕ(Ω) = 1T supposing that Ω ∈ R and 1T is defined,

(iii) ϕ(A) ≤T ϕ(B) holds for each A ⊂ B ⊂ Ω, A, B ∈ R.

In order to simplify our further reasoning and notation we will suppose, in this and in the next
chapter, that φ and Ω are always in R and that 0T as well as 1T are defined in T = 〈T,≤〉. The
triple 〈Ω,R, ϕ〉 will be called a monotone space analogously to the notions of probability space and
possibility (or possibilistic) space.

Definition 20.1 Let I = 〈I,≤I〉 be a complete lower semilattice, let 〈Ω,R, ϕ〉 be a monotone space. A
system S of subsets of Ω is called a classification system over 〈Ω,R, ϕ〉 indexed by I (I-classification
system over 〈Ω,R, ϕ〉, abbreviately), if S ⊂ R, S = {Sα : α ∈ I}, S0I = ∅ (let us recall that
0I =

∧
I I), there exists α ∈ I such that Sα = Ω, and for each α, β ∈ I, if α ≤I β holds, then the

inclusion Sα ⊂ Sβ is valid.

Let S be an I-classification system over 〈Ω,R, ϕ〉. Given A ⊂ Ω, set

α(A,S) =
∧

I
{β ∈ I : A ⊂ Sβ}. (20.1)

As Ω ∈ S holds, the set {β ∈ I : A ⊂ Sβ} is nonempty, hence, its infimum with respect to ≤I , i.e.,
the value α(A,S) is always defined and belongs to I. Hence, the set Sα(A,S) is defined and is in R,
consequently, also the value F (A) = ϕ(Sα(A,S)) ∈ T is defined. So, F is a mapping which takes P(Ω)
into 〈T,≤T 〉.

An I-classification system S over 〈Ω,R, ϕ〉 is called conservative, if Sα(A,S) = A holds for each
A ∈ S. In this case, F (A) = ϕ(Sα(A,S)) = ϕ(A) for each A ∈ S, hence, F extends conservatively ϕ
from S (but not from R, in general), to P(Ω).

Lemma 20.1 Let 〈Ω,R, ϕ〉 be a monotone space, let I = 〈I,≤I〉 be a complete lower semi-lattice, let
S be an I-classification system over 〈Ω,R, ϕ〉 and, for each A ⊂ Ω, let α(A,S〉 be defined by (20.1)
and F (A) by

F (A) = ϕ(Sα(A,S)). (20.2)

If F (Ω) = 1T , then F is a T -monotone measure on P(Ω). In particular, if I is conservative, then
F extends ϕ conservatively from S to P(Ω).

Proof. As {∅,Ω} ⊂ R holds, ϕ(∅) = 0T , so that

α(∅,S) =
∧
{β ∈ I : φ ⊂ Sβ} =

∧

I
I = 0I , (20.3)

so that Sα(∅,S) = S0I = ∅ by the definition of I-classification system, hence

F (∅) = ϕ(Sα(∅,S)) = ϕ(∅) = 0T (20.4)

follows. Let A ⊂ B ⊂ Ω, then for each C ∈ S such that B ⊂ C holds, A ⊂ C holds as well, so
that the inclusion

{β ∈ I : A ⊂ Sβ} ⊃ {β ∈ I : B ⊂ Sβ} (20.5)

and, consequently, the inequality

α(A,S) =
∧

I
{β ∈ I : A ⊂ Sβ} ≤I

∧

I
{B ∈ I : B ⊂ Sβ} = α(B,S) (20.6)
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follows. So, Sα(A,S) ⊂ Sα(B,S) and

F (A) = ϕ(Sα(A,S)) ≤T ϕ(Sα(B,S)) = F (B) (20.7)

hold and the assertion is proved. 2

Example 20.1
Let Ω 6= ∅, let {∅,Ω} ⊂ R ⊂ P(Ω), let 〈T,≤T 〉 = 〈P(Ω),⊂〉, let ϕid be the identity mapping on

R, so that ϕid(A) = A ∈ T for each A ∈ R. Let {∅,Ω} ⊂ S ⊂ R be such that S is completely closed
with respect to intersections, i.e.,

⋂S0 =
⋂

A∈S0
A is in S for each ∅ 6= S0 ⊂ S, let α be the identity

mapping on S, so that SA = A for every A ∈ S. Then I = 〈S,⊂〉 is a complete lower semilattice and
S is an I-classification system over the monotone space 〈Ω,R, ϕid〉. If A0 ⊂ Ω, then

α(A0,S) =
∧

I
{β ∈ I : A ⊂ Sβ} =

⋂
{C ∈ S : A ⊂ SC} =

⋂
{C ∈ S : A ⊂ C}, (20.8)

let us denote the last intersection by AS . As I is a complete semilattice, AS is in S, hence, AS is
in R and the value

F (A) = ϕid(AS) = AS (20.9)

is defined. If S = P(Ω), then obviously
⋂{C : A ⊂ C ⊂ Ω} = A, so that F is the identity on

P(Ω).

Lemma 20.2 Let 〈Ω,R, ϕ〉, I = 〈I,≤I〉 and S = {Sβ : β ∈ I} be as in Lemma 20.1, let the relation

S∧
I J =

⋂
{Sα : α ∈ J} (20.10)

hold for each ∅ 6= J ⊂ I. Then the I-classification system S is conservative. Conversely, if S is
conservative, then

Sα(Sβ ,S) =
⋂
{Sγ : Sβ ⊂ Sγ} (20.11)

holds for each β ∈ I.

Proof. Take β ∈ I, Sβ ∈ S. By definition

α(Sβ ,S) =
∧

I
{γ ∈ I : Sβ ⊂ Sγ} (20.12)

hence, (20.10) yields that

Sα(Sβ ,S) =
⋂
{Sδ : δ ∈ {δ ∈ I : Sβ ⊂ Sγ}} =

⋂
{Sδ : Sβ ⊂ Sδ} = Sβ , (20.13)

so that S is conservative. On the other side, let S be conservative, so that

Sα(Sβ ,S) = Sβ (20.14)

for each β ∈ I. By (20.12), α(Sβ ,S) ≤ γ holds for each γ ∈ I such that the inclusion Sβ ⊂ Sγ is
valid. Consequently, the inclusions Sα(Sβ ,S) ⊂ Sγ and Sα(Sβ ,S) ⊂

⋂{Sγ : Sβ ⊂ Sγ} easily follow from
the definition of I-classification systems. Combining this last inclusion with (20.14) and taking into
consideration that β is among the values of γ for which Sβ ⊂ Sγ holds, we obtain that Sβ ⊂

⋂{Sγ :
Sβ ⊂ Sγ} ⊂ Sβ so that the equality

Sα(Sβ ,S) = Sβ =
⋂
{Sγ : Sβ ⊂ Sγ} (20.15)

follows. The assertion is proved.
2
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As mentioned already above at several occasions, monotone measures taking their values in par-
tially ordered sets can be taken as perhaps the most general and still non-trivial mathematical for-
malization of an intuitive idea of size of subsets of a universe of discourse. When specifying monotone
measures by imposing some more conditions which these set functions should fulfil, we will follow the
main pattern applied in this work focusing our attention to lattice-valued possibilistic measures. For
the reader’s convenience and aiming to introduce this notion at the level of generality appropriate just
in the present context, let us recall a very general definition of this notion as follows.

Definition 20.2 Let Ω 6= ∅, let {∅, Ω} ⊂ R ⊂ P(Ω), let T = 〈T,≤T 〉 be a p.o. set such that
0T =

∧
T T and 1T =

∨
T T are defined. A mapping Π : R → T is called a T -(valued) possibilistic

measure on R, if Π(∅) = 0T , Π(Ω) = 1T , and Π(A ∪B) = Π(A) ∨T Π(B) for each A, B,A ∪B ∈ R
such that Π(A) ∨T Π(B) is defined. The T -possibilistic measure Π on R is complete, if Π(

⋃R0) =∨
T {Π(A) : A ∈ R0} for each ∅ 6= R0 ⊂ R such that

⋃R0 =
⋃

A∈R0
A is in R and the supremum∨

T {Π(A) : A ∈ R0} is defined. The triple 〈Ω,R, Π〉 will be called the possibilistic space.

Obviously, each T -possibilistic measure on R is also T -monotone measure on R. As above, in
order to simplify our notation and reasoning we will suppose that T = 〈T,≤T 〉 is a complete lattice,
so that for each ∅ 6= A the values

∧
T A and

∨
T A are defined (for A = ∅ the well-known conventions

are applied). Hence, each T -possibilistic space 〈Ω,R,Π〉 is a particular case of T -monotone space so
that, given a complete lower semilattice I = 〈I,≤I〉 and an I-classification system S over 〈Ω,R, Π〉,
the values α(A,S) and F (A) can be defined, for each A ⊂ Ω, by (20.1) and (20.2). However, even
if Π is a T -possibilistic measure on R, F need not be, in general, a T -possibilistic measure on P(Ω)
unless some more conditions are imposed on the classification system S under consideration.

Definition 20.3 Let T = 〈T,≤T 〉 be a partially ordered set, let 〈Ω,R, ϕ〉 be a T -monotone space, let
I = 〈I,≤T 〉 be a complete lattice. An I-classification system S over 〈Ω,R, ϕ〉 is called continuous, if
for each φ 6= J ⊂ I the identities

S∧
I J =

⋂
{Sα : α ∈ J}, S∨

I J =
⋃
{Sα : α ∈ J} (20.16)

are valid. Let us recall that
∧
I J denotes the infimum and

∨
I J the supremum of J with respect

to the partial ordering ≤T on I.

Theorem 20.1 Let T = 〈T,≤T 〉 and I = 〈I,≤T 〉 be complete lattices, let 〈Ω,R, Π〉 be a T -possibilistic
space with a complete T -possibilistic measure Π on R, let S be a continuous I-classification system
over 〈Ω,R, Π〉. For each A ⊂ Ω, let α(A,S〉 be defined by (20.1) and F (A) by (20.2) with ϕ replaced
by Π. Then F is a complete T -possibilistic measure on P(Ω).

Proof. As the conditions of Lemma 20.1 are satisfied, the identities F (∅) = 0T and F (Ω) = 1T
immediately follow. Let φ 6= A0 ⊂ P(Ω), let

⋃A0 denote
⋃

A∈A0
A. For every Sβ ∈ S, if

⋃A0 ⊂ Sβ ,
then A ⊂ Sβ holds for each A ∈ A0, so that the inequalities

α(A,S) =
∧

I
{β ∈ I : A ⊂ Sβ} ≤

∧

I

{
β ∈ I :

⋃
A0 ⊂ Sβ

}
= α

(⋃
A0,S

)
(20.17)

and, consequently,
∨

A∈A0

α(A,S) ≤ α
(⋃

A0,S
)

(20.18)

are valid. Hence, due to the supposed continuity property of S, the relation

S∨
I{α(A,S):A∈A0} =

⋃

A∈A0

Sα(A,S) ⊂ Sα(
⋃A0,S) =

⋂ {
Sβ :

⋃
A0 ⊂ Sβ

}
(20.19)

follows.
Let us prove the inverse inclusion

⋃
A∈S0

Sα(A,S) ⊃ Sα(
⋃A0,S). Due to (20.19) it is sufficient to

find β ∈ I such that
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⋃
A0 ⊂ Sβ ⊂

⋃

A∈A0

Sα(A,S) (20.20)

holds. As S is supposed to be continuous, the relation (20.16) applied to J = {γ ∈ I : A ⊂ Sγ}
yields that

Sα(A,S) =
⋂
{Sγ : γ ∈ I, A ∈ Sγ} (20.21)

hence, A ⊂ Sα(A,S) holds for every A ⊂ Ω, so that the inclusion
⋃
A0 ⊂

⋃

A∈A0

Sα(A,S) (20.22)

follows. So, (20.20) is satisfied for β =
∨

A∈A0
α(A,S) and this β is defined in I, as I = 〈I,≤I〉 is

supposed to be a complete lattice. So, (20.20) is proved and the identity
⋃

A∈A0

Sα(A,S) = Sα(
⋃A0,S) (20.23)

follows, Consequently, as Π is a complete T -possibilistic measure on R and S ⊂ R holds, we obtain
that

F
(⋃

A0

)
= Π

(
Sα(

⋃A0,S)

)
= Π

( ⋃

A∈A0

Sα(A,S)

)
=

∨

A∈A0

Π(Sα(A,S)) =
∨

A∈A0

F (A), (20.24)

hence, F is a complete T -possibilistic measure on P (Ω) and the assertion is proved. 2

The condition of continuity, introduced in Definition 20.3 and imposed to the I-classification
system S investigated in Theorem 20.1, deserves a more detailed analysis, as it represents a strong
condition, more or less equivalent to the condition that ≤I defines a linear ordering on I. The first part
of the condition of continuity is nothing else than (20.10), i.e., that of conservativity, so that Definition
20.3 could be re-phrased saying that S is continuous, if it is conservative and if the condition dual to
that of conservativity, i.e., the relation

S∨
I J =

⋃
{Sα : α ∈ J} (20.25)

holds for each ∅ 6= J ⊂ I. If I is finite, the mutual comparability of each α, β with respect to ≤I
can be proved to imply the continuity of S, as the following assertion demonstrates.

Lemma 20.3 Let T = 〈T,≤I〉 be a complete lattice, let 〈Ω,R, ϕ〉 be a T -monotone space, let J =
〈I,≤I〉 be a finite lattice such that α ≤I β or β ≤I α holds for each α, β ∈ I, let S be an I-classification
system over 〈Ω,R, ϕ〉. Then the system S is continuous.

Proof. As I = 〈I,≤I〉 is finite (hence, trivially complete) lattice in which either α ≤I β or β ≤I α
holds for each α, β ∈ I, we obtain easily that for each ∅ 6= J ⊂ I there exist α, β ∈ J such that∧
I J = α and

∨
I J = β. So, for every γ ∈ I, the relation

S∨
J = Sβ ⊃ Sγ ⊃ Sα = S∧

I J (20.26)

is valid, so that the inclusion

S∧
I J =

⋂
{Sγ : γ ∈ J} ⊂

⋃
{Sγ : γ ∈ J} = S∨

I J (20.27)

easily follows and S is continuous. The assertion is proved. 2

When investigating classification systems and real-valued possibilistic measures defined over a
probability space 〈Ω,A, P 〉 [36], we focused our attention to classification systems induced by real-
valued random variables, i.e., by measurable mappings which take the probability space 〈Ω,A, P 〉
into the Borel line 〈R,B〉, R = (−∞,∞). In this case, the possibilistic measure on P(Ω) defined by
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such random variable can be described and processed using the distribution function of the random
variable in question. As there were rather the qualitative and comparative than the quantitative
properties and relations of the probability distributions involved what mattered in our constructions,
reasoning and calculations, a great portion of these ideas and constructions can be applied also to the
case when real-valued probability measure P on a σ-field A of subsets of Ω is replaced by a lattice-
valued possibilistic measure Π on an appropriate nonempty system R of subsets of Ω. A mathematical
formalization of the informal description above may read as follows.

Definition 20.4 Let Ω and L be nonempty sets, let R ⊂ P(Ω) and L ⊂ P(L) be nonempty systems
of subsets of these sets. A mapping X which takes Ω into L is called (R,L)-measurable, if the inverse
image of each set in L belongs to R, in symbols, if the inclusion

{{ω ∈ Ω : X(ω) ∈ A} : A ∈ L} ⊂ R (20.28)

holds. In particular, if I = 〈I,≤I〉 is a complete lower semilattice and if LI = {{α ∈ I : α ≤I
β} : β ∈ I} is the system of all initial segments in I with respect to ≤I , then an (R,L)-measurable
mapping X : Ω → I is called I-measurable supposing that the system R ⊂ P(Ω) is fixed in the context
under consideration.

Consequently, the inclusion

{{ω ∈ Ω : X(ω) ≤I β} : β ∈ I} ⊂ R (20.29)

is valid for each I-measurable mapping X on Ω.

Lemma 20.4 Let T = 〈T,≤T 〉 be a complete lattice, let 〈Ω,R, ϕ〉 be a T -monotone space such that
{∅, Ω} ⊂ R, let I = 〈I,≤I〉 be a complete lower semilattice, let X : Ω → I be an I-measurable
mapping such that there exists ω0 ∈ Ω with the property that 0I < X(ω) ≤ X(ω0) holds for each
ω ∈ Ω. Then the system S = {Sα : α ∈ I}, where Sα = {ω ∈ Ω : X(ω) ≤ α}, is a conservative
I-classification system over 〈Ω,R, ϕ〉.

Proof. We can easily observe that

S0I = {ω ∈ Ω : X(ω) ≤ 0I} = ∅ (20.30)

and, for α0 = X(ω0),

Sα0 = {ω ∈ Ω : X(ω) ≤ α0} = {ω ∈ Ω : X(ω) ≤ X(ω0)} = Ω. (20.31)

If α, β ∈ I, α ≤I β is the case, then the inclusion

Sα = {ω ∈ Ω : X(ω) ≤ α} ⊂ {ω ∈ Ω : X(ω) ≤I β} = Sβ (20.32)

is obvious. Let J be a nonempty subset of I. For each ω ∈ Ω, the inequality X(ω) ≤I α holds
simultaneously for each α ∈ J if and only if the inequality X(ω) ≤I

∧
I J holds, hence,

{ω ∈ Ω : X(ω) ≤
∧

I
J} =

⋂

α∈J

{ω ∈ Ω : X(ω) ≤ α}. (20.33)

However, this is nothing else than the equality

S∧
I J =

⋂
{Sα : α ∈ J}, (20.34)

i.e., (20.10). So, due to Lemma 20.2, the classification system S is conservative and the assertion
is proved. 2
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Lemma 20.5 Let T = 〈T,≤T 〉 and I = 〈I,≤I〉 be complete lattices, let 〈Ω,R, ϕ〉 be a T -monotone
space such that {∅, Ω} ⊂ R, let X : Ω → I be an I-measurable mapping such that X(ω) > 0I holds
for each ω ∈ Ω, let S = {{ω ∈ Ω : X(ω) ≤ α} : α ∈ I}. Set, for each A ⊂ Ω,

∨
(A,X) =

∨
{X(ω) : ω ∈ A}. (20.35)

Then, for each A ⊂ Ω,

α(A,S) =
∨

(A, X), (20.36)

so that

Sα(A,S) =
{

ω ∈ Ω : X(ω) ≤
∨

(A,X)
}

(20.37)

and

F (A) = ϕ
(
S∨

(A,X)

)
(20.38)

Proof. As S0I = ∅ and Sα0 = Ω for α0 =
∨

(Ω, X) ∈ I, the system S = {Sα : α ∈ I} with
Sα = {ω ∈ Ω : X(ω) ≤ α} is obviously an I-classification system over 〈Ω,R, ϕ〉, as I is complete
lattice and the inverse image of each set {β : β ≤ α} ⊂ I with respect to X is in R. Due to Lemma
20.4 the classification system S is conservative.

The inclusion

A ⊂ S∨
(A,X) = {ω ∈ Ω : X(ω) ≤

∨
(A, X)} (20.39)

and the inequality

α(A,S) ≤
∨

(A,X) (20.40)

are obviously valid for every A ⊂ Ω. Suppose, in order to arrive at a contradiction, that the strict
inequality holds in (20.40). As

Sα(A,S) =
⋂
{Sβ : A ⊂ Sβ} ⊃ A (20.41)

holds due to the fact that S is conservative, we obtain that A ⊂ Sα(A,S), hence, for each ω ∈ A
the inequality X(ω) ≤ α(A,S) <

∨
(A, X) holds, but this contradicts the definition of the supremum∨

(A,X). So, the equality holds in (20.40) and (20.36) is proved. (20.37) and (20.38) immediately
follow from the definition of the mapping F : P(Ω) → T . The assertion is proved. 2

21 Combinations of Classification Systems and Higher-Order
Lattice-Valued Monotone and Possibilistic Measures

Till now, we have considered and analyzed the idea to approximate effectively inaccessible (in the
sense of pointwise decidability) sets of elementary random events by their coverings defined by sets
of possibly favorable elementary random events, these sets being defined by certain I-classification
systems. Like as in the case of classification systems defined by real-valued probability measures
and, in particular, by distribution functions of real-valued random variables [35], [36], an immediately
arising idea reads to repeat this approximation step at a higher level, so arriving at sets of elementary
random events which are possibly the members of the sets of elementary random events possibly
favorable to the random event in question. In what follows, we will introduce and analyze this
approach in more detail, restricting ourselves, for the sake of simplicity, to I-classification systems
induced by I-measurable mappings.
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Lemma 21.1 Let T = 〈T,≤T 〉, I = 〈I,≤I 〉 and 〈Ω,R, ϕ〉 be as in Lemma 20.5, let X, Y : Ω → I
be I-measurable mappings such that, for both Z = X, Y and for each ω ∈ Ω, Z(ω) >I 0I holds, let

SZ = {SZ,α : α ∈ I} = {{ω ∈ Ω : Z(ω) ≤I α} : α ∈ I} (21.1)

for both Z = X, Y . For each A ⊂ Ω and for both Z = X, Y set AZ = Sα(A,SZ). Set

FXY (A) = ϕ((AX)Y ) = ϕ(Sα(AX ,SY )). (21.2)

Then FXY : P(Ω) → T is a T -monotone measure on P(Ω).

Proof. The conditions of Lemma 20.5 are satisfied for both Z = X,Y , hence, for each A ⊂ Ω,

α(A,SX) =
∨

(A,X), (21.3)

and

AX = Sα(A,SX) = S∨
(A,X) =

{
ω ∈ Ω : X(ω) ≤I

∨
(A,X)

}
. (21.4)

So, ∅X = S∨
(∅,X) = S0I = ∅, and ΩX = S∨

(Ω,X) = {ω ∈ Ω : X(ω) ≤I
∨

(Ω, X)} = Ω, the same
being valid when replacing X by Y . Given A ⊂ Ω we obtain that

(AX)Y = (Sα(A,SX))Y =
({

ω ∈ Ω : X(ω) ≤I
∨

(A,X)
})Y

=
{

ω ∈ Ω : Y (ω) ≤I
∨

(AX , Y )
}

(21.5)
so that

FXY (A) = ϕ((AX)Y ). (21.6)

Obviously, (∅X)Y = ∅Y = ∅, (ΩX)Y = ΩY = Ω, so that FXY (∅) = 0T and FXY (Ω) = 1T . If A ⊂
B ⊂ Ω, then

∨
(A,X) ≤I

∨
(B, X) obviously holds, hence, AX ⊂ BX , the inequality

∨
(AX , Y ) ≤I∨

(BX , Y ), the inclusion (AX)Y ⊂ (BX)Y and, finally, the inequality

FXY (A) = ϕ((AX)Y ) ≤T ϕ((BX)Y ) = FXY (B) (21.7)

result. The assertion is proved. 2

Lemma 21.2 Let the notations and conditions of Lemma 25.1 hold. Then, for each A ⊂ Ω, the
relations

FXX(A) = FX(A), FXY (A) ≥ FX(A)
∨

T
FY (A) (21.8)

are valid.

Proof. For each A ⊂ Ω,
∨

(AX , X) =
∨
{X(ω) : ω ∈ AX} =

∨
{X(ω) : ω ∈ A} =

∨
(A, X), (21.9)

so that

FXX(A) = ϕ((AX)X) = ϕ
({

ω ∈ Ω : X(ω) ≤I
∨

(AX , X)
})

=

= ϕ
({

ω ∈ Ω : X(ω) ≤I
∨

(A,X
})

= ϕ(AX) = FX(A). (21.10)

For each A ⊂ Ω and both Z = X, Y , the inclusions A ⊂ AZ , hence, also AX ⊂ (AX)Y and
AY ⊂ (AY )X are valid, so that the inequality
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FXY (A) = ϕ((AX)Y ) ≥T ϕ(AX) = FX(A) (21.11)

follows. The inclusion A ⊂ AX also yields that the inequality
∨

(AX , Y ) ≥I
∨

(A, Y ) holds, so
that the inclusion

(AX)Y =
{

ω ∈ Ω : Y (ω) ≤I
∨

(AX , Y )
}
⊃

{
ω ∈ Ω : Y (ω) ≤I

∨
(A, Y )

}
= AY (21.12)

and the inequality

FXY (A) = ϕ((AX)Y ) ≥T ϕ(AY ) = FY (A) (21.13)

easily follow. The assertion is proved. 2

As a matter of fact, the mapping FXY is not, in general, commutative in X and Y , i.e., FXY (A)
and FY X(A) may differ for some A ⊂ Ω. Let us consider the following example.

Let Ω = [0, 1] × [0, 1] so that, for each ω ∈ Ω, ω = 〈ω1, ω2〉, ω1, ω2 ∈ [0, 1]. Let T = 〈P(Ω),⊂ 〉
and let ϕid be the identity mapping on P(Ω), so that 〈Ω,P(Ω), ϕid〉 is a simple T -monotone (and, as
a matter of fact, T -possibilistic) space where the size of each subset of Ω is simply this set itself. Let
X, Y : Ω → [0, 1] be mappings defined by X(ω) = ( 1

2 )(ω1 + ω2) and Y (ω) = ω2 for each ω ∈ Ω. For
each α ∈ R = (−∞,∞), set

SX,α = {ω ∈ Ω : X(ω) ≤ α}, SY,α = {ω ∈ Ω : Y (ω) ≤ α}, (21.14)

so that SX,α = SY,α = ∅ for α < 0, SX,α = SY,α = Ω for α ≥ 1, and both the systems SX =
{SX,α : α ∈ R} and SY = {SY,α : α ∈ R} are obviously nested with respect to the standard linear
ordering on R. Hence, both SX and SY are T -classification systems over 〈Ω,P(Ω), ϕid〉.

Take A = SX, 1
4

= {ω ∈ Ω : ( 1
2 )(ω1 +ω2) ≤ 1

4}, in other terms. A is the left-bottom corner triangle
in Ω defined by the corner points 〈0, 0〉, 〈 12 , 0〉 and 〈0, 1

2 〉. Now,

AX =
{

ω ∈ Ω : X(ω) ≤
∨

(A,X)
}

= {ω ∈ Ω : X(ω) ≤ 1
4
} = A, (21.15)

so that

(AX)Y = AY =
{

ω ∈ Ω : Y (ω) ≤
∨

(A, Y )
}

=

=
{

ω ∈ Ω : ω2 ≤
∨
{ω2 : ω2 ∈ A}

}
= {ω ∈ Ω : ω2 ≤ 1

2
} =

= SY, 1
2

= [0, 1]× [0,
1
2
], (21.16)

i.e., (AX)Y defines the bottom half of the square [0, 1]× [0, 1]. However,

(AY )X =
{

ω ∈ Ω : X(ω) ≤
∨
{X(ω) : ω ∈ AY }

}
=

=
{

ω ∈ Ω : (
1
2
)(ω1 + ω2) ≤

∨
{1
2
(ω1 + ω2) : ω2 ≤ 1

2
}
}

=

= {ω2 :
1
2
(ω1 + ω2) ≤ 3

4
} = SX,( 3

4 ) 6= (AX)Y . (21.17)

As can be easily seen, SX, 3
4

is just the square [0, 1]× [0, 1] without the right-upper corner triangle
defined by the corner points 〈 12 , 1〉, 〈1, 1

2 〉, and 〈1, 1〉. As ϕid is the identity mapping on P(Ω), the
inequality

FXY (A) = ϕid((AX)Y ) = (AX)Y = [0, 1]× [0,
1
2
] 6= SX,( 3

4 ) =

= ϕid(SX,( 3
4 )) = ϕid((AY )X) = FY X(A) (21.18)
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is obvious.
It is perhaps worth introducing explicitly, that the real-valued nature of the mappings X and Y

is not substantial in our context and serves just to an easy to understood and imagine description of
certain subsets of the unit square [0, 1]×[0, 1]. Indeed, our example can be re-phrased in non-numerical
terms just supposing that all the sets entering our considerations and constructions are correctly taken
and identified.

Hence, let Ω = [0, 1] × [0, 1] as above, let T = 〈T,≤T 〉 = I = 〈I,≤I 〉 = 〈P(Ω),⊂ 〉, let
ϕid and 〈Ω,P(Ω), ϕid〉 be as above. Let the mappings X, Y : Ω → I(= P(Ω)) be defined as follows:
X(ω) = SX,( 1

4 ), if ω ∈ SX,( 1
4 ), X(ω) = SX,( 3

4 ) if ω ∈ SX,( 3
4 )−SX,( 1

4 ), and X(ω) = Ω, if ω ∈ Ω−SX,( 3
4 ).

For Y, Y (ω) = SY,( 1
2 )(= [0, 1]× [0, 1

2 ]), if ω ∈ SY,( 1
2 ), and Y (ω) = Ω, if ω ∈ Ω−SY,( 1

2 )(= [0, 1]× [( 1
2 , 1]).

Taken A = SX,( 1
4 ) as above, we obtain again, that AX = A and (AX)Y = AY = SY,( 1

2 ) = [0, 1]× [0, 1
2 ],

but (AY )X = ([0, 1] × [0, 1
2 ])X = SX,( 3

4 ) as above. As ϕid is the identity mapping on P(Ω), the
inequality (21.18) also results. Let us note that, when taking A = SY,( 1

2 ) = [0, 1] × [0, 1
2 ], we obtain

that (AY )X = AX = SX,( 3
4 ), but (AX)Y = (SX,( 3

4 ))Y = Ω, so that the inequality (AX)Y 6= (AY )X

also follows.
Given an I-classification system S = {Sα : α ∈ I} and a subset A of the universe Ω of elementary

random events, if the inclusion A ⊂ Sα holds for some α ∈ I, we can state that for an elementary
random event ω0 ∈ Ω the condition that ω0 is in Sα is necessary, but in general not sufficient, to
be allowed to claim that the elementary random event ω0 is favorable with respect to A. Supposing
that the inclusion A ⊂ Sα is the only characterization of the set A being at our disposal, it is easy
to understand that our aim will be to have the covering Sα of A as narrow or tight (close to A) as
possible. Consequently, having at hand two I-classification systems S1,S2,Si = {Si,α : α ∈ I} for
both i = 1, 2 and obtaining that A ⊂ S1,α and A ⊂ S2,β holds when applying these classification
systems separately, our intuitive conclusion would be to take the inclusion A ⊂ S1,α ∩S2,β as the best
necessary condition (i.e., the narrowest covering of A) obtainable in the situation under consideration.
In general, however, the system {S1,α ∩ S2,β : α, β ∈ I} of subsets of Ω is not nested in the sense
that for each α1, α2, β1, β2 ∈ I either S1,α1 ∩ S2,β1 ⊂ Sl,α2 ∩ S2,β2 or the inverse inclusion is valid.
Hence, this system does not define an I-classification system with respect to a linear ordering ≤I on
I. Happy enough, under the weakened condition introduced and analyzed above, according to which
I = 〈I,≤I 〉 defines just a complete lower semilattice, the combination of Sα and Sβ into Sα ∩Sβ can
be done within the framework of I-classification systems when replacing the structure I = 〈I,≤I〉 by
its Cartesian product (Cartesian square, in particular) defined on the set I×I of pairs 〈α, β〉, α, β ∈ I.

Let I〈I,≤I 〉 be a complete lower semilattice and let us introduce the binary relation ≤I×I on I×I
as the pointwise combination of ≤I on I. So, for every 〈α1, β1〉, 〈α2, β2〉 ∈ I×I, 〈α1, β1〉 ≤I×I 〈α2, β2〉
hold if and only if α1 ≤I α2 and β1 ≤I β2 hold together. As can be easily checked, ≤I×I defines
a partial ordering on I × I. Also the infimum operation on I × I induced by ≤I×I can be given as
the pointwise infima taken by both the dimensions in I × I. Indeed, as can be also easily checked, for
each 〈α1, β1〉, 〈α2, β2〉 ∈ I × I and for each ∅ 6= A0 ⊂ I × I we obtain that

〈α1, β1〉
∧

I×I
〈α2, β2〉 =

〈
α1

∧

I
α2, β1

∧

I
β2

〉
, (21.19)

and

∧

I×I
A0 =

∧

I×I
{〈α, β〉 : 〈α, β〉 ∈ A0} =

=

〈∧

I
{α : 〈α, β〉 ∈ A0},

∧

I
{β : 〈α, β〉 ∈ A0}

〉
(21.20)

so that I × I = 〈I × I,≤I×I 〉 is a complete lower semilattice.

Lemma 21.3 Let Ω be a nonempty universe, let I〈I,≤I 〉 be a complete lower semilattice, let Si =
{Si,α : α ∈ I} ⊂ P(Ω), i = j, 2, be two I-classification systems over Ω. Then the system S〈1,2〉 =
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{S〈1,2〉,〈α,β〉 : 〈α, β〉 ∈ I × I}, where S〈1,2〉,〈α,β〉 = S1,α ∩ S2,β for each 〈α, β〉 ∈ I × I defines an
I × I-classification system over Ω.

Proof. Obviously

0I×I =
∧

I×I
{〈α, β〉 : α, β ∈ I} =

〈 ∧

α∈I

α,
∧

β∈I

β

〉
= 〈0I ,0I〉 (21.21)

and

S〈1,2〉,〈0I ,0I〉 = S1,0I ∩ S2,0I = ∅ ∩ ∅ = ∅. (21.22)

According to the definition of I-classification systems there exist α0, β0 ∈ I, such that S1,α0 =
S2,β0 = Ω, so that S〈1,2〉〈α0,β0〉 = S1,α0 ∩ S2,β0 = Ω. Finally, if 〈α1, β1〉 ≤I×I 〈α2, β2〉 holds, then by
definition α1 ≤I α2 and β1 ≤I β2 hold as well, so that S1,α1 ⊂ S1,α2 and S2,β1 ⊂ S2,β2 follows. So,
we obtain the relation

S〈1,2〉〈α1,β1〉 = S1,α1 ∩ S2,β1 ⊂ S1,α2 ∩ S2,β2 = S〈1,2〉〈α2,β2〉 (21.23)

and the assertion is proved. 2

As can be easily seen, for the sets S1,α1 , S1,α2 , S2,β1 and S2,β2 , occuring in (21.23) also the inclusion

S1,α1 ∪ S2,β1 ⊂ S1,α2 ∪ S2,β2 (21.24)

is valid. Hence, the system S?
〈1,2〉 = {S?

〈1,2〉,〈α,β〉 : α, β ∈ I}, where S?
〈1,2〉,〈α,β〉 = S1,α ∪ S2,β ,

defines also an I × I-classification system over Ω. The intuition behind can be dual to that taken as
inspiration when combining I-classification systems S1 and S2 into S〈1,2〉 as defined above. Indeed,
when considering the case in which the only specification being at our disposal and concerning a subset
A ⊂ Ω reads that either A ⊂ Sα or A ⊂ Sβ holds, e.g., either X(ω) ≤ α or Y (ω) ≤ β holds for each
ω ∈ A, given I-measurable mappings X,Y : Ω → I, we arrive just at the I × I-classification system
S?
〈1,2〉. Hence, also this kind of combination of particular pieces of knowledge concerning the subset

A of Ω can be described and processed within the framework of I × I-classification systems.
A common feature of both the (mutually dual) constructions leading from classification systems

S1 and S2 are taken to their combinations S〈1,2〉 or S?
〈1,2〉 consists in the fact that both S1 and S2

are taken as equivalently important and with the same degree of influence imposed on the resulting
I × I-classification systems over Ω. An alternative approach may be inspired by the well-known idea
of the so called lexicographical ordering, then the dominant role in ordering pairs of elements is given
to the first members of each pair, the second one entering the scene only when these first members
are identical. A rather general mathematical formalization of this idea may read as follows.

For both i = 1, 2, consider a nonempty set Ii and a binary relation ≤i on Ii, and define the
following binary relation ≤1,2,L on the Cartesian product I1× I2. For each 〈α1, β1〉, 〈α2, β2〉 ∈ I1× I2

〈α1, β1〉 ≤1,2,L 〈α2, β2〉 ⇔df (α1 <1 α2) or ((α1 = α2) and (β1 ≤2 β2)), (21.25)

here α1 <1 α2 means that α1 ≤1 α2 and α1 6= α2.

Lemma 21.4 If both Ii = 〈Ii,≤i 〉, i = 1, 2, are partially ordered sets, then ≤1,2,L defines a partial
ordering on I1 × I2. If ≤i is a linear ordering on Ii for both i = 1, 2, then ≤1,2,L defines a linear
ordering on I1 × I2.

Proof. Taking both Ii = 〈Ii,≤i 〉, i = 1, 2 as fixed, we write simply ≤L instead of ≤1,2,L. For each
α, β ∈ I1 × I2 the relation 〈α, β〉 ≤L 〈α, β〉 is evident and if the inequalities 〈α1, β1〉 ≤L 〈α2, β2〉 and
〈α2, β2〉 ≤L 〈α1, β1〉 are simultaneously valid, then the identities α1 = α2 and β1 = β2, hence, also
〈α1, β1〉 = 〈α2, β2〉 easily follow. Let 〈α1, β1〉 ≤L 〈α2, β2〉 and 〈α2, β2〉 ≤L 〈α3, β3〉 hold simultaneously,
so that the inequalities α2 ≤1 α2 and α2 ≤1 α3 follow. If α1 <1 α2 or α2 <1 α3 holds, then the
inequalities α1 <1 α3 and, consequently, also 〈α1, β1〉 ≤L 〈α3, β3〉 are evidently valid. If α1 = α2 = α3

is the case, then β1 ≤2 β2 ≤2 β3 must hold, so that 〈α1, β1〉 ≤L 〈α3, β3〉 follows as well. Hence,
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≤L defines a partial ordering on I1 × I2. If both ≤i are linear orderings on Ii, i = 1, 2, then either
α1 <1 α2, or α1 = α2, or α2 ≤1 α1, as well as β1 <2 β2, or β1 = β2, or β2 ≤2 β1 is the case, so that
either 〈α1, β1〉 ≤L 〈α2, β2〉 or 〈α2, β2〉 ≤L 〈α1, β1〉 (or both) is valid. The assertion is proved. 2

Lemma 21.5 If both Ii = 〈Ii,≤i 〉, i = 1, 2, are complete lower semilattices, then their lexicographical
Cartesian product (I1×I2)L = 〈I1× I2,≤1,2,L 〉 is a complete lower semilattice supposing that

∨
I2

I2

is defined.

Proof. Let A be a nonempty subset of I1 × I2, denote by A1, A2 the corresponding projections of A
on I1 and I2, i.e.,

A1 = {α1 ∈ I1 : 〈α1, β1〉 ∈ A for some β1 ∈ I2}, (21.26)

A2 = {β2 ∈ I2 : 〈α2, β2〉 ∈ A for some α2 ∈ I1}, (21.27)

As I1 = 〈I1,≤1 〉 is a complete lower semilattice, the infimum
∧
I1

A1 is defined. Let

A2
0 = {β ∈ A2 :

〈∧

I1

A1, β

〉
∈ A}, (21.28)

hence A2
0 = ∅, if there is no pair 〈∧I1

A1, β〉 in A, what is the case when
∧
I1

A1 ≤1 α holds
for every α ∈ A1. Obviously, the value

∧
I2

A2
0 is defined in I2 = 〈I2,≤2 〉, applying the con-

vention
∧
I2

A2
0 =

∨
I2

I2(= 1I2 , the unit element of I2), if A2
0 = ∅. Let us prove that the pair

〈∧I , A
1,

∧
I2

A2
0〉 ∈ I1 × I2 defines the infimum of the subset A of I1 × I2 with respect to the lexico-

graphical ordering ≤1,2,L on I1 × I2, i.e., in symbols, that

∧

(I1×I2)L

A =

〈∧

I1

A1,
∧

I2

A2
0

〉
. (21.29)

Let us omit the index I1 × I2 in
∧

(I1×I2)L
, writing simply

∧
L, if no misunderstanding menaces.

Let 〈α, β〉 ∈ A. If
∧
I1

A1 <1 α holds, then the inequality 〈∧I1
A1,

∧
I2

A2
0〉 ≤1,2,L 〈α, β〉 is obvious,

if
∧
I1

A1 = α is the case, the same inequality follows from the inequality
∧
I2

A2
0 ≤ β, as β ∈ A2

0

holds due to the definition of A2
0. If 〈α0, β0〉 ∈ I1× I2 is such that 〈α0, β0〉 ≤1,2,L 〈α, β〉 holds for each

〈α, β〉 ∈ A, then α0 ≤ α for each α ∈ A1 and, consequently, α0 ≤
∧
I1

A1 follows. If α0 =
∧
I1

A1,
then β0 ≤2 β holds for each β such that 〈∧I1

A1, β〉 is in A, hence, for each β ∈ A2
0. Consequently,

β0 ≤2

∧
I2

A2
0 holds as well, so that the relation 〈α0, β0〉 ≤1,2,L 〈

∧
I1

A1,
∧
I2

A2
0〉 is valid. To conclude,

〈∧I1
A1,

∧
I2

A2
0〉 indeed defines the infimum of A with respect to the lexicographical ordering ≤1,2,L

on I1 × I2, so that the structure (I1 × I2)L = 〈I1 × I2,≤1,2,L 〉 is a complete lower semilattice. The
assertion is proved. 2

Theorem 21.1 Let Ω be a nonempty set, let Ii = 〈Ii,≤i 〉, i = 1, 2, be complete lower semilattices
with 1I2 =

∨
I2

I2 defined, let (I1 × I2)L = 〈I1 × I2,≤1,2,L 〉 be their Cartesian product with respect
to the lexicographical ordering ≤1,2,L. Let X : Ω → I1, Y : Ω → I2 be two mappings such that there
exist α0 ∈ I1, β0 ∈ I2, with this property: for each ω ∈ Ω the relations

0I1(=
∧

I1

I1) <1 X(ω) ≤ α0 (21.30)

and

0I2(=
∧

I2

I2) <2 Y (ω) ≤ β0 (21.31)

are valid. Set, for each 〈α, β〉 ∈ I1 × I2,

SL
〈X,Y 〉,〈α,β〉 = {ω ∈ Ω : 〈X(ω), Y (ω)〉 ≤1,2,L 〈α, β〉}. (21.32)
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Then the system

SL
〈X,Y 〉 = {SL

〈X,Y 〉,〈α,β〉 : 〈α, β〉 ∈ I1 × I2} (21.33)

of subsets of Ω defines an (I2 × I2)L-classification system of Ω with P(Ω) playing the role of A
from the definition of such systems, so that the inclusion SL

〈X,Y 〉 ⊂ A is trivial.

Proof. Due to Lemma 21.5, (I1 ×I2)L is a complete lower semilattice and, as can be easily checked,
the pair 〈0I1 ,0I2〉 defines its zero element 0(I1×I2)L

=
∧

(I1×I2),L
{〈α, β〉 : 〈α, β〉 ∈ I1×I2}. Omitting,

in what follows, the index 〈X, X〉 in SL
〈X,Y 〉,〈α,β〉 we obtain that the constraints

SL
〈0I1 ,0I2 〉 = {ω ∈ Ω : 〈X(ω), Y (ω)〉 ≤1,2,L 〈0I1 ,0I2〉} = ∅ (21.34)

and

SL
〈α0,β0〉 = {ω ∈ Ω : 〈X(ω), Y (ω)〉 ≤1,2,L 〈α0, β0〉} = Ω (21.35)

are valid. Hence, the only what we have still to prove is the inclusion SL
〈α1,β1〉 ⊂ SL

〈α2,β2〉 for each
〈α1, β1〉 ≤1,2,L 〈α2, β2〉.

Take 〈α, β〉 ∈ I1 × I2. If X(ω) <1 α holds, the inequality 〈X(ω), Y (ω)〉 ≤1,2,L 〈α, β〉 is valid no
matter which the value Y (ω) may be. The only remaining case when 〈X(ω), Y (ω)〉 ≤1,2,L 〈α, β〉 also
holds reads that X(ω) = α and Y (ω) = β. Hence

{ω ∈ Ω : 〈X(ω), Y (ω)〉 ≤1,2,L 〈α, β〉} =
= {ω ∈ Ω : X(ω) <1 α} ∪ {ω ∈ Ω : X(ω) = α, Y (ω) ≤2 β} (21.36)

Let 〈α1, β1〉, 〈α1, β2〉 and ω ∈ Ω be such that the relation

〈X(ω), Y (ω)〉 ≤1,2,L 〈α1, β1〉 ≤1,2,L 〈α2, β2〉 (21.37)

is valid, so that X(ω) ≤ α1 holds. If α1 <1 α2 is the case, then X(ω) <1 α2 follows, so that, due
to (21.36), 〈X(ω), Y (ω)〉 ≤1,2,L 〈α2, β2〉 holds. Consequently, the inclusion SL

〈α1,β1〉 ⊂ SL
〈α2,β2〉 is valid

in this case. If α1 = α2, the the identity

{ω ∈ Ω : X(ω) < α1} = {ω ∈ Ω : X(ω) < α2} (21.38)

is trivial and the second inequality in (21.37) implies that β1 ≤2 β2 holds. Consequently, the
inclusion

{ω ∈ Ω : Y (ω) ≤2 β1} ⊂ {ω ∈ Ω : Y (ω) ≤ β2} (21.39)

follows, so that, combining (21.38) and (21.39), we obtain, that the inclusion SL
〈α1,β1〉 ⊂ SL

〈α2,β2〉
is valid also in this case. So, the system SL

〈X,Y 〉 of subsets of Ω defined by (21.33) is an (I1 × I2)-
classification system over Ω and the assertion is proved. 2

Corollary 21.1 Let the notations and conditions of Theorem 21.1 hold, let SXbe the I1-classification
system induced on Ω by the mapping X : Ω → I1, so that

SX = {{ω ∈ Ω : X(ω) ≤ α} : α ∈ I1}. (21.40)

Then the (I2 × I2)L-classification system SL
〈X,Y 〉 is a refinement of the I1-classification system

SL
〈X,Y 〉 in the sense that the inclusion SX ⊂ SL

〈X,Y 〉 holds.
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Proof. For every α ∈ I1, we obtain that

SX,α = {ω ∈ Ω : X(ω) ≤1 α} = {ω ∈ Ω : X(ω) <1 α} ∪ {ω ∈ Ω : X(ω) = α} =
= {ω ∈ Ω : X(ω) <1 α} ∪ ({ω ∈ Ω : X(ω) = α} ∩ Ω) =
= {ω ∈ Ω : X(ω) <1 α} ∪ {ω ∈ Ω : X(ω) = α, Y (ω) ≤2 β0} = S〈X,Y 〉〈α,β0〉

let us recall that β0 ∈ I2 satisfies the property that Y (ω) ≤2 β0 holds for each ω ∈ Ω. So, the
inclusion SX ⊂ SL

〈X,Y 〉 is proved. 2

The refinement of the classification system SX resulting when taking profit of the values of another
variable Y as a secondary and auxiliary criterion can improve (i.e., reduce) the values Π(A,SX)
ascribed to some subsets A of Ω when using a T -possibilistic measure Π defined on a subsystem A of
P(Ω). Indeed, let the notations of Theorem 21.1 hold, let 0I1 <1 α1 <1 α2 and 0I2 <2 β1 <2 β2 be
such elements of I1 and I2 that, for every ω ∈ Ω, X(ω) is either α1 or α2 and Y (ω) is either β1 or β2.
Let A ⊂ P(Ω) be the minimal field (algebra) of subsets of Ω containing all the sets {ω ∈ Ω : Z(ω) ≤ γ}
and {ω ∈ Ω : Z(ω) = γ} for Z = X, Y and γ = α1, α2, β1, β2. Let T = 〈T,≤T 〉 be a complete lattice,
let Π be the T -possibilistic measure on A such that Π({ω ∈ Ω : X(ω) = α2, Y (ω) = β2}) =
1T , Π(A1) = 0T for each A1 ∈ A such that A1 ∩ ({ω ∈ Ω : X(ω) = α2, Y (ω) = β2}) = ∅. Take

A = {ω ∈ Ω : X(ω) <1 α2} ∪ {ω ∈ Ω : X(ω) = α2, Y (ω) ≤2 β1}, (21.41)

i.e., A = SL
〈X,Y 〉,〈α2,β1〉 in our notation from above. We obtain that

Π(A,SL
〈X,Y 〉) = Π(A) = Π(Ω− {ω ∈ Ω : X(ω) = α2, Y (ω) = β2}) = 0T (21.42)

due to the definition of Π on A and due to the fact that the mapping Π(·,SL
〈X,Y 〉) : P(Ω) → T

extends Π conservatively from SL
〈X,Y 〉 to P(Ω) (it is a general property of extensions of T -possibilistic

measures induced by classification systems). However,

Π(A,SX) = Π({ω ∈ Ω : X(ω) ≤ α2}) = Π(Ω) = 1T . (21.43)

22 Continuity of Lattice-Valued Possibilistic Measures

When investigating real-valued set functions in general, important properties to which our attention
will be focused are those of continuity from below (from the bottom, lower continuity) and from
above (from the top, upper continuity), finite additivity or maxitivity and countable variants of
these properties, in particular σ-additivity, and the problem whether there exists a pointwise defined
distribution function (e.g., probabilistic or possibilistic distribution), i.e., a function, which enables to
define uniquely the set function under consideration.

In the case of probability measure the situation is rather simple, cf. [13] or [38], e.g. Both the
continuity from below and from above are equivalent in the sense that each of them, combined with
the assumption of finite additivity, yields σ-additive probability measures. In other terms, each σ-
additive probability measure is continuous from below as well as from above, and if a finitely additive
probability measure is continuous from below (from above, resp.), it is also σ-additive. A probability
measure P defined on a σ-field A of subsets of a universe Ω possesses the probability distribution,
if there exists a finite or countable subset Ω0 ⊂ Ω such that, for each A ∈ A, P (A) = P (Ω0 ∩ A)
and for each ω ∈ Ω the singleton {ω} is in A. Indeed, in this case P (A) = Σω∈A∩Ω0P ({ω}), so
that {P ({ω}) : ω ∈ Ω} defines the probability distribution which induces P . Evidently, each such
probability measure can be conservatively extended from A to the power-set P(Ω).

In [47], inspired by some ideas and results from [1], [39] and [40], the authors analyzed, from the
point of view just illustrated in the case of probability measures, also the real-valued possibilistic
measures. First of all, they show that in this case the continuity from above defines a substantially
stronger demand than the continuity from below and they analyze in more detail the conditions
under which continuity from above implies the existence of the possibilistic distribution inducing the
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possibilistic measure in question. Some consequences concerning the relations of these results to the
cardinality of the universe Ω under consideration are also introduced in [47].

However, when analyzing these results and their proofs, we find that they rely substantially on
some specific properties of the unit interval of real numbers in which the investigated possibilistic
measures take their values. Namely, what principially matters are the following facts.

(i) The linear ordering on [0,1], so that each two possibility degrees may be compared and ordered
by the standard relation ≤ on [0,1].

(ii) The Archimedean structure of this ordering due to which, informally said, each value in [0,1] is
”accessible” from another value in [0,1] by a finite number of equidistant steps of a no matter
how small, but fixed and positive size.

(iii) For each nonempty subset A of [0,1] there exists a finite or countable subset A0 ⊂ A such that
the supreme values of A and A0 are identical. Hence, for each ∅ 6= A0 ⊂ [0, 1] the value supA
can be reached as the limit value of an increasing sequence of elements of A. Consequently, the
supremum of any nonempty set of possibilistic degrees can be approximated, up to a no matter
how small a priori given difference, by the supremum of a finite set of possibility degrees, hence,
by the value ascribed by the (not necessarily complete) possibilistic measure under consideration
to a finite union of subsets of the universe Ω.

As can be easily seen, these conditions are not satisfied, in general, when considering lattice-valued
possibilistic measures. Indeed, take the most simple case of the identity mapping- Πid which takes the
power-set P(Ω) onto itself, simply ascribing to each A ⊂ Ω the same set A as its value Πid(A); this
mapping obviously defines a 〈P(Ω),⊂ 〉-valued possibilistic measure on P(Ω). However, if Ω and A are
uncountable sets, there is no finite or countable A0 ⊂ Ω such that A =

⋃
ω∈A{ω} =

⋃
ω∈A0

{ω} = A0

would hold; obviously, the set union defines the supremum in P(Ω) with respect to the set inclusion
as partial ordering. In the same way, when fixing a ”small” B ⊂ Ω and defining a set A0 ⊂ Ω as a
”good enough” approximation of a subset A ⊂ Ω if and only if the symmetric difference A0

.= A is a
subset of B, in general there need not exist a finite A0 with this property.

To conclude the introductory reasoning of this chapter, we have to admit that in the case of lattice-
valued possibilistic measures the mutual relations among the notions and properties like continuity of
possibilistic measures from below and from above, existence of possibilistic distribution, completeness
of the possibilistic measure in question, etc., are substantially different from the case of real-valued
possibilistic measures and are far from being trivial. So, let us take this fact as a challenge and let us
try to shed some light on these problems in what follows.

Definition 22.1 Let T = 〈T,≤ 〉 be a complete lattice, let Ω be a nonempty set, let {∅, Ω} ⊂ A ⊂
P(Ω) be a system of subsets of Ω, let Π be a T -possibilistic measure on A. The T -possibilistic measure
Π is continuous from above (upper continuous), if for every infinite sequence A1, A2, . . . of subsets
of Ω such that each Ai and the set

⋂∞
i=1 Ai are in A and Ai ⊃ Ai+1 holds for each i = 1, 2, . . ., the

relation

Π

( ∞⋂

i=1

Ai

)
=

∞∧

i=1

Π(Ai) (22.1)

is valid.
The T -possibilistic measure Π on A is a continuous from below (lower continuous), if for every

infinite sequence A1, A2, . . . of subsets of Ω such that each Ai and the set
⋃∞

i=1 Ai are in A and
Ai ⊂ Ai+1 holds for each i = 1, 2, . . ., the relation

Π

( ∞⋃

i=1

Ai

)
=

∞∨

i=1

Π(Ai) (22.2)

is valid.
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For every complete lattice T = 〈T,≤ 〉, every t ∈ T and every ∅ 6= S ⊂ T , the inequality
∧

s∈S

(t ∨ s) ≥ t ∨
(∧

S
)

(22.3)

obviously holds, but the equality is not valid in general. The complete lattice T is called 0T -
distributive (distributive in 0T ), if equality holds in (22.3) for each t ∈ T and each ∅ 6= S ⊂ T such
that

∧
S = 0T . Both the complete lattices 〈P(X),⊂ 〉, X 6= ∅, and 〈[0, 1],≤ 〉 are 0T -distributive.

Indeed, in the first case for every A ⊂ X and every ∅ 6= S ⊂ P(X) the relation

⋂

B∈S
(A ∪B) = A ∪

( ⋂

B∈S
B

)
(22.4)

is valid, hence, it is the case also when
⋂

B∈S B = ∅. In the case of 〈[0, 1],≤ 〉 we obtain, for every
x ∈ [0, 1] and every ∅ 6= S ⊂ [0, 1] such that

∧
S = 0, that

∧
s∈S(x∨ s) = x = x∨ (

∧
S) as demanded.

However, not every complete lattice is 0T -distributive, as the following example demonstrates. Let
T = {t0, t1, t2, t3, t4}, let the partial ordering on T be such that t0 < ti < t4 holds for each i = 1, 2, 3,
but for no pair ti, tj , i 6= j, i, j = 1, 2, 3 the relation ti ≤ tj is defined. Hence, T = 〈T0,≤ 〉 is a
complete lattice with 0T = t0, 1T = t2, ti ∨ tj = 1T for each i 6= j, i, j = 1, 2, 3. Take t1 ∈ T and
∅ 6= S = {t2, t3} ⊂ T0, then

t1 ∨
(∧

S
)

= t1 ∨ (t2 ∧ t3) = t1 ∨ 0T = t1 <

<
∧

s∈S

(t1 ∨ s) = (t1 ∨ t2) ∧ (t1 ∨ t3) = 1T ∧ 1T = 1T (22.5)

so that T = 〈T0,≤ 〉 is not 0T -distributive.

Theorem 22.1 Let T = 〈T,≤ 〉 be a 0T -distributive complete lattice, let A be a σ-field of subsets of
a nonempty set Ω, let Π be a continuous from above T -possibilistic measure on A. Then Π is also
continuous from below on A.

Proof. Let A1 ⊂ A2 ⊂ . . . be a nested sequence of subsets from A. Due to the fact that Π is
monotonous with respect to set inclusion, we obtain, for each n = 1, 2, . . ., that

Π(An) = Π




n⋃

j=1

Aj


 ≤ Π




∞⋃

j=1

Aj


 (22.6)

and, consequently

n∨

j=1

Π(Aj) ≤
∞∨

j=1

Π(Aj) ≤ Π




∞⋃

j=1

Aj


 (22.7)

hold. Let Bi = (
⋃∞

j=1 Aj) − Ai, i = 1, 2, . . ., so that each Bi is in A, B1 ⊃ B2 ⊃ . . . holds and⋂∞
j=1 Bj = ∅. As Π is continuous from above on A, the relation

0T = Π(∅) = Π




∞⋂

j=1

Bj


 =

∞∧

j=1

Π(Bj) (22.8)

is valid. However, for every n = 1, 2, . . . the identity

An ∪Bn = An ∪






∞⋃

j=1

Aj


−An


 =

∞⋃

j=1

Aj (22.9)

is the case, so that
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Π(An ∪Bn) = Π(An) ∨Π(Bn) = Π




∞⋃

j=1

Aj


 (22.10)

holds. Consequently, the inequality

Π




∞⋃

j=1

Aj


 ≤




∞∨

j=1

Π(Aj)


 ∨Π(Bn) (22.11)

is valid for every n = 1, 2, . . ., hence, as T is 0T -distributive, we obtain that

Π




∞⋃

j=1

Aj


 ≤

∞∧
n=1







∞∨

j=1

Π(Aj)


 ∨Π(Bn)


 =

=




∞∨

j=1

Π(Aj)


 ∨

( ∞∧
n=1

Π(Bn)

)
=




∞∨

j=1

Π(Aj)


 ∨ 0T =

=
∞∨

j=1

Π(Aj). (22.12)

Combining (22.7) and (22.12) we obtain that

Π




∞⋃

j=1

Aj


 =

∞∨

j=1

Π(Aj), (22.13)

so that Π is continuous from below on A and the assertion is proved. 2

The result just proved offers an inspiration to the following idea. Ω,A and Π being as in Theorem
22.1, the T -possibilistic measure Π on A is called σ-complete (countably complete), if for each sequence
A1, A2, . . . of sets from A such that

⋃∞
i=1 Ai ∈ A holds, the identity Π(

⋃∞
i=1 Ai) =

∨∞
i=1 Π(Ai) is valid.

As for each sequence A1, A2, . . . Ai ∈ A, the set
⋃∞

i=1 Ai can be written as
⋃∞

j=1 Bj , Bj =
⋃j

i=1 Ai ⊂
Bj+1 for every j, the following corollary is self-evident.

Corollary 22.1 Let T be a 0T -distributive complete lattice, let Π be a T -possibilistic measure con-
tinuous from above on a σ-field of subsets of Ω. Then Π is

The most simple example demonstrates that the implication inverse to that proved in Theorem
22.1 does not hold in general. Take T = 〈{0T ,1T },0T ≤ 1T 〉, take Ω = {ω1, ω2, . . .}, take Π(∅) =
0T , Π(A) = 1T for every ∅ 6= A ⊂ Ω. Obviously, T is a 0T -distributive complete lattice and Π is a
continuous from below T -possibilistic measure on P(Ω). Indeed, for every A1 ⊂ A2 ⊂ . . . ⊂ Ω, either
A1 = A2 = . . . = ∅, but then

⋃∞
i=1 Ai = ∅ and Π(Ai) = Π(

⋃∞
i=1 Ai) = 0T for every i = 1, 2, . . ., so

that the relation
∨∞

i=1 Π(Ai) = Π(
⋃∞

i=1 Ai) is valid. Or, Ai0 6= ∅ for some i0 (and, consequently, for
every i ≥ i0), so that Π(Ai0) = 1T = Π(

⋃∞
i=1 Ai) and the relation

∨∞
i=1 Π(Ai) = Π(

⋃∞
i=1 Ai) holds

again. However, take An = {ωn, ωn+1, . . .}, n = 1, 2, . . .}, then Π(An) = 1T =
∧∞

n=1 Π(An) for each
n, but Π(

⋂∞
n=1 An) = Π(∅) = 0T , hence, Π is not continuous from above on P(Ω).

The trivial T -possibilistic measure Π introduced in this example obviously possesses the T -
distribution; it is the constant mapping which ascribes the value 1T to every ω ∈ Ω. Hence, at least
in the case when the complete lattice T in question is 0T -distributive, the fact that a T -possibilistic
measure on P(Ω) possesses the distribution does not imply that this T -possibilistic measure is con-
tinuous from above. However, it is the case when considering the continuity from below, as the next
assertion proves.

Theorem 22.2 Let T = 〈T,≤ 〉 be a complete lattice, let Π be a T -possibilistic measure on P(Ω)
which possesses the T -distribution. Then Π is continuous from below on P(Ω).
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Proof. Under the conditions imposed on Π, this T -possibilistic measure is obviously complete, so
that

Π(A) =
∨

ω∈A

Π({ω}) (22.14)

holds for every ∅ 6= A ⊂ Ω and Π(∅) = 0T by convention. Let A1 ⊂ A2 ⊂ . . . ⊂ ⋃∞
i=1 Ai ⊂ Ω.

Then

Π

( ∞⋃

i=1

Ai

)
=

∨ {
Π({ω}) : ω ∈

∞⋃

i=1

Ai

}
=

∞∨

i=1

( ∨

ω∈Ai

Π({ω})
)

=
∞∨

i=1

Π(Ai), (22.15)

so that Π is continuous from below on P(Ω). 2

Let us focus our attention to the particular case of T -possibilistic measures over a countable
universe of discourse Ω and with A = P(Ω), as in this case some relations introduced and analyzed
above in general will become more simple.

Lemma 22.1 Let T = 〈T,≤ 〉 be a complete lattice, let Π be a T -possibilistic measure defined on
the power set P(Ω) of a countable set Ω, let Π be σ-complete. Then Π is a complete T -possibilistic
measure on P(Ω).

Proof. For each ω ∈ Ω, Π({ω}) is defined and each A ⊂ Ω is countable (including the empty set
and finite sets), hence, as Π is σ-complete, the relation (22.14) holds. For each nonempty system
A ⊂ P(Ω),

Π
(⋃

A
)

= Π

( ⋃

A∈A
A

)
=

∨ {
Π({ω}) : ω ∈

⋃
A

}
=

∨

A∈A

( ∨

ω∈A
Π({ω})

)
=

∨

A∈A
Π(A) (22.16)

due to the elementary properties of the operation of supremum. Hence, Π is a complete T -
possibilistic measure on P(Ω). 2

Lemma 22.2 Let T = 〈T,≤ 〉 be a 0T -distributive complete lattice, let Π be a continuous from above
T -possibilistic measure defined on the power-set P(Ω) of a countable set Ω. Then Π possesses the
T -possibilistic distribution, i.e., (22.14) holds for each A ⊂ Ω.

Proof. As P(Ω) is trivially a σ-field of subsets of Ω, Corollary 22.1 yields that Π is σ-complete on
P(Ω), hence, due to Lemma 22.1, Π is also a complete T -possibilistic measure on P(Ω). Consequently,
(22.14) holds for each A ⊂ Ω, so that Π({ω}) defines the T -possibilistic distribution on Ω which induces
Π on P(Ω). The assertion is proved. 2

In the case of a countable universe Ω, even the weaker condition of continuity from below imposed
on Π is sufficient to prove that Π possesses the distribution.

Lemma 22.3 Let T = 〈T,≤ 〉 be a complete lattice, let Ω be countable, let Π be a T -possibilistic mea-
sure continuous from below on Π(Ω). Then Π possesses the T -possibilistic distribution, i.e., (22.14)
holds for each A ⊂ Ω.

Proof. Being countable, Ω can be written as a sequence 〈ω1, ω2, . . . 〉 of all its elements (the choice of
a particular ordering will be irrelevant in what follows), and each A ⊂ Ω is defined by a subsequence
(finite or infinite) 〈ωi1 , ωi2 , . . . 〉 of 〈ω1, ω2, . . . 〉. Let An = 〈ωi1 , ωi2 , . . . , ωin〉be the initial segment of
the length n of 〈ωi1 , ωi2 , . . . 〉. As Π({ω}) is defined for every ω ∈ Ω and Π is a T -possibilistic measure
on P(Ω), we obtain that

Π(An) =
n∨

j=1

Π({ωi}) =
∨

ω∈An

Π({ω}). (22.17)

Moreover, if A is infinite,
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An ⊂ An+1 ⊂ A =
∞⋃

j=1

Aj (22.18)

holds for each n = 1, 2, . . .. Consequently, as Π is continuous from below we obtain that

Π(A) =
∞∨

n=1

Π(An) =
∞∨

n=1




n∨

j=1

Π({ωij
})


 =

∞∨

j=1

Π({ωij
}) =

∨

ω∈A

Π({ω}) (22.19)

due to the elementary properties of the operation of supremum. Hence, for each A ⊂ Ω, (22.14)
holds. The assertion is proved. 2

Theorem 22.3 Let T = 〈T,≤ 〉 be a complete lattice, let Π be a T -possibilistic measure defined on the
power-set P(Ω) of all subsets of a countable universe Ω. Then the following conditions are equivalent:

(i) Π is continuous from below;

(ii) Π possesses the T -possibilistic distribution;

(iii) Π is complete;

(iv) Π is σ-complete.

Proof. (i) ⇒ (ii) by Lemma 22.3, (ii) ⇒ (i) by Theorem 22.2, (iv) ⇒ (iii) by Lemma 22.1,
(iii) ⇒ (iv) is obvious. The equivalence (ii) ⇔ (iii) follows immediately from the definitions of the
notions under consideration. The assertion is proved. 2

It is perhaps worth re-calling explicitly that even in the specific case with countable universe Ω the
property of continuity from above is stronger than any of the conditions (i)− (iv) listed in Theorem
22.3, as the example above (following Corollary 22.1) demonstrates. Hence, if T is a 0T -distributive
complete lattice and Π is a T -possibilistic measure continuous from above on P(Ω) for a countable Ω,
then Π satisfies (i), hence, also (ii)− (iv) of Theorem 22.3, due to Theorem 22.1, but not vice versa,
in general.

Let us note that, in general, Lemma 22.3 does not hold for uncountable universes Ω. Indeed,
take the most simple complete lattice T = 〈{0T ,1T }, 0T < 1T 〉, an uncountable universe Ω, and
the mapping Π : P(Ω) → {0T ,1T } such that Π(A) = 0T , if A is empty, finite, or countable, and
Π(A) = 1T otherwise, i.e., if A is an uncountable subset of Ω. As can be easily checked, Π is a σ-
complete T -possibilistic measure. The relations Π(∅) = 0T and Π(Ω) = 1T are obvious, let A1, A2, . . .
be a sequence of subsets of Ω. Either, each Ai is empty finite, or countable. Then their union

⋃∞
i=1 Ai

is also at most countable so that, for each i = 1, 2, . . . , the relation

0T = Π(Ai0) =
∞∨

i=1

Π(Ai) = Π

( ∞⋃

i=1

Ai

)
(22.20)

easily follows. Or, there exists i0 such that Ai0 is uncountable. Then
⋃∞

i=1 Ai is uncountable as
well, so that the equality

1T = Π(Ai) =
∞∨

i=1

Π(Ai) = Π

( ∞⋃

i=1

Ai

)
(22.21)

holds again and the σ-completeness of Π is proved. Applying this result to the particular case
of a nested sequence A1 ⊂ A2 ⊂ . . . ⊂ Ω, we obtain that Π is continuous from below on P(Ω).
Nevertheless, the relation Π(A) =

∨
ω∈A Π({ω}) evidently does not hold for uncountable subsets of

Ω, so that Π does not possess the T -distribution on Ω.
As a matter of fact, the just considered two-valued possibilistic measure Π on the power-set of an

uncountable universe Ω can be taken as the analogy of the possibilistic measure which ascribes the
value 0T to finite sets (including the empty one), and the value 1T to infinite sets, just shifted by one
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level up with respect to the hierarchy of cardinalities of subsets of the universe under consideration.
A reasoning proving that this possibilistic measure Π on P(Ω) is not continuous from above may read
as follows.

Let Ω be an uncountable universe of discourse, so that the cardinality of Ω is greater than or equal
to that of continuum, in symbols, ‖Ω‖ ≥ c holds. Hence, there exists a subset Ω0 ⊂ Ω the cardinality
of which is just that of continuum, i.e., ‖ = Ω0‖ ≥ c holds. Consequently, there exists a one-to-one
mapping ϕ which takes the open interval (0,1) of real numbers onto the set Ω0. For each A ⊂ (0, 1),
let ϕ(A) = {ϕ(x) : x ∈ A} be the image of A induced by ϕ in Ω0. Let us consider the open intervals
(0, 1/n), n = 1, 2, . . ., and denote by Bn ⊂ Ω0 the set ϕ((0, 1/n)). As ϕ : (0, 1) ↔ Ω0 is one-to-one, its
restriction on 0, 1/n) is also a one-to-one mapping which takes (0, 1/n) onto Bn. Hence, the cardinality
of each Bn is also that of continuum, i.e., ‖Bn‖ = c, so that Π(Bn) = 1T holds. The sequence
(0, 1/n), n = 1, 2, . . ., is a nested sequence of subsets of (0, 1) such that (0, 1/n) ⊃ (0, 1/(n + 1))
holds for each n = 1, 2, . . ., and

⋂∞
n=1(0, 1/n) = ∅. It follows that Bn ⊃ Bn+1 and

⋂∞
n=1 Bn = ∅

holds as well. Indeed, if there were ω0 ∈
⋂∞

n=1 Bn, then its inverse image ϕ−1(ω0) must be in every
(0, 1/n), n = 1, 2, . . ., but this is impossible. Hence, we have a nested sequence B1 ⊃ B2 ⊃ . . . of
subsets of Ω0 ⊂ Ω such that

∧∞
n=1 Π(Bn) = 1T , but Π(

⋂∞
n=1 Bn) = Π(∅) = 0T , so that Π is not

continuous from above on P(Ω).

23 Continuous from Above and Strongly Continuous Lattice-
Valued Possibilistic Measures

Definition 23.1 Let T = 〈T,≤ 〉 be a complete lattice. A T -monotone measure Π defined on a
nonempty system R of subsets of a nonempty space Ω is called separable, if there exists, for every
A ∈ R, a finite of countable subset AK ⊂ A, AK ∈ R, such that Π(AK) = Π(A). Each AK possessing
this property is called a kernel of (the set) A.

Obviously, if Ω is at most countable, then each T -monotone measure on each ∅ 6= R ⊂ P(Ω) is
separable, as each A ∈ R can be taken as its own kernel. The adjective ”separable” will be applied also
to particular cases of T -monotone measures, namely to T -possibilistic measures defined on ∅ 6= R ⊂
P(Ω). In the still more particular case when Π is a complete T possibilistic measure on R, the condition
of separability yields that, for every A ∈ R, there exists a finite or countable AK ⊂ A, AK ∈ R, such
that

∨

ω∈A

Π({ω}) =
∨

ω∈AK

Π({ω}). (23.1)

Hence, the property of separability imitates the well-known property of the space of real numbers
equipped by their standard linear ordering, according to which there exists, for each nonempty set
A ⊂ R+ = [−∞,∞], a sequence 〈a1, a2, . . . 〉 such that ai ∈ A for each i = 1, 2, . . ., and supA =
sup{ai : i = 1, 2, . . .}.

Theorem 23.1 Let T = 〈T,≤ 〉 be a complete lattice, let Π be a T -possibilistic measure on the
power-set P(Ω) of all subsets of a space Ω, the cardinality of Ω being that of the continuum. If Π is
continuous from above, i.e., if the relation

Π

( ∞⋂

i=1

Ai

)
=

∞∧

i=1

Π(Ai) (23.2)

holds for each nested sequence A1 ⊃ A2 ⊃ . . . of subsets of Ω, then there exists, for each ω ∈ Ω,
a sequence {ω}1 ⊃ {ω}2 ⊃ . . . of subsets of Ω such that

⋂∞
n=1{ω}n = {ω}, hence,

∧∞
n=1 Π({ω}n) =

Π({ω}), and for each A ⊂ Ω and each n = 1, 2, . . ., the relations

Π

( ⋃

ω∈A

({ω}n)

)
=

∨

ω∈A

Π({ω}n) (23.3)

and
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∞∧
n=1

Π

( ⋃

ω∈A

({ω}n)

)
= Π(A) (23.4)

are valid. If Π is, moreover, separable, then

Π(A) =
∨

ω∈A

Π({ω}) (23.5)

holds for each A ⊂ Ω, hence, the T -possibilistic measure Π is complete and possesses the T -
possibilistic distribution {Π({ω}) : ω ∈ Ω}.

Proof. As the cardinality of Ω is supposed to be that of continuum, there exists a one-to-one mapping
c : Ω ↔ {0, 1}∞, i.e., c(ω) = 〈c1(ω), c2(ω), . . . 〉, ci(ω) ∈ {0, 1}, for each ω ∈ Ω and i = 1, 2, . . .. To
avoid the difficulties resulting from the twofold encoding of some real numbers, we purposely do not
take c(ω) as a real number from [0, 1]. Let us consider the following sequence Ω(0), Ω(1), Ω(2), . . . of
finite disjoint decompositions of the universe Ω:

Ω0 = {Ω}, Ω(1) = {Ω1,0, Ω1,1}, Ω(2) = {Ω2,0, Ω2,1,Ω2,2, Ω2,3}, . . . , Ω(n) =
= {Ωn,0, Ωn,1, . . . , Ωn,2n−1}, (23.6)

where, for each n = 1, 2, . . . and each i = 0, 1, . . . , 2n − 1

Ωn,i = {ω ∈ Ω : Σn
j=1cj2j−1 = i}. (23.7)

Informally, Ωn,i is the set of all ω ∈ Ω for which the initial segment 〈c1(ω), c2(ω), . . . , cn(ω)〉 of
their encoding c(ω) defines the binary decomposition of the integer i. Obviously, for each ω ∈ Ω and
each n ≥ 1 there exists uniquely defined integer in(ω), 0 ≤ in(ω) < 2n, such that ω is in Ωn,in(ω) and
this Ωn,in(ω) will be denoted by {ω}n in what follows. The following relations are obviously valid:

(i) {ω}1 ⊃ {ω}2 ⊃ {ω}3 ⊃ . . . {ω} =
⋂∞

n=1{ω}n holds for each ω ∈ Ω,

(ii) for each n = 1, 2, . . . and each 0 ≤ i, j < 2n, i 6= j, the sets Ωn,i and Ωn,j are disjoint

(iii) for each n = 1, 2, . . . ,
⋃2n−1

i=0 Ωn,i = Ω.

Let T = 〈T,≤ 〉 be a complete lattice, let Π be a T -possibilistic measure on P(Ω). For each
A ⊂ Ω and each n = 1, 2, . . ., as the decomposition Ω(n) is finite, there exists a finite number (≤ 2n)
of different subsets among the subsets {ω}n, ω ∈ A, in other terms, there exists a finite subset An ⊂ A
such that

⋃

ω∈A

({ω}n) =
⋃

ω∈An

({ω}n). (23.8)

Hence, for each ω ∈ A, the inequality

Π({ω}n) ≤ Π

( ⋃

ω∈An

({ω}n)

)
=

∨

ω∈An

Π({ω}n) (23.9)

is valid, so that the relation
∨

ω∈A

Π({ω}n) ≤
∨

ω∈An

Π({ω}n) (23.10)

follows. The inverse inequality holds trivially due to the inclusion An ⊂ A. Hence, we obtain that

Π

( ⋃

ω∈A

({ω}n)

)
= Π

( ⋃

ω∈An

({ω}n)

)
=

∨

ω∈An

Π({ω}n) =
∨

ω∈A

Π({ω}n), (23.11)
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so that (23.3) is proved. If Π is continuous from above, we obtain that

∞∧
n=1

Π({ω}) = Π

( ∞⋂
n=1

{ω}n

)
= Π({ω}) (23.12)

and, as

∞⋂
n=1

( ⋃

ω∈A

({ω}n)

)
= A, (23.13)

the relation (23.4) follows as well.
Let the T -possibilistic measure Π on P(Ω) under consideration be continuous from above and

separable. Given A ⊂ Ω and a kernel AK ⊂ A, the identity Π(A) = Π(AK) follows from the definition
of kernel. Also the inequalities

∨

ω∈AK

Π({ω}) ≤
∨

ω∈A

= Π({ω}) ≤ Π(A) (23.14)

are obvious, the first one because of the inclusion AK ⊂ A, the second one because of the fact that
for each ω ∈ A the inclusion {ω} ⊂ A is valid, hence, also the inequalities

Π({ω}) ≤ Π(A),
∨

ω∈A

Π({ω}) ≤ Π(A) (23.15)

easily follow.
Let us prove that for each finite or countable A ⊂ Ω the relation Π(A) =

∨
ω∈A Π({ω}) is valid,

in particular, that Π(AK) =
∨

ω∈AK Π({ω}) holds for each A ⊂ Ω and each kernel AK of A. If A is
finite, this is obvious, so let us assume that A = {ω1, ω2, . . .} is an infinite countable subset of Ω.

Denote by An the set
⋃

ω∈A({ω}n) and by Bn the set {ω1, ω2, . . . , ωn} ⊂ A. Evidently, for each
n = 1, 2, . . . , (An −Bn) ∪Bn = An, so that the identity

Π(An −Bn) ∨Π(Bn) = Π(An) (23.16)

holds for every n = 1, 2, . . .. Due to (23.13) we obtain that the inequality

Π(An −Bn) ∨Π(Bn) = Π(An −Bn) ∨
n∨

i=1

Π({ωi}) ≥ Π(A) (23.17)

and, obviously, also the inequality

Π(An −Bn) ∨
∞∨

i=1

Π({ωi}) ≥ Π(A) (23.18)

are valid for each n = 1, 2, . . .. Consequently, also
( ∞∧

n=1

Π(An −Bn)

)
∨

∞∨

i=1

Π({ωi}) ≥ Π(A) (23.19)

holds, but

∞∧
n=1

Π(An −Bn) = Π

( ∞⋂
n=1

(An −Bn)

)
= Π(∅) = 0T , (23.20)

as Π is supposed to be continuous from above on P(Ω). Hence, we obtain the inequality
∨∞

i=1 Π({ωi}) ≥
Π(A). The inverse inequality is immediately implied by the obvious relation Π({ωi}) ≤ Π(A), valid
for every ωi ∈ A, hence, the equality
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Π(A) =
∞∨

i=1

Π({ωi}) =
∨

ω∈A

Π({ω}) (23.21)

follows. Combining all inequalities obtained so far we arrive at the relation

Π(A) = Π(AK) =
∨

ω∈AK

Π({ω}) ≤
∨

ω∈A

Π({ω}) ≤ Π(A) (23.22)

so that (23.5) is valid and the theorem is proved. 2

Let us strengthen the notion of continuity from above as follows.

Definition 23.2 Let T = 〈T,≤ 〉 be a complete lattice, let Ω be a nonempty set, let {∅, Ω} ⊂ R ⊂
P(Ω) be a system of subsets of Ω, let Π : R→ T be a T -monotone measure on R. Π is called strongly
continuous from above, if for every ∅ 6= R0 ⊂ R such that cardR0 ≤ cardΩ and

⋂R0 =
⋂

A∈R0
A = ∅

holds, the relation
∧

A∈R0
Π(A) = 0T holds as well.

Let us note that this definition of strong continuity from above does not demand the validity of
the relation

∧
A∈R0

Π(A) = 0T for every R0 ⊂ R such that
⋂R0 = ∅, as it does not touch subsystems

R0 ⊂ R such that cardR0 > cardΩ holds, which may exist when cardR = cardP(Ω) = 2cardΩ. As
above, the property ”strongly continuous from above” will be ascribed also to mappings which take
R into T and which are particular cases of T -monotone measures, in particular to T -possibilistic
measures.

Lemma 23.1 Let T = 〈T,≤ 〉 be a complete lattice distributive in 0T , let ∅ 6= R ⊂ P(Ω) be a system
of subsets of a nonempty set Ω, let Π : R → T be a strongly continuous from above T -possibilistic
measure defined on R, let ∅ 6= R0 ⊂ R be such a subsystem of R that

⋂
R0 ∈ R and A−⋂R0 ∈ R

holds for every A ∈ R0. Then

Π
(⋂

R0

)
=

∧
{Π(A) : A ∈ R0}. (23.23)

Proof. For each A ∈ R0 the identity (A−⋂R0) ∪
⋂R0 = A is obvious, hence, the relation

Π
(
A−

⋂
R0

)
∨Π

(⋂
R0

)
= Π(A) (23.24)

holds for every A ∈ R0 and the equality

∧ {
Π

(
A−

⋂
R0

)
∨Π

(⋂
R0

)
: A ∈ R0

}
=

∧{
Π

(
A−

⋂
R0

)
: A ∈ R0

}
∨Π

(⋂
R0

)

=
∧
{Π(A) : A ∈ R0} (23.25)

follows due to the supposed 0T -distributivity of T . However, as Π is strongly continuous from
above we obtain that

∧ {
Π

(
A−

⋂
R0

)
: A ∈ R0

}
= Π

( ⋂

A∈R0

(
A−

⋂
R0

))
= Π(∅) = 0T , (23.26)

so that (23.23) is proved. 2

Theorem 23.2 Let T = 〈T,≤ 〉 be a complete lattice distributive in 0T , let Π be a strongly continuous
from above T -possibilistic measure on the power-set P(Ω) of all subsets of a nonempty set Ω. Then
Π is defined by the T -possibilistic distribution {Π({ω}) : ω ∈ Ω}, i.e., Π(A) =

∨
ω∈A Π({ω}) holds for

each A ⊂ Ω, A 6= ∅.
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Proof. For every ∅ 6= A ⊂ Ω and every ω ∈ A we obtain

Π(A− {ω}) ∨Π({ω}) = Π(A), (23.27)

so that the inequality

Π(A− {ω}) ∨
∨

ω∈A

Π({ω}) ≥ Π(A) (23.28)

easily follows. As T is 0T -distributive, we obtain that

∧
{Π(A− {ω}) ∨

∨

ω∈A

Π({ω}) : ω ∈ A}

=
∧
{Π(A− {ω}) : ω ∈ A} ∨

∨

ω∈A

Π({ω}) ≥ Π(A) (23.29)

holds as well. But, as cardA ≤ cardΩ holds, the strong continuity from above of Π on P(Ω) yields
that

∧
{Π(A− {ω}) : ω ∈ A} = Π

( ⋂

ω∈A

(A− {ω})
)

= Π(∅) = 0T , (23.30)

so that the inequality
∨

ω∈A Π({ω}) ≥ Π(A) results. As showed above, the inverse inequality holds
trivially, so that the assertion is proved. 2

When applying Theorem 23.2 to countable spaces Ω, we obtain immediately that each continuous
from above T -possibilistic measure Π on P(Ω) is defined by its T -possibilistic distribution {Π({ω}) :
ω ∈ Ω}. In the foregoing Chapter we obtained this result as a consequence of other assertions valid in
the particular case of countable universes. As Theorem 23.2 shows, the cardinality of the system of
subsets occurring in the definition of the generalized continuity from above must be, in general, the
same as that of the universe Ω. The results of the first part of this chapter then prove that in the
case of a countable universe Ω and separable T -possibilistic measures on P(Ω) the cardinality of set
systems used in the definition of the continuity from above can be ”exponentially” reduced from the
countable cardinality of continuum to the countable cardinality, in symbols, from 2ℵ0 to ℵ0. It is a
matter of further reasoning, whether the condition of separability can be generalized or modified also
to the case of T -possibilistic measures defined on the power-sets P(Ω) of spaces of cardinality greater
then that of continuum. Let us recall that in the proof of Theorem 23.1 we have substantially taken
profit of the fact that the elements of a continuum Ω can be put into one-to-one correspondence with
infinite binary sequences.

Indeed, if cardΩ > 2ℵ0 holds, then for no matter which infinite sequence of more and more fine
binary splittings of Ω (like the sequence Ω(0),Ω(1), Ω(2), . . . of decompositions used in the proof of
Theorem 23.1) we obtain at most 2ℵ0 different subsets of Ω of the type

⋂∞
n=1{ω}n. Hence, the

identity {ω} =
⋂∞

n=1{ω}n cannot hold in general, i.e., for every ω ∈ Ω, moreover, at least one of the
intersections

⋂∞
n=1{ω}n must be of the same cardinality as Ω. As a matter of fact, if the inequality

card
⋂∞

n=1{ω}n < cardΩ held for each ω ∈ Ω, we would obtain the inequality

cardΩ = card

( ⋃

ω∈Ω

( ∞⋂
n=1

{ω}n

))
< 2ℵ0cardΩ = cardΩ, (23.31)

as cardΩ > 2ℵ0 holds by assumption, hence, we have arrived at a contradiction. Consequently, to
go on in the way applied when proving Theorem 23.1 for spaces with continuum cardinality, we would
have to suppose that the lattice-valued possibilistic measure Π in question is complete at every set⋂∞

n=1{ω}n, i.e., that the equality

Π

( ∞⋂
n=1

{ω}n

)
=

∨{
Π({ω0}) : ω0 ∈

∞⋂
n=1

{ω}n

}
(23.32)
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holds for each ω ∈ Ω including the cases when the cardinality of the intersection
⋂∞

n=1{ω}n is the
same as that of Ω. However, such an assumption evidently does not solve our problem to prove an
analogy of Theorem 23.1 also for universes of greater cardinalities.

24 Decision-Making Under Uncertainty — Motivation and
General Preliminaries

When suggesting and analyzing possibilistic lattice-valued decision functions, we take an inspiration
and motivation in the theory of statistical decision functions developed on the grounds of Kolmogorov
axiomatic probability theory. Let us recall, very briefly, the elementary ideas on which statistical
decision functions are based. The reader is supposed to be familiar with the notations used in the
axiomatic probability theory as introduced, e.g., in [4], [13] or [38]. However, when developing a possi-
bilistic and lattice-valued version of this model of decision-making under uncertainty, our explanation
will aim to be self-explanatory to the most possible degree.

Consider a system S of no matter which nature, the actual internal state of which is s0. This actual
internal state is, up to the most trivial cases, neither known nor immediately observable by a subject,
an expert, say, who controls the system S with respect to some reasonable and rational criteria of
acceptability or optimality. The only fact being known apriori reads that s0 belongs to a set S of
possible actual internal states of the system S. Another interpretation may read that S is a problem
to be solved and S is the set of possible solutions (or candidates to solution), the only one s0 ∈ S
being the optimal (the correct) one. A reformulation of this interpretation in the terms of hypothesis
testing is obvious and easy to be done. In the language of medical science: the system S is a patient
treated by a doctor who wants to identify the disease the patient is suffering from under the apriori
knowledge that this diagnosis is just one element of a set S of diagnoses under consideration. In what
follows, we will use the ”engineering” terminology introduced above as the primary one, keeping in
mind that our further rather abstract constructions and considerations can be easily and more or less
routinely re-phrased also under each of the other semantical interpretations just sketched.

The subject confronted with the system S takes a decision from a fixed set D of decisions being
at his/her disposal. E.g., in the case of a technical device possible decisions are given by various
interventions into the system through its regulation devices, in the case of medical care to take a
decision means to apply some medicaments and/or other therapies, or simply to declare one hypothesis
(diagnosis, e.g.) as the true one. However, various decisions are, in general, not equivalent as far as
their consequences are taken into consideration. The two following assumptions are accepted: the
consequences resulting when taking a decision d ∈ D depend only on this d and on the actual state s
of the system under consideration, and they are quantified by a non-negative real number λ(s, d) taken
as the loss (financial, say) suffered by the subject when applying the decision d to S in the internal
state s. In symbols, λ is a real-valued function which takes the Cartesian product S ×D into [0,∞),
hence, if λ(s, d) = 0, then d is an absolutely best solution with respect to s, as its application does
not bring any loss. More generally, a solution d0 is optimal with respect to s ∈ S, if the inequality
λ(s, d0) ≤ λ(s, d1) holds for each d1 ∈ D. If the set D of possible decisions is finite, such d0 obviously
always exists, if D is infinite, then for every ε > 0 there exists d0(ε) ∈ D such that the inequality
λ(s, d0(ε)) < λ(s, d1) + ε is valid for each d1 ∈ D.

Supposing, that the actual state s0 of S is known to the subject, it is a very simple matter (from
the theoretical point of view, not taking into consideration the computational complexity and other
problems possibly arising when processing the function λ) to obtain a decision optimal w.r. to s or a
decision approximating the optimal one up to a given fixed ε > 0. However, up to the trivial cases the
actual states are not known or directly observable, the only what is at the subject’s disposal are the
empirical data-results of various observations, treatments of experiments done by the subject. Let E
denote the set (perhaps a vector space) of possible values of these empirical procedures, so that what is
at the subject’s disposal when choosing an appropriate decision is just a value e ∈ E. We suppose that
the way in which the subject takes his/her decision can be described by a decision function δ taking
the set E of empirical data (values) into the set D of decisions. Hence, first of all, the subject chooses
a decision function δ (the way in which he/she does so is the key problem in the decision making under
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uncertainty and will be discussed in more detail below), and then the subject applies this decision
function to the actual empirical value being at his/her disposal. Combining our notation together, if
s is the actual internal state of the system S, if e is the empirical value being at the subject’s disposal
and if δ is the decision function which he/she applies, the suffered loss is λ(s, δ(e)) ∈ [0,∞). E.g., if
the decision problem consists in the identification of the actual internal state s of S and if the most
simple loss function applies, i.e., if S = D and λ(s, d) = 0, if s = d, λ(s, d) = 1 otherwise, and if the
decision function δ is used, then the loss λ(s, δ(e)) = 0 iff δ(e) = s, and λ(s, δ(e)) = 1 otherwise.

A decision function δ0 : E → D is uniformly optimal (uniformly the best one) if for every δ : E → D,
every s ∈ S, and every e ∈ E the inequality

λ(s, δ0(e)) ≤ λ(s, δ(e)) (24.1)

is valid. However, up to the most elementary cases when the actual internal state of the system
under consideration can be identified from the empirical data being at the subject’s disposal, such a
uniformly optimal decision function does not exist. Indeed, let us consider, again, the example with
S = D and λ(s, d) ∈ {0, 1} described above and suppose that some empirical value e ∈ E is compatible
with at least two states s1, s2 ∈ S, hence, observing e the subject is not able to decide whether s1 or
s2 is the internal state of S. Now, for each decision function δ : E → D, if δ(e) = s1 but s2 is the
internal state of S, then

λ(s2, δ(e)) = 1 > 0 = λ(s2, δs2(e)), (24.2)

where δs2 is the constant decision function ascribing the value s2 to each e ∈ E. Hence, the
uniformly optimal decision function in the sense of (24.1) does not exist.

Let us leave aside numerous heuristics and partial solutions suggested and applied when choosing
a reasonable decision function δ, either when introducing some more assumptions into our model or
when focusing our attention to some particular cases worth being analyzed in more detail. In the rest
of this chapter we will sketch, very briefly, the case when the phenomenon of uncertainty, taken as
randomness and described and processed by the tools offered by the probability theory in its axiomatic
setting, enters our model, so giving arise the notion of statistical decision functions. Some basic ideas
of this approach will be used as an useful inspiration and motivation when aiming to develop and
analyze a possibilistic alternative of the statistical model, cf. Section 25 below.

Let us begin with the notion of probability space, defined by a triple 〈Ω,A, P 〉, where Ω is a
nonempty space, A is a nonempty σ-field of subsets of Ω, and P : A → [0, 1] is a normalized σ-
additive measure on A. Elements ω ∈ Ω are called elementary random events, sets from A are called
random events, and P is called the probability (measure) ascribing to each random event A ∈ A its
probability P (A). Let Z be a nonempty set, let Z be a nonempty σ-field of subsets of Z. A mapping
X = Ω → Z is called Z-valued random variable, if it is measurable with respect to the σ-fields A and
Z, i.e., if the inverse image of each B ∈ Z is in A or, what turns to be the same, if the inclusion

{{ω ∈ Ω : X(ω) ∈ B} : B ∈ Z} ⊂ A (24.3)

is valid. If the set Z is finite and if Z is not defined explicitly, we suppose that Z = P(Z), i.e.,
the power-set of all subsets of Z.

Turing back to our general model for decision making introduced above, two inputs (parameters)
entering this model can be supposed to be charged by uncertainty in the sense of randomness. We will
suppose that the empirical value e, being at the subject’s disposal, is the value taken by an E-valued
random variable η : Ω → E. Accepting the so called bayesian approach, we will suppose that also the
actual internal state s0 of the system S is the value taken by an S-valued random variable σ : Ω → S.
In the rest of this chapter we suppose, not to charge our explanation by mathematical technicalities,
that both the sets E and S, as well as the set D of possible decisions, are finite, so that our convention
concerning the σ-fields over E and S applies.

Under this setting, the decision function δ converts into a D-valued random variable δ? : Ω → D
such δ?(ω) = δ(η(ω)) for every ω ∈ Ω, and the loss function λ converts into a real-valued random
variable λ? : Ω → R = (−∞,∞), setting for every ω ∈ Ω
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λ?(ω) = λ(σ(ω), δ(η(ω))). (24.4)

Taking into account the realistic assumption that the random variables σ and η describe the
properties of the world in which the subject realizes his/her decision procedure, so that these random
variables are taken as fixed, the only way in which the subject can optimize his/her decision making,
i.e., minimize the loss, is to choose appropriately the decision function δ.

For the same reasons as discussed above we cannot expect that there exists a decision function
δ0 : E → D minimizing the loss uniformly for every ω ∈ Ω, i.e., satisfying the inequality

λ(σ(ω), δ0(η(ω))) ≤ λ(σ(ω), δ(η(ω))) (24.5)

for every δ : E → D and every ω ∈ Ω. However, the bayesian approach enables to define, under
some conditions, the expected value

Eλ? =
∫ ∞

−∞
λ?(ω)dP (24.6)

of the random variable λ?. Under our simplifying assumption of finiteness of the sets S and E, a
sufficient condition for the expected value Eλ? to be defined and finite reads that the loss function λ
is uniformly majorized by a constant value, i.e., that the inequality λ(s, e) ≤ K < ∞ holds for each
〈s, e〉 ∈ S × E. A routine calculation yields that in this case the expected value Eλ? can be written
in a more explicit and intuitive way, namely

Eλ? = Eλ(σ(·), δ(η(·)))
=

∑

〈s,e〉∈S×E

λ(s, e)P ({ω ∈ Ω : σ(ω) = s} ∩ {ω ∈ Ω : η(ω) = e}). (24.7)

A decision function δ0 : E → D is optimal in the bayesian sense and with respect to the apriori
random variable σ, if

E(λ(σ(·), δ0(η(·)))) = inf{E(λ(σ(·), δ(η(·)))) : δ : E → D}. (24.8)

Given ε > 0, a decision function δ0,ε : E → D is ε-optimal in the bayesian sense and w.r. to σ, if
for each δ : E→D the inequality

E(λ(σ(·), δ0,ε(η(·)))) < E(λ(σ(·), δ(η(·)))) + ε (24.9)

holds. A decision function δ0 satisfying (24.8) need not, in general, exist, but a decision function
δ0,ε satisfying (24.9) obviously exists for every ε > 0. Of course, our reasoning proves the existence of
such a δ0,ε only at the implicit level, to define δ0,ε explicitly may be a very difficult task.

Still keeping ourselves within the framework of the statistical decision making under uncertainty
as sketched in this chapter, the qualities of the decision process can be improved (in the sense that
the expected loss is reduced) supposing that the subject can modify the space E of empirical values
(enlarging it appropriately), and if he/she modifies also the random variable η taking its values in E.
Let us demonstrate this idea by a simple example.

Consider a person who tosses a regular coin (probability 1/2 for H(ead) as well as for T (ail)).
This person will be the system S and the result of the toss will be the actual internal state of S. The
subject is a colleague of the first person and the decision problem under consideration is to identify the
actual intervnal state of S, i.e., to identify the result of the toss made by S. First, suppose that the
subject has no empirical data in the sense of something coming from the world around independently
of the subject’s own activity. Hence, under our notation, S = {H,T}, σ : Ω→S is such that

P ({ω ∈ Ω : σ(ω) = H}) = P ({ω ∈ Ω : σ(ω) = T}) = 1/2, (24.10)

D = {H,T}, and E = {e} (no empirical data and data taking only one constant value e turn
to be the same within our model). Consequently, η(ω) = e for every ω ∈ Ω. Let λ(s, d) = 0, if
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s = d, λ(s, d) = 1 elsewhere. Then the only decision functions which exist are the constant ones:
δH(e) = H, δT (e) = T . Hence, for the expected loss of both these decision functions we obtain easily
that

E(λ(σ(·), δH(η(·)))) = E(λ(σ(·),H)) = P ({ω ∈ Ω : σ(ω) = T}) = 1/2, (24.11)

the same result being valid when δH replaced by δT .
However, the situation changes substantially, if the subject can do his/her own coin toss which is

not statistically independent of that one made by S, but brings some information about the result
achieved by S. To describe this case formally, let E be replaced by E0 = {H, T}(= S = D) and let
η0 : Ω→E0 be such that

P ({ω ∈ Ω : η0(ω) = H}) = P ({ω ∈ Ω : η0(ω) = T}) = 1/2, (24.12)

but also

P ({ω ∈ Ω : σ(ω) = η0(ω)}) > 1/2 (24.13)

hold together. Let δ0 : E0→D be the identity on E0, so that δ0(η0(ω)) = η0(ω) for every ω ∈ Ω.
We obtain that

E(λ(σ(·), δ0(η0(·)))) = P ({ω ∈ Ω : σ(ω) 6= η0(ω)}) < 1/2 (24.14)

holds, hence, δ0 is better than both δH and δT .
Obviously, the value Eλ? defined in (24.6), when taken as the degree of quality of the decision

function δ, depends ultimately on the apriori probability distribution, i. e., on the random variable σ.
Aiming to eliminate this dependence, we can apply the well-known minimax principle or the worst-case
analysis principle. Set, for each s ∈ S,

Es,δ(λ) = Eλ(s, δ(η(·))) =
∫ ∞

−∞
λ(s, δ(η(ω)))dP (24.15)

and consider the supremum of these values for s ranging over S, i. e., set

Esup
δ (λ) = sups∈SEs,δ(λ). (24.16)

Taking Esup
δ (λ) as a real-valued characteristic of the decision function δ, each two decision functions

can be compared with respect to these values. A decision function δ0 is optimal (the best) with respect
to the minimax principle, if the relation

Esup
δ0

(λ) = inf{Esup
δ (λ) : δ : E→D} (24.17)

is valid. This value can be either reached or at least approximated up to a given ε > 0, at least
in the implicite non-constructive sense. The problem with the minimax approach consists in the fact
that the value Esup

δ (λ) depends on one value s ∈ S, which may be very far from being a typical or at
least more or less possible actual state of the system in question, when applying the decision function
δ.

In the model outlined above, the size or the degree of uncertainty (i.e., randomness, in our case)
was quantified using probability measure, defined as real-valued σ-additive normalized set function
ascribing real numbers from the unit interval to (some) subsets of the space Ω of all elementary
events under consideration. Keeping the idea that degrees of randomness are defined by sizes of
(some) subsets of Ω, let us abandon the assumption that the values ascribed to these subsets are
real numbers and let us take into consideration also non-numerical values from a set equipped by a
structure weaker than the structures definable over the unit interval of real numbers. E.g., degrees
of randomness from a partially ordered set or lattice-valued degrees may be taken into consideration.
The operation of addition of real numbers will be replaced by that of supremum, definable in partially
ordered sets and in lattices. Pursuing this way of reasoning in more detail, we will analyze, in the
next chapters, whether, and in which sense and degree, the model of statistical decision functions,
briefly sketched in this chapter, can be modified to the case when probability measure is replaced by
a lattice-valued possibilistic measure.
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25 Possibilistic Decision Functions

In this chapter our aim will be to reconsider, again, the problem of decision making under uncertainty
as introduced in Chapter 24, but this time with the phenomenon of uncertainty (randomness) formally
described and processed, and with the degrees of uncertainty quantified, by the tools offered by lattice-
valued possibilistic measures and variables. Hence, let the symbols S (the set of possible interval
states of a system, hypotheses, solutions, . . . ), D (the set of possible decisions being at the subject’s
disposal), and E (the set of possible values of empirical data or observations) keep their meanings and
the intuition behind as introduced above in Chapter 24. Also decision functions keep their former
notation and meaning, so that decision function δ is a mapping which takes E into D. On the other
side, loss function will be re-defined in a way enabling to quantify the loss suffered, when the actual
internal state is s and the decision d is taken, by a non-numerical value, as a rule, by the value from
a complete lattices.

Given a complete lattice T = 〈T,≤ 〉, a T -valued loss function is a mapping ρ which takes the
Cartesian product S×D into T , i.e., ρ(s, d) ∈ T for every s ∈ S and d ∈ D. Aiming to use the symbol
λ for t-norms on T , we introduce here the symbol ρ for lattice-valued loss functions. Combining these
notations together, we obtain that the loss suffered when the actual internal state is s, the subject
observes the empirical value e and applies the decision function δ, can be denoted by ρ(s, δ(e)), this
time the value being an element of the complete lattice T .

Recalling the example introduced in Chapter 24, when decision making consists in the identification
of the actual internal state, and applying, again, the most simple two-valued loss function just with
real numbers 0 and 1 replaced by 0T and 1T (the zero and the unit of the complete lattice T ), i.e.,
setting S = D and ρ(s, d) = 0T , if s = d, ρ(s, d) = 1T otherwise we can easily see that also in the case
of lattice-valued loss functions a decision function δ minimizing the loss value ρ(s, δ(e)) uniformly for
each s ∈ S does not exist (up to the trivial cases mentioned in Chapter 24) so that a weaker optimality
criterion must be taken into consideration.

As in the case of statistical decision functions, let us implement the phenomenon of uncertainty
(in the sense of randomness) into our model of decision making, but this time described, quantified,
and processed by lattice-valued possibilistic measures, possibilistic variables and other tools related to
them. To achieve this goal, let us fix a T -possibilistic space 〈Ω,A,Π〉, where A is a nonempty ample
field of subsets of a nonempty space Ω and Π is a complete T -valued possibilistic measure on A,
i. e., T is a complete lattice and Π(

⋃R) =
∨{Π(A) : A ∈ R} for any ∅ 6= R ⊂ A. Moreover, let us

suppose that

(i) the actual internal state s is the value taken by an S-valued possibilistic variable σ defined on
〈Ω,A,Π〉, and

(ii) the empirical value e, being at the subject’s disposal when choosing a decision, is the value taken
by an E-valued possibilistic variable η defined on 〈Ω,A, Π〉.

In both the cases we suppose, for the sakes of simplicity, that the ample fields over S and E are
the power-sets P(S) and P(E). Hence, we suppose that σ : Ω→S and η : Ω→E are mappings such
that, for every S0 ⊂ S and every E0 ⊂ E, the relations

{ω ∈ Ω : σ(ω) ∈ S0} ∈ A, {ω ∈ Ω : η(ω) ∈ E0} ∈ A (25.1)

are valid.
Under these notations and assumptions, the loss suffered when ρ is the lattice-valued loss function,

δ is the decision function and σ, η are the possibilistic variables just defined, becomes a T -valued
function taking Ω into T , its value being, for ω ∈ Ω,

ρ(σ(ω), δ(η(ω))). (25.2)

Let us prove that it is a T -valued possibilistic variable supposing that the ample field ZT over T
is identical with the power-set P(T ) (consequently, the mapping defined in (25.2) is then a T -valued
possibilistic variable also for every ample field ZT ⊂ P(T )).
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Indeed, given d ∈ D and t ∈ T , set

δ−1(d) = {e ∈ E : δ(e) = d}. (25.3)

R(t) = {〈s, d〉 ∈ S ×D : ρ(s, d) = t}. (25.4)

Consequently

{ω ∈ Ω : ρ(σ(ω), δ(η(ω))) = t} =
= {ω ∈ Ω : 〈σ(ω), δ(η(ω))〉 ∈ R(t)} =

=
⋃

〈s,d〉∈R(t)

{ω ∈ Ω : σ(ω) = s, δ(η(ω)) = d} =

=
⋃

〈s,d〉∈R(t)

({ω ∈ Ω : σ(ω) = s} ∩ {ω ∈ Ω : δ(η(ω)) = d}) =

=
⋃

〈s,d〉∈R(t)


{ω ∈ Ω : σ(ω) = s} ∩

⋃

e∈δ−1(d)

{ω ∈ Ω : η(ω) = e}

 . (25.5)

As the sets {ω ∈ Ω : σ(ω) = s} and {ω ∈ Ω : η(ω) = e} are in A for every s ∈ S and e ∈ E, due
to (25.1), and A is closed with respect to arbitrary intersections and unions, also the set

{ω ∈ Ω : ρ(σ(ω), δ(η(ω))) = t} (25.6)

is in A for every t ∈ T . Hence, for each B ⊂ T we obtain that the set

{ω ∈ Ω : ρ(σ(ω), δ(η(ω))) ∈ B} =
⋃

t∈B

{ω ∈ Ω : ρ(σ(ω), δ(η(ω))) = t} (25.7)

is also in A, so that the mapping ρ? (or ρ?(σ, η, δ), to explicitate all its components), defined by

ρ?(ω) = ρ(σ(ω), δ(η(ω)) (25.8)

for every ω ∈ Ω, is a T -possibilistic variable defined on the T -possibilistic space 〈Ω,A, Π〉.
Hence, like as in the case of statistical decision functions, we can define the expected value of the

T -valued possibilistic loss function ρ? with respect to a t-norm λ on T , setting

Eλρ? =
∨

t∈T

λ(t,Π({ω ∈ Ω : ρ?(ω) ≥ t})). (25.9)

and using this value as a global characteristic of the quality of the decision function δ (we will write
Eλρ?

δ in what follows, to make the role of δ explicit). Due to the conditions imposed on T = 〈T,≤ 〉
this value is always defined and the decision function δ1 is taken as at least as good as (better than,
resp.) a decision function δ2 w. r. to σ, η, ρ, and λ, if the inequality Eλρ?

δ1
≤ Eλρ?

δ2
(Eλρ?

δ1
< Eλρ?

δ2
,

resp.) holds. Obviously, contrary to the case of real-valued loss functions, some pairs δ1, δ2 of decision
functions may be incomparable w. r. to the expected values. As T is complete lattice, the value

Einf
λ ρ? =

∧

δ:E→D

Eλρ?
δ =

∧

δ:E→D

∨

t∈T

λ[t,Π({ω ∈ Ω : ρ(σ(ω), δ(η(ω))) ≥ t})] (25.10)

is defined in T , consequently, due to elementary properties of supremum operation in T = 〈T,≤ 〉,
for every t0 > Einf

λ ρ? there exists a decision function δ0 : E→D such that the inequality Eλρ?
δ0

< t0

is valid. However, in general, a decision function δ1 : E→D such that Eλρ?
δ1

= Einf
λ ρ? need not exist,

as the following simple example proves.
Let 〈Ω,A, Π〉 be a T -possibilistic space, let S = D = {s1, s2}, let E = {e} be the degenerated

observational space so that no empirical information is at the subject’s disposal, as η(ω) = e for every
ω ∈ Ω.
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Let ρ(s, d) = 0T , if s = d, ρ(s, d) = 1T otherwise. Let

Π({ω ∈ Ω : σ(ω) = si}) = ti > 0T (25.11)

for both i = 1, 2, let t1 ∧ t2 = 0T . Such a possibilistic measure can be easily defined, take, e. g.,
T = 〈P(/Ω),⊂ 〉, i. e., T is the complete lattice (complete Boolean algebra, as a matter of fact) of
all subsets of Ω partially ordered by the set inclusion, and define Π as the identity of A. Then

Π({ω ∈ Ω : σ(ω) = s1}) ∧Π({ω ∈ Ω : σ(ω) = s2}) =
= {ω ∈ Ω : σ(ω) = s1} ∩ {ω ∈ Ω : σ(ω) = s2} = ∅ = 0T , (25.12)

even if the sets {ω ∈ Ω : σ(ω) = s1} are nonempty for both i = 1, 2.
As E is a singleton, only the two decision functions are possible: δs1(e) = s1 and δs2(e) = s2, so

that δsi
(η(ω)) = si for both i = 1, 2 and every ω ∈ Ω. Consequently,

ρ(σ(ω), δs1(η(ω))) = ρ(σ(ω), s1) = 0T , if ρ(ω) = s1,

ρ(σ(ω), δs1(η(ω))) = ρ(σ(ω), s1) = 1T , if ρ(ω) = s2, (25.13)

and dually for δs2 . So, given a t-norm λ on T ,

Eλρ?
δ1

=
∨

t∈T

λ[t, Π({ω ∈ Ω : ρ(σ(ω), δs1(η(ω))) ≥ t})] ≤

≤
∨

t∈T

[t ∧Π({ω ∈ Ω : ρ(σ(ω), δs1(η(ω))) ≥ t})] =

=
∨

t∈T

[t ∧Π({ω ∈ Ω : ρ(σ(ω), s1) ≥ t})] =

= 1T ∧Π({ω ∈ Ω : σ(ω) = s2}) = 1T ∧ t2 = t2 (25.14)

and, analogously, Eλρ?
δ2
≤ t1 holds, hence, the relation

Einf
λ ρ? = (Eλρ?δ1) ∧ (Eλρ?δ2) = t1 ∧ t2 = 0T (25.15)

follows, but the value Einf
λ ρ? is reachable neither by δ1 nor by δ2.

26 Classifications of Possibilistic Decision Function Based on
the Minimax Principle

The formalization of the idea of possibilistic decision functions, as introduced in the last Chapter, has
been inspired by the bayesian approach to statistical decision functions. In this case, the actual state
of the system under consideration is supposed to be the value taken by a random (or possibilistic)
variable and the greatest portion of the critical argumentation related to bayesian statistical decision
functions can be applied also to the possibilistic case. So, it may be of interest to see, whether
also some alternative models of statistical decision functions, based on the minimax or the worst-case
”pessimistic” principle, could be translated into the language of possibilistic measures and possibilistic
decision functions.

Let us recall that, under the notations and conditions introduced in Chapter 25, the loss suffered
when σ(ω) is the actual state of the system, η(ω) is the empirical value being at the subject’s disposal,
and δ is the decision function which he/she applies, reads as ρ(σ(ω), δ(η(ω))), and it is a T -valued
possibilistic variable defined on the possibilistic space 〈Ω,A,Π〉. The expected value of this possibilistic
variable, taken with respect to the fixed t-norm λ on T , is then considered as a T -valued criterion of
quality of the decision function δ, our aim being to choose δ in such a way that this expected value
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would be as small as possible (in the sense of the partial ordering on T defined by the complete lattice
T = 〈T,≤ 〉 under consideration). This criterion will be denoted by χB

σ (B for bayesian with respect
to the apriori possibilistic variable σ), so that

χB
σ (δ) = Eλ(ρ(σ(·), δ(η(·)))) =

∨

t∈T

λ[t,Π({ω ∈ Ω : ρ(σ(ω), δ(η(ω))) ≥ t})]. (26.1)

One way how to introduce the minimax principle into our reasoning reads as follows. Instead of
the loss ρ(s, d) suffered when s is the actual state and d is the decision we consider its ”pessimistic”
approximation from above, supposing that the loss

∨
s∈S ρ(s, d) is suffered. This value depends only

on d, hence, let us define the function ρ̂ : D→T by ρ̂(d) =
∨

s∈S ρ(s, d). If the set S of states is
finite and if ≤ defines a linear ordering on T , e. g., if T is the unit interval of real numbers with
their standard ordering, then there exists, given d ∈ D, a state sd ∈ S such that ρ(sd, d) ≥ ρ(s, d)
holds for each s ∈ S. Hence, sd is the worst case with respect to d and the loss function ρ and we
suppose, with respect to the ”pessimistic” minimax principle, that just this sd is the actual state of
the system under consideration. So, with respect to the loss function ρ̂, the loss suffered when η(ω)
is the empirical value under consideration is ρ̂(δ(η(ω))) no matter which the actual state s0 ∈ S may
be. The expected value of this T -valued possibilistic variable, again with respect to the t-norm λ on
T , denoted by χMM (δ) (MM for minimax), can serve as a T -valued degree of quality of the decision
function δ. In symbols,

χMM (δ) = Eλρ̂(δ(η(ω))) = Eλ

[ ∨

s∈S

ρ(s, δ(η(·)))
]

=

=
∨

t∈T

λ

[
t,Π

({
ω ∈ Ω :

( ∨

s∈S

ρ(s, δ(η(ω)))

)
≥ t

})]
. (26.2)

Another criterion of quality of the decision function δ, obeying the minimax principle, reads as
follows. Given s ∈ S, take the expected value of the loss function ρ(s, δ(η(·))) and denote by χMM (δ)
the supremum of these expected values for s ranging over S, so that

χmm(δ) =
∨

s∈S

Eλρ(s, δ(η(·))) =

=
∨

s∈S

(∨

t∈T

λ[t,Π({ω ∈ Ω : ρ(s, δ(η(ω))) ≥ t})]
)

. (26.3)

The relations among the three criteria χB
σ (δ), χMM (δ) and χmm(δ) are as follows.

Theorem 26.1 Let S,D and E be as in Chapter 24, let T = 〈T,≤ 〉 be a complete lattice, let λ be
a t-norm on T , let ρ : S ×D→T be a T -valued loss function, let 〈Ω,A, Π〉 be a T -possibilistic space.
Then, for each possibilistic variables σ : Ω→S, η : Ω→E, and each decision function δ : E→D the
relation

χB
σ (δ) = χmm(δ) ≤ χMM (δ) (26.4)

holds.

When proving this assertion, the following lemma will be of use.

Lemma 26.1 Let T = 〈T,≤ 〉 be a complete lattice, let 〈Ω,A, Π〉 be a T -possibilistic space, let F
be a nonempty set of T -valued possibilistic variables on 〈Ω,A,Π〉, let λ be a t-norm on T . Then the
relation

∨

f∈F
(Eλf) ≤ Eλ

(∨
F

)
(26.5)
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is valid, where (
∨F)(ω) =

∨
f∈F (f(ω)) for every ω ∈ Ω. If there exists, for every ω ∈ Ω, at most

one f ∈ F such that f(ω) > 0T holds, then the equality is valid in (26.5).

Proof. For each f ∈ F and each ω ∈ Ω the inequality f(ω) ≤ (
∨F)(ω) is obvious, so that, for every

t ∈ T , the inequality

Π({ω ∈ Ω : f(ω) ≥ t}) ≤ Π({ω ∈ Ω :
(∨

F
)

(ω) ≥ t}) (26.6)

holds,. Hence, the inequality

Eλf =
∨

t∈T

λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] ≤

≤
∨

t∈T

λ
[
t,Π

({
ω ∈ Ω :

(∨
F

)
(ω) ≥ t

})]
= Eλ

(∨
F

)
(26.7)

and, consequently, (26.5) immediately follow.
Let there exist, for every ω ∈ Ω, at most one f ∈ F such that f(ω) > 0T holds (in other terms,

the supports of all variables in F are mutually disjoint). Then, for each t ∈ T, t > 0T ,
{

ω ∈ Ω :
(∨

F
)

(ω) ≥ t
}

=
⋃

f∈F
{ω ∈ Ω : f(ω) ≥ t}, (26.8)

so that

Π
({

ω ∈ Ω :
(∨

F
)

(ω) ≥ t
})

=
∨

f∈F
Π({ω ∈ Ω : f(ω) ≥ t}), (26.9)

follows. Moreover, for each t > 0T , if {ω ∈ Ω : (
∨F)(ω) ≥ t} 6= ∅, then there exists just one

ft ∈ F such that
{

ω ∈ Ω :
(∨

F
)

(ω) ≥ t
}

= {ω ∈ Ω : ft(ω) ≥ t}. (26.10)

Hence, the inequalities

λ
[
t,Π

({
ω ∈ Ω :

(∨
F

)
(ω) ≥ t

})]
= λ[t,Π({ω ∈ Ω : ft(ω) ≥ t})] ≤

≤
∨

f∈F
λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] ≤

≤
∨

f∈F

∨

t∈T
λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] =

∨

f∈F
(Eλf) (26.11)

and

Eλ

(∨
F

)
=

∨

t∈T

λ
[
t,Π

({
ω ∈ Ω :

(∨
F

)
(ω) ≥ t

})]
≤

∨

f∈F
(Eλf) (26.12)

follow. So, the equality in (26.5) and the Lemma as a whole are proved. 2

Proof of Theorem 26.1. Set, for each s ∈ S and each ω ∈ Ω,

ρ̂s(ω) = ρ(s, δ(η(ω))), if σ(ω) = s, ρ̂s(ω) = 0T , if σ(ω) 6= s. (26.13)

Hence, for each ω ∈ Ω,

ρ̂s(ω) ≤ ρ(s, δ(η(ω))), (26.14)

ρ(σ(ω), δ(η(ω))) =
∨

s∈S

ρ̂s(ω), (26.15)
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moreover, for every ω ∈ Ω there exists at most one s ∈ S such that ρ̂s(ω) > 0T holds. Applying
Lemma 26.1 to F = {ρ̂s : s ∈ S} we obtain that 2

∨

s∈S

(Eλρ̂s(·)) = Eλ

( ∨

s∈S

ρ̂s(·)
)

, (26.16)

so that the relation

χB
σ (δ) = Eλρ(σ(·), δ(η(·))) = Eλ

( ∨

s∈S

ρ̂s(·)
)

=

=
∨

s∈S

(Eλρ̂s(·)) ≤
∨

s∈S

(Eλρ(s, δ(η(·)))) =

= χmm(δ) (26.17)

easily follows. Applying (26.5) again, now to F = {ρ(s, δ(η(·))) : s ∈ S}, we obtain that

χmm(δ) ≤ Eλ

( ∨

s∈S

ρ(s, δ(η(·)))
)

= χMM (δ) (26.18)

holds. The assertion of Theorem 26.1 is proved.
The equality χmm(δ) = χMM (δ) does not hold in general, as the following example demonstrates.

Let all the sets S = {s1, s2}, D = {d1, d2}, and E = {e1, e2} consist of two elements, let the decision
function δ be such that δ(ei) = di, for both i = 1, 2.

Denote, again for both i = 1, 2

Π({ω ∈ Ω : η(ω) = ei}) = ti (26.19)

and suppose that 0T < t1, t2 < 1T and t1 ∧ t2 = 0T hold (the relation t1 ∨ t2 = 1T easily follows,
as Π is a T -possibilistic measure). Let the loss function ρ be such that

ρ(s1, d1) = ρ(s2, d2) = t2, ρ(s1, d2) = ρ(s2, d1) = t1. (26.20)

Then, for each ω ∈ Ω,

ρ(s1, δ(η(ω))) ∨ ρ(s2, δ(η(ω))) = t1 ∨ t2 = 1T , (26.21)

so that χMM (δ) = 1T . However,

{ω ∈ Ω : ρ(si, δ(η(ω))) = t2} = {ω ∈ Ω : η(ω) = ei},
{ω ∈ Ω : ρ(si, δ(η(ω))) = t1} = {ω ∈ Ω : η(ω) 6= ei}, (26.22)

consequently,

Eλρ(s1, δ(η(·))) =
∨

t∈T

λ[t,Π({ω ∈ Ω : ρ(s1, δ(η(ω))) ≥ t})] =

= λ[t1, Π({ω ∈ Ω : η(ω) = e2})] ∨ λ[t2, Π({ω ∈ Ω : η(ω) = e1})] =
= λ[t1, t2] ∨ λ[t2, t1] ≤ (t1 ∧ t2) ∨ (t2 ∧ t1) = 0T . (26.23)

The proof that Eλρ(s2, δ(η(·))) = 0T is quite analogous, so that

χmm(δ) = (Eλρ(s1, δ(η(·)))) ∨ (Eλρ(s2, δ(η(·)))) =
= 0T < 1T = χMM (δ). (26.24)
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Theorem 26.2 Let the notations and conditions of Theorem 26.1 hold, let the loss function ρ take
only the values 0T or 1T . Then, for each decision function δ : E→D,

χmm(δ) = χMM (δ). (26.25)

Proof. For every s ∈ S,

Eλρ(s, δ(η(·))) =
∨

t∈T

λ[t,Π({ω ∈ Ω : ρ(s, δ(η(ω))) ≥ t})] =

= λ[1T , Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 1T })] =
= Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }), (26.26)

as ρ(s, δ(η(ω))) takes only the values 0T or 1T on Ω. Hence,

χmm(δ) =
∨

s∈S

Eλρ(s, δ(η(·))) =

=
∨

s∈S

Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }) =

= Π

( ⋃

s∈S

{ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }
)

=

= Π

({
ω ∈ Ω :

∨

s∈S

ρ(s, δ(η(ω))) = 1T

})
=

= λ

[
1T , Π

({
ω ∈ Ω :

∨

s∈S

ρ(s, δ(η(ω))) = 1T

})]
=

=
∨

t∈T

λ

[
t,Π

({
ω ∈ Ω :

∨

s∈S

ρ(s, δ(η(ω))) ≥ t

})]
=

= Eλ

( ∨

s∈S
ρ(s, δ(η(·)))

)
= χMM (δ), (26.27)

as
∨

s∈S ρ(s, ·) is also a mapping which takes S ×D into {0T ,1T }. The assertion is proved. 2

Corollary 26.1 Let the notations and conditions of Theorem 25.1 hold, let S contain at least two
elements, let S = D and let ρ : S × D→T be such that ρ(s, d) = 0T , if s = d, and ρ(s, d) = 1T
otherwise, i.e., if s 6= d. Then, for every decision function δ : E→D,

χmm(δ) = χMM (δ) = 1T . (26.28)

Proof. The conditions of Theorem 26.2 are obviously satisfied, so that only the relation χmm(δ) = 1T
remains to be proved. Applying (26.27) we obtain that

χmm(δ) = Π

( ⋃

s∈S

{ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }
)

=

= Π

( ⋃

s∈S

{ω ∈ Ω : δ(η(ω)) 6= s}
)

=

= Π

( ⋃

s∈S

(Ω− {ω ∈ Ω : δ(η(ω)) = s})
)

=

= Π

(
Ω−

⋂

s∈S

{ω ∈ Ω : δ(η(ω)) = s}
)

= Π(Ω) = 1T , (26.29)
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as S contains at least two elements s1, s2 and for no ω ∈ Ω, δ(η(ω)) can take both these values
simultaneously. The assertion is proved. 2

Let us analyze, in more detail, the case when χmm(δ) < 1T holds for some decision function δ.
Under the conditions of Theorem 26.2 we obtain, applying (26.27), that

χmm(δ) =
∨

s∈S

Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }) =

= Π

( ⋃

s∈S

{ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }
)

=

= Π

(
Ω−

⋂

s∈S

{ω ∈ Ω : ρ(s, δ(η(ω))) = 0T }
)

< 1T (26.30)

holds. Consequently, denoting by t0 the value χmm(δ), the inequality

Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 1T }) ≤ t0 < 1T (26.31)

is valid for every s ∈ S, moreover, setting

t1 = Π

( ⋂

s∈S

{ω ∈ Ω : ρ(s, δ(η(ω))) = 0T }
)

, (26.32)

we obtain that the inequality

0T < t1 ≤ Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 0T }) (26.33)

holds for each s ∈ S. If the complete lattice T = 〈T,≤ 〉 defines a linear ordering on T , i.e., if
t1 ≤ t2 or t2 ≤ t1 holds for each t1, t2 ∈ T (as it is the case of the unit interval of real numbers
equipped by their standard linear ordering), then the identity Π(Ω−A) = 1T easily follows for every
A ∈ A such that Π(A) < 1T holds. Indeed, it is the only way to satisfy the relation

Π(Ω) = 1T = Π(A) ∨Π(Ω−A), (26.34)

obviously valid for each possibilistic measure Π taking the ample field A ⊂ P(Ω) into T . In this
particular case, (26.32) yields that

t1 = Π

( ⋂

s∈S

{ω ∈ Ω : ρ(s, δ(η(ω))) = 0T }
)

=

= Π({ω ∈ Ω : ρ(s, δ(η(ω))) = 0T }) = 1T (26.35)

holds for each s ∈ S.

27 Possibilistic Decision Functions for State Identification Un-
der Bayesian Classification

In this Chapter, we will go on with our effort to analyze, in more detail, the most simple lattice-valued
possibilistic decision functions related to the problem of identification of the actual state of the system
under investigation. Hence, as above, we suppose that the space D of decisions is identical with the
space S of possible states and that the most simple two-valued loss function is taken into consideration,
i.e., that ρ(s, d) = 0T , if s = d, and ρ(s, d) = 1T , if s 6= d. In the last chapter we analyzed such
possibilistic decision functions according to the ”pessimistic” minimax principle based on the worst-
case analysis, and we obtained some more or less elementary results according to which only under
rather strong optimistic conditions the loss χmm(δ)(= χMM (δ) in this case) can be kept below the
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maximal possible value, i.e., below 1T . Let us analyze, now, these possibilistic decision functions with
respect to the Bayesian principle, i.e., supposing that the actual state of the system is defined by the
value taken by an S-valued possibilistic variable defined on the fixed T -possibilistic space 〈Ω,A, Π〉
(the apriori possibilistic distribution) and that this fact can be, more or less sophistically, taken into
consideration when choosing and optimizing a possibilistic decision function δ in order to solve the
identification problem sketched above.

As introduced in Chapter 25, the quality of a decision function δ : E→D is defined by the expected
value of the loss function ρ : S ×D→T with respect to the possibilistic variables σ and η, and with
respect to the fixed t-norm λ on T . So, applying (25.9) and restricting ourselves to the case when
S = D and ρ takes only the values 0T or 1T in the way defined above, we obtain that

χB
σ (δ) = Eλρ? =

∨

t∈T

λ[t,Π({ω ∈ Ω : ρ?(ω) ≥ t})] =

=
∨

t∈T

λ[t,Π({ω ∈ Ω : ρ(σ(ω), δ(η(ω))) ≥ t})] =

= λ[0T , Π({ω ∈ Ω : ρ(σ(ω), δ(η(ω))) ≥ 0T })] ∨
∨ λ[1T , Π({ω ∈ Ω : ρ(σ(ω), δ(η(ω))) = 1T })] =
= λ[0T ,1T ] ∨Π({ω ∈ Ω : ρ(σ(ω), δ(η(ω))) = 1T })] =
= Π({ω ∈ Ω : σ(ω) 6= δ(η(ω))}), (27.1)

applying the most elementary properties of t-norms. Hence, quite according to the intuition behind
and to the case of statistical decision functions applied to the same decision problem, the expected
loss is defined by the size of the set of those elementary events (those ω ∈ Ω), for which the decision
function δ fails, i.e., wrongly claims that the actual state of the system under investigation is some
s1 ∈ S different from the true actual state s0 ∈ S. The only difference between the statistical and the
possibilistic cases consists in different conditions imposed on the set functions quantifying the sizes of
(some) subsets of Ω.

The following attributes will be related only to the specific two-valued loss functions and to decision
functions occuring in our specific case of state-identification decision problems.

Decision function δ : E→D is called optimal in e ∈ E, if the relation

Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ(e)}) =
∨

s∈S

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) (27.2)

holds. Decision function δ is (uniformly) optimal on E, if (27.2) is valid for every e ∈ E. Decision
function δ is weakly optimal in E, if there is no s ∈ S such that the inequality

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) > Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ(e)}) (27.3)

would hold. Decision function δ is (uniformly) weakly optimal on E, if it is weakly optimal in every
e ∈ E.

If the state space S is finite, then there always exists a decision function δ : E→D(= S, in our
particular case) which is uniformly weakly optimal on E. Indeed, denote by Ae the set of all greatest
elements among the values ascribed by the possibilistic measure Π to the subsets of Ω on which
η(ω) = e is observed and σ(ω) = s is the actual state of the system under consideration. In symbols,

Ae = {Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) : s ∈ S}≤ ⊂ T. (27.4)

Let Se be defined by

Se = {s ∈ S : Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) ∈ Ae}. (27.5)

As S is finite, the sets Ae ⊂ T and, consequently, also Se ⊂ S are nonempty for each e ∈ E, so
that, for each e ∈ E, a value δ(e) ∈ Se can be chosen. The resulting mapping δ : E→S is obviously a
uniformly weakly optimal decision function on E.
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Contrary to the case of weakly optimal decision function, if e ∈ E is such that the set Ae, defined
by (27.4), contains at least two elements, then obviously there is no decision function δ optimal in
e. Indeed, let t1, t2 be two (different, hence, incomparable by the partial ordering relation ≤ on T )
elements of Ae and, for both i = 1, 2, let si ∈ Se be such that

Π({ω ∈ Ω : η(ω) = e, σ(ω) = si}) = ti. (27.6)

Suppose, in order to arrive at contradiction, that δ : E→S is optimal in e. Then the inequality

ti < Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ(e)}) (27.7)

must be valid for both i = 1, 2, but this contradicts the assumption that both t1, t2 are greatest
(i.e., non-dominated) elements in the set of values taken by Π for the given e ∈ E and for s ranging
over S.

In the particular case when the complete lattice T = 〈T,≤ 〉 defines a linear ordering on T and
when the set S of possible internal states of the system under consideration is finite, a uniformly
optimal on E decision function δopt exists and minimizes the expected loss ℵB

σ (δ) over the space of all
decision functions δ : E→D(= S), as the following assertion claims.

Theorem 27.1 Let T = 〈T,≤ 〉 be a complete lattice such that ≤ defines a linear ordering on T , let
λ be a t-norm on T , let 〈Ω,A,Π〉 be a possibility space with T -valued possibilistic measure Π on A, let
σ be an S-valued possibilistic variable on 〈Ω,A, Π〉, where S is a finite set of possible internal states
of the system under consideration, let η be an E-valued possibilistic variable on 〈Ω,A, Π〉, where E is
the set of all possible empirical values (observations), let the set D of decisions be identical with S,
let the loss function ρ : S × D→T be such that ρ(s, d) = 0T , if s = d, ρ(s, d) = 1T if s 6= d. Let
δopt : E→D(= S) be defined in such a way that δopt(e) ∈ Se holds for each e ∈ E, where Se is defined
by (27.5). Then δopt is a uniformly on E optimal decision function in the sense that (27.2) is valid
for every e ∈ E, and for every decision function δ0 : E→D(= S) the inequality

χB
σ (δ0) = Eλρ(σ(·), δ0(η(·))) ≥ Eλρ(σ(·), δopt(η(·))) = χB

σ (δopt) (27.8)

holds.

Proof. The set S being finite, also the set

{Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) : s ∈ S} (27.9)

defines, for each e ∈ E, a finite subset of T . As ≤ defines a linear ordering on T there exists, for
every e ∈ E, se ∈ S such that the relation

Π({ω ∈ Ω : η(ω) = e, σ(ω) = se}) =
∨

s∈S

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) (27.10)

holds, consequently, the set Se is nonempty for each e ∈ E and a function δopt such that δopt(e) ∈ Se

holds for each e ∈ E can be defined. It follows immediately that each such decision function δopt is
uniformly optimal on E. Let us recall that under our conditions the set Ae defined by (27.4) is a
singleton for each e ∈ E, but the set Se may contain, in general, more elements mutually equivalent
in the sense that the value Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) is the same for all s ∈ S.

Due to (27.1), for any δ : E→D(= S) the relation

chiBσ = Π({ω ∈ Ω : σ(ω) 6= δ(η(ω))}) (27.11)

is valid. For every e ∈ E we obtain that

Π({ω ∈ Ω : η(ω) = e, σ(ω) = δopt(e)}) =

=
∨

s∈S

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) =
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= Π

( ⋃

s∈S

{ω ∈ Ω : η(ω) = e, σ(ω) = s}
)

=

= Π({ω ∈ Ω : η(ω) = e}), (27.12)

as σ(ω) ∈ S holds for each ω ∈ Ω. Let δ0 : E→D(= S) and e ∈ E be such that δ0(e) is not in Se.
Consequently, the inequality

Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ0(e)}) <

<
∨

s∈S

Π({ω ∈ Ω : η(ω) = e, σ(ω) = s}) =

= Π({ω ∈ Ω : η(ω) = e}) (27.13)

follows from (27.12). However, the relation

Π({ω ∈ Ω : η(ω) = e}) = Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ0(e)}) ∪
∪ {ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)} =
= Π({ω ∈ Ω : η(ω) = e, σ(ω) = δ0(e)}) ∨
∨ Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}) (27.14)

follows from the fact that Π is a T -possibilistic measure on A. As ≤ is a linear ordering on T and
(27.13) holds, (27.14) can be satisfied only when

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}) = Π({ω ∈ Ω : η(ω) = e}) (27.15)

holds for each δ0 : E→D(= S) and each e ∈ E such that δ0(e) is not in Se. The inequality

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δopt(e)}) ≤ Π({ω ∈ Ω : η(ω) = e}) (27.16)

follows trivially from the set inclusion between the subsets of Ω in question. Hence, for each
δ0 : E→D(= S) and each e ∈ E the inequality

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δopt(e)}) ≤ Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}) (27.17)

obviously holds.
Combining the relation (27.17) together for different values e ∈ E, we obtain that for each δ0 :

E→D(= S)

χB
σ (δ0) = Π({ω ∈ Ω : σ(ω) 6= δ0(η(ω))}) =

= Π

( ⋃

e∈E

{ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(η(ω))}
)

=

=
∨

e∈E

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δ0(e)}) ≥

≥
∨

e∈E

Π({ω ∈ Ω : η(ω) = e, σ(ω) 6= δopt(e)}) =

= Π

( ⋃

e∈E

{ω ∈ Ω : η(ω) = e, σ(ω) 6= δoptη(ω)}
)

=

= Π({ω ∈ Ω : σ(ω) 6= δopt(η(ω))}) = χB
σ (δopt). (27.18)

The assertion is proved. 2
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28 Robustness of Possibilistic Decision Functions over Lattice-
Valued Possibilistic Measures and Loss Functions

There are numerous decision problems under uncertainty when the demand of a robustness, imposed
on decision functions applied when solving these problems, is quite intuitive and legitimate. It is
to say that a ”small enough” change of the values taken by the loss function in question, or these
changes being restricted to the cases which occur ”rather rarely” (the probability or possibility degree
related to the occurence of such cases is ”small enough”, say) results in a ”rather small” change
of the expected value of the loss function under consideration; this expected value quantifies the
quality of the applied decision function. This demand of robustness avoids from consideration loss
functions and, consequently, decision functions with singularities of the kind that a very small change
of conditions can cause great changes in the loss suffered when applying such decision functions (a
very small mechanical tremor or an almost negligible increase of the temperature can involve an
explosion with terrible consequences). Let us investigate, in more detail, the most simple and to the
idea of robustness related properties of possibilistic decision functions over lattice-valued possibilistic
measures. The following assertion, simplifying the operations with the expected values of T -valued
functions over T -valued possibilistic spaces, may be of use in our further considerations (cf. [10]).

Lemma 28.1 Let T = 〈T,≤ 〉 be a complete lattice, let 〈Ω,A, Π〉 be a T -possibilistic space with
complete T -possibilistic measure Π, let λ be a convex t-norm on T , i.e., λ(t,

∨
s∈A s) =

∨
s∈A λ(t, s)

holds for each t ∈ T and each ∅ 6= A ⊂ T , let f : Ω→T be a mapping such that the inclusion

{{ω ∈ Ω : f(ω) = t} : t ∈ T} ⊂ A (28.1)

is valid. Then the expected value Eλf(·) satisfies the relation

Eλf(·) =
∨

t∈T

λ[t, Π({ω ∈ Ω : f(ω) = t})]. (28.2)

Proof. By definition and due to the properties of the measure Π we obtain that

Eλf(·) =
∨

t∈T

λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] =

=
∨

t∈T

λ


t,

∨

t1≥t

Π({ω ∈ Ω : f(ω) = t1})

 . (28.3)

Each possibilistic measure is monotone with respect to set inclusion, so that the relations

Π({ω ∈ Ω : f(ω) ≥ t}) ≥ Π({ω ∈ Ω : f(ω) = t}) (28.4)

and

λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] ≥ λ[t,Π({ω ∈ Ω : f(ω) = t})] (28.5)

are valid for each t ∈ T . Hence, also the inequality

Eλf(·) =
∨

t∈T

λ[t,Π({ω ∈ Ω : f(ω) = t})] (28.6)

immediately follows.
Let t, t1 ∈ T be such that t1 ≥ t holds. Then we obtain that for each such t the inequality

λ[t,Π({ω ∈ Ω : f(ω) = t1})] ≤ λ[t1, Π({ω ∈ Ω : f(ω) = t1})] ≤
≤

∨

t1∈T

λ[t1, Π({ω ∈ Ω : f(ω) = t1})] (28.7)
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is valid. Hence, also the inequality

λ


t,

∨

t1≥t

Π({ω ∈ Ω : f(ω) = t1})

 = λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] ≤

≤
∨

t1∈T

λ[t,Π({ω ∈ Ω : f(ω) = t1})] (28.8)

holds for each t ∈ T . Consequently, we obtain that

∨

t∈T

λ[t,Π({ω ∈ Ω : f(ω) ≥ t})] = Eλf(·) ≤

≤
∨

t1∈T

λ[t1,Π({ω ∈ Ω : f(ω) = t1})] (28.9)

easily follows; combining (28.6) and (28.9) we complete the proof. 2

Within the framework of statistical decision functions the expected values of loss functions are real
numbers so that the changes resulting when replacing the loss function in question by another one can
be quantified by the absolute value of the difference of the expected values of these loss functions. In
the case of lattice-valued loss functions and possibilistic measures the expected values of loss functions
are elements of the complete lattice T = 〈T,≤ 〉, so that the difference or distance between two
elements of T must be appropriately defined. Let us take an inspiration from the idea of symmetric
difference of two sets, defined in the particular case when T = 〈P(X),⊂ 〉 over a nonempty set X by

A + B = (A−B) ∪ (B −A) = (A ∩ (X −B)) ∪ (B ∩ (X −A)) (28.10)

for each A, B ⊂ X. The generalization to the case of a Boolean algebra is straighforward.
As there is no primary operation of complement in complete lattices, let us introduce the notion

of (pseudo-) complement as follows. Let λ be a t-norm on T , where T = 〈T,≤ 〉 is a complete lattice,
let t ∈ T . The λ-pseudo-complement tλ,c of t is defined by

tλ,c =
∨
{s ∈ T : λ(s, t) = 0T }. (28.11)

Evidently, tλ,c is defined for each t ∈ T , as the set {s ∈ T : λ(s, t) = 0T } contains at least the
element 0T . If λ is a convex t-norm on T , then λ(t, tλ,c) = 0T holds for each t ∈ T . Indeed, given
t ∈ T ,

λ(t, tλ,c) = λ
(
t,

∨
{s ∈ T : λ(s, t) = 0T }

)
=

=
∨
{λ(t, s) : s ∈ T, λ(s, t) = 0T } =

∨
{0T } = 0T . (28.12)

In general, for each t-norm λ on T we obtain that

0T λ,c =
∨
{s ∈ T : λ(s,0T ) = 0T } = 1T , (28.13)

as λ(s,0T ) ≤ s ∧ 0T = 0T holds for each s ∈ T . Dually

1T λ,c =
∨
{s ∈ T : λ(s,1T ) = 0T } = 0T , (28.14)

as λ(s,1T ) = s 6= 0T , if s 6= 0T .
In order to simplify our further reasoning and not to dissolve the idea of decision functions based

on lattice-valued possibilistic measures and loss functions into numerous technicalities involved when
considering a t-norm λ in general, i.e., as a free parameter of all our considerations, let us limit
ourselves to the particular case of the ”greatest” t-norm on T defined by the infimum operation ∧
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in the complete lattice T = 〈T,≤ 〉. So, the index λ will be omitted if ∧ is the t-norm in question.
Moreover, let us suppose that ∧ is a convex t-norm on T , so that

∨

s∈A

(t ∧ s) = t ∧
∨

s∈A

s
(
= t ∧

∨
A

)
(28.15)

holds for each t ∈ T and each 0T 6= A ⊂ T . In this case, the complete lattice T = 〈T,≤ 〉 is called
semi-Boolean. So, the definition of (pseudo-)complement reads that

tc =
∨
{s ∈ T : s ∧ t = 0T }, (28.16)

so that tc is defined for each t ∈ T and (28.12) yields that t ∧ tc = 0T is valid for each t ∈ T . The
complete lattice T = 〈T,≤ 〉 is called Boolean-like, if it is semi-Boolean and, moreover, t ∨ tc = 1T
holds for each t ∈ T . In general, a semi-Boolean complete lattice need not be Boolean-like. Indeed,
take T = 〈[0, 1],≤ 〉, i.e., the unit interval of real numbers with their standard linear ordering. Then
xc =

∨{y ∈ [0, 1] : y ∧ x = 0} = 0, if x > 0, and 0c = 1. Hence, x ∧ xc = 0 for every x ∈ [0, 1], but
xc ∨ x = 0 ∨ x = x < 1 for every 0 < x < 1.

So, keeping in mind the idea of symmetric difference of two sets, we introduce the binary operation
4 on T , i.e., 4 : T × T→T , in this way: for every s, t ∈ T ,

4(s, t) = (s ∧ tc) ∨ (t ∧ sc). (28.17)

As can be easily proved (cf.[34] for more detail), the mapping 4 can be taken as T -valued metric
(function) on T in the sense that the three following conditions are fulfilled: for each s, t, u ∈ T

4(t, t) = 0T (reflexivity),
4(s, t) = 4(t, s) (symmetry),
4(s, t) ≤ 4(s, u) ∨4(u, t) (28.18)

(triangular inequality in the lattice sense). Let us note that the condition according to which
T = 〈T,≤ 〉 is semi-Boolean is substantial when proving these relations.

Let T = 〈T,≤ 〉 be a semi-Boolean complete lattice, let 〈Ω,A, Π〉 be a possibility space with a
complete T -valued possibilistic measure Π on the ample field A of subsets of Ω, let f1, f2 : Ω→T be
mappings such that, for both i = 1, 2, the inclusion

{{ω ∈ Ω : fi(ω) = t} : t ∈ T} ⊂ A (28.19)

holds. Consequently, also the inclusion

{{ω ∈ Ω : fi(ω) ∈ A} : A ⊂ T} ⊂ A (28.20)

is valid for both i = 1, 2. Define the values D1(f1, f2) and D2(f1, f2) as follows:

D1(f1, f2) =
∫
4(f1(·))dΠ =

=
∨

t∈T

[t ∧Π({ω ∈ Ω : 4(f1(ω), f2(ω)) ≥ t})], (28.21)

and

D2(f1, f2) = 4
(∫

f1(·))dΠ,

∫
f2(·)dΠ

)
, (28.22)

where, for both i = 1, 2,
∫

fi(·)dΠ =
∨

t∈T

[t ∧Π({ω ∈ Ω : fi(ω) ≥ t})]. (28.23)
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Lemma 28.2 Let T = 〈T,≤ 〉 be a Boolean-like complete lattice. Then the identity

(s ∧ t)c = sc ∨ tc (28.24)

holds for each s, t ∈ T .

Proof. Let t1, t2 ∈ T be such that t1 ≤ t2 holds. Then, for every s ∈ T such that s ∧ t1 = 0T
holds, the identity s ∧ t2 = 0T is valid as well, so that the inequality tc1 ≥ tc2 for the corresponding
(pseudo-)complements immediately follows.

Given s, t ∈ T , the inequalities s ∧ t ≤ t, s ∧ t ≤ s yield that also the inequalities (s ∧ t)c ≥ tc,
(s ∧ t)c ≥ sc and, consequently, (s ∧ t)c ≥ sc ∨ tc are valid in every complete lattice T = 〈T,≤ 〉. If T
is Boolean-like, it is semi-Boolean and sc ∨ s = 1T holds for each s ∈ T . Hence,

(s ∧ t)c = (s ∧ t)c ∧ 1T = (s ∧ t)c ∧ (sc ∨ s) =
= ((s ∧ t)c ∧ sc) ∨ (s ∧ t)c ∧ s). (28.25)

As (s ∧ t)c ≥ sc holds, (s ∧ t)c ∧ sc follows. Moreover,

((s ∧ t)c ∧ s) ∧ t = (s ∧ t)c ∧ (s ∧ t) = 0T , (28.26)

as T is semi-Boolean, so that the inequality

(s ∧ t)c ∧ s ≤ tc (28.27)

follows. So, (28.25) yields that (s ∧ t)c ≤ sc ∨ tc holds and the assertion is proved. 2

Theorem 28.1 Let T = 〈T,≤ 〉 be a Boolean-like complete lattice, let Π be a complete T -valued
possibilistic measure on the power-set P(Ω) of all subsets of a nonempty set Ω, let f1, f2 be mappings
which take Ω into T , let D1(f1, f2) and D2(f1, f2) be defined by (28.21) and (28.22). Then the
inequality D2(f1, f2) ≤ D1(f1, f2) holds.

Proof. Being complete, the T -possibilistic measure Π is obviously defined by the T -possibilistic
distribution π : Ω→T such that π(ω) = Π({ω}) for every ω ∈ Ω, consequently, Π(A) =

∨
ω∈A π(ω).

Applying (28.2) to the case when ∧ is taken as the t-norm λ, we obtain that, for every f : Ω→T ,

∫
fdΠ = E ∧ f(·) =

∨

t∈T

[t ∧Π({ω ∈ Ω : f(ω) = t})] =

=
∨

t∈T

[
t ∧

∨
{π(ω) : f(ω) = t}

]
=

=
∨

t∈T

[
f(ω) ∧

∨
{π(ω) : f(ω) = t}

]
=

=
∨

ω∈Ω

(f(ω) ∧ π(ω)). (28.28)

Hence, applying appropriately (28.24), we obtain that

D2(f1, f2) = 4
(∫

f1dΠ,

∫
f2dΠ

)
=

=
((∫

f1dΠ
)
∧

(∫
f2dΠ

)c)
∨

((∫
f2dΠ

)
∧

(∫
f1dΠ

)c)
=

=

[( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)
∧

( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)c]
∨
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∨
[( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)
∧

( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)c]
≤

≤
[( ∨

ω∈Ω

(f1(ω) ∧ π(ω))) ∧ (f2(ω) ∧ π(ω)

)c]
∨

∨
[( ∨

ω∈Ω

(f2(ω) ∧ π(ω))) ∧ (f1(ω) ∧ π(ω)

)c]
=

=

[( ∨

ω∈Ω

(f1(ω) ∧ π(ω))

)
∧ ((f2(ω))c ∨ (π(ω))c)

]
∨

∨
[( ∨

ω∈Ω

(f2(ω) ∧ π(ω))

)
∧ ((f1(ω))c ∨ (π(ω))c)

]
=

=

[ ∨

ω∈Ω

(f1(ω) ∧ π(ω) ∧ (f2(ω))c)

]
∨

[ ∨

ω∈Ω

(f1(ω) ∧ π(ω) ∧ π(ω))c)

]
∨

∨
[ ∨

ω∈Ω

(f2(ω) ∧ π(ω) ∧ (f1(ω))c)

]
∨

[ ∨

ω∈Ω

(f2(ω) ∧ π(ω) ∧ π(ω))c)

]
=

=

[ ∨

ω∈Ω

(f1(ω) ∧ (f2(ω))c) ∧ π(ω)

]
∨ 0T ∨

∨
[ ∨

ω∈Ω

(f2(ω) ∧ (f2(ω))c) ∧ π(ω)

]
∨ 0T ≤

≤
∨

ω∈Ω

[((f1(ω)) ∧ (f2(ω))c) ∨ ((f2(ω) ∧ (f1(ω))c)) ∧ π(ω)] =

=
∨

ω∈Ω

[(4(f1(ω), f2(ω))) ∧ π(ω)] =

=
∫
4(f1, f2)dΠ = D1(f1, f2). (28.29)

The assertion is proved. 2

The equality D1(f1, f2) = D2(f1, f2) does not hold in general, as the following very simple example
demonstrates. Let Ω = {ω1, ω2}, let f1(ω1) = f2(ω2) = 0T , f1(ω2) = f2(ω1) = 1T , let Π(∅) =
0T , Π(A) = 1T for every ∅ 6= A ⊂ Ω, so that π(ω1) = π(ω2) = 1T . Then

∫
f1dΠ =

∨

ω∈Ω

(f1(ω) ∧ π(ω)) = (f1(ω1) ∧ π(ω1)) ∨ (f1(ω2) ∧ π(ω2)) =

= f1(ω1) ∨ f1(ω2) = 1T = f2(ω1) ∨ f2(ω2) =
∫

f2dΠ. (28.30)

Consequently,

D2(f1, f2) = 4
(∫

f1dΠ,

∫
f2dΠ

)
= 4(1T ,1T ) = 0T . (28.31)

However,

4(f1(ω), f2(ω)) = 4(0T ,1T ) = (0T ∧ 1T c) ∨ (1T ∧ 0T c) =
= 0T ∨ 1T = 1T = 4(f1(ω2), f2(ω2)), (28.32)

so that
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D1(f1, f2) =
∫
4(f1(·), f2(·))dΠ = 1T ∧ π(ω1) ∨ (1T ∧ π(ω2) = 1T >

> 0T = D2(f1, f2). (28.33)

Theorem 28.2 Let T = 〈T,≤ 〉 be a semi-Boolean complete lattice, let 〈Ω,A, Π〉 be a T -possibility
space with a complete T -possibilistic measure Π on the ample field A, let f1, f2 : Ω→T be mappings
such that the inclusion

{{ω ∈ Ω : fi(ω) = t} : t ∈ T, i = 1, 2} ⊂ A (28.34)

holds, let D1(f1, f2) be defined by (28.21). Then the relation

D1(f1, f2) =
∫

(IA(·) ∧4(f1(·), f2(·)))dΠ ≤

≤
[ ∨

ω∈A

4(f1(ω), f2(ω))

]
∧Π(A) (28.35)

is valid, where A = {ω ∈ Ω : f1(ω) 6= f2(ω)} is supposed to be in A and IA is its T -valued
characteristic function (identifier), i.e., IA(ω) = 1T , if ω ∈ A, IA(ω) = 0T otherwise.

According to the common conventions we can write
∫

A
4(f1(·), f2(·))dΠ for the left-hand side of

(28.35).
Proof. If ω ∈ Ω−A, then f1(ω) = f2(ω), so that the relation

4(f1(ω), f2(ω)) = 0T = IA(ω) ∧4(f1(ω), f2(ω)) (28.36)

follows. If ω ∈ A, then IA(ω) = 1T , so that the equality

IA(ω) ∧4(f1(ω), f2(ω)) = 4(f1(ω), f2(ω)) (28.37)

holds again. Hence, we obtain that the relation

D1(f1, f2) =
∫
4(f1(·), f2(·))dΠ =

∫
(IA(·) ∧4(f1(·), f2(·)))dΠ ≤

≤
∫

IA(·)dΠ =
∨

t∈T

[t ∧Π({ω ∈ Ω : IA(ω) ≥ t})] = Π(A) (28.38)

obviously holds. Also the inequality

D1(f1, f2) =
∨

t∈T

[t ∧Π({ω ∈ Ω : s(f1(ω), f2(ω)) ≥ t})] ≤

≤
∨

ω∈A

4(f1(ω), f2(ω)) (28.39)

immediately follows, so that the assertion is proved. 2

Let us return ourselves to the case of possibilistic decision functions as introduced and analyzed
in the foregoing chapters with respect to the expected value of the loss function taken as the main
criterion of their quality. Restricting ourselves to the case when the infimum operation on T = 〈T,≤ 〉
is taken as the t-norm on T and considering two decision functions δ1, δ2, both of them taking the
space E of empirical observations (data) into the space D of decisions, we obtain, for both i = 1, 2,
that

60



χB
σ (δi) =

∫
ρ(σ(·), δi(η(·)))dΠ =

=
∨

t∈T

[t ∧Π({ω ∈ Ω : ρ(σ(ω), δi(η(ω))) ≥ t})] (28.40)

(cf. (26.1)). The difference between the qualities of these two decision functions can be defined
using either D1 or D2 defined by (28.21) and (28.23) and applied to the functions ρ(σ(·), δ1(η(·)))
and ρ(σ(·), δ2(η(·))) instead of f1 and f2 in (28.21) and (28.23). Hence, setting

D?
i (δ1, δ2) = Di(ρ(σ(·), δ1(η(·))), ρ(σ(·), δ2(η(·)))) (28.41)

for both i = 1, 2, we obtain that

D?
1(δ1, δ2) =

∫
(4(ρ(σ(·), δ1(η(·))), ρ(σ(·), δ2(η(·))))dΠ =

=
∨

t∈T

[t ∧Π({ω ∈ Ω : 4(ρ(σ(·), δ1(η(·))), ρ(σ(·), δ2(η(·)))) ≥ t})], (28.42)

and

D?
2(δ1, δ2) = 4(

∫
ρ(σ(·), δ1(η(·)))dΠ,

∫
ρ(σ(·), δ2(η(·)))dΠ) =

= 4(χB
σ (δ1), χB

σ (δ2)), (28.43)

let us recall that 4(t1, t2) = (t1 ∧ tc2) ∨ (t2 ∧ tc1) for every t1, t2 ∈ T .
Applying Theorem 28.1 to the particular case when fi(ω) = ρ(σ(·), δi(η(ω))) for any ω ∈ Ω and

both i = 1, 2, and keeping in mind that under the conditions of Theorem 28.1 also Theorem 28.2
holds, we arrive at the following corollary.

Corollary 28.1 Let T = 〈T,≤ 〉 be a Boolean-like complete lattice, let Π be a T -valued possibilistic
measure on the power-set P(Ω) of all subsets of a nonempty set Ω, let S be the set of possible internal
states of the system under consideration, let D be the set of possible decisions, let E be the set of possible
empirical values (data), all the sets, S, D and E are supposed to be nonempty. Let σ : Ω→S, η : Ω→E
and δi : E→D be mappings with the intuition behind as above, let ρ : S × D→T be a T -valued loss
function, let D?

1(δ1, δ2) and D?
2(δ1, δ2) be defined by (28.42)and (28.43), and let

A = {ω ∈ Ω : ρ(σ(ω), δ1(η(ω))) 6= ρ(σ(ω), δ2(η(ω)))}. (28.44)

Then the relation

D?
2(δ1, δ2) ≤ D?

1(δ1, δ2) ≤

≤
[ ∨

ω∈A

4(ρ(σ(ω), δ1(η(ω))), ρ(σ(ω), δ2(η(ω))))

]
∧Π(A) (28.45)

holds. Obviously, the right-hand side inequality in (28.45) is valid also under weaker conditions of
Theorem 28.2.

Informally told, when considering decision problems under uncertainty and when quantifying and
processing this uncertainty using lattice-valued possibilistic measures, the resulting possibilistic deci-
sion functions are robust in a sense close to that in the case of statistical decision functions. Namely,
if the losses suffered when applying different decision functions differ only rarely, i.e., if the possibility
degree of such cases is small enough, or when the differences between the suffered losses are small,
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then the qualities of the possibilistic decision functions in question also do not differ too much from
each other. To be more precise, for statistical decision functions such robustness follows only when
the loss function is uniformly bound from above, e.g., if it takes values in a finite interval [0, a] (in
particular, [0, 1]) of real numbers. Indeed, for loss functions taking values in [0,∞] a rarely occurring
but very large difference in the losses suffered can make the global quantities of the statistical decision
functions under consideration rather significantly differing.

As a matter of fact, in the case of possibilistic decision functions the robustness with respect to
differences of suffered losses in rarely occurring cases is still more strong than claimed by Corollary
7.1. Namely, if the losses suffered when applying various decision function are perhaps different but
in all cases rather large (in the sense of the partial ordering in the complete lattice T = 〈T,≤ 〉 under
consideration), then the global quality of the resulting possibilistic decision functions will be the same
no matter which among the alternative decision functions (i.e., mappings δ taking E into D) is chosen.
Let us demonstrate this fact by a simple example.

Let the notations and conditions of Corollary 28.1 hold, let δ1 and δ2 be such hat the losses
ρ(σ(ω), δi(η(ω))), i = 1, 2 differ from each other only when s1 ∈ S is the actual state of the system
under investigation. In symbols, the inclusion

A = {ω ∈ Ω : ρ(σ(ω), δ1(η(ω))) 6= ρ(σ(ω), δ2(η(ω)))} ⊂
⊂ {ω ∈ Ω : σ(ω) = s1} (28.46)

is valid. Consider the case when the ineqaulity

Π(A) ≤ ρ(σ(ω), δ1(η(ω))) ∧ ρ(σ(ω), δ2(η(ω))) (28.47)

holds for each ω ∈ A. Then χB
σ (δ1) = χB

σ (δ2).
Indeed, for both i = 1, 2 we obtain that

χB
σ (δi) =

∨

ω∈Ω

[ρ(σ(ω), δi(η(ω))) ∧ π(ω)] =

=
∨

ω∈Ω−A

[ρ(σ(ω), δi(η(ω))) ∧ π(ω)] ∨

∨
∨

ω∈A

[ρ(σ(ω), δi(η(ω))) ∧ π(ω)]. (28.48)

For each ω ∈ A the relation

π(ω) = Π({ω}) ≤ Π(A) ≤ ρ(σ(ω), δi(η(ω))) (28.49)

holds for both i = 1, 2, so that

ρ(σ(ω), δi(η(ω))) ∧ π(ω) = π(ω) (28.50)

holds for both i = 1, 2 and each ω ∈ A. Then (28.48) yields that, for i = 1, 2,

χB
σ (δi) =

[ ∨

ω∈Ω−A

(ρ(σ(ω), δi(η(ω))) ∧ π(ω))

]
∨Π(A). (28.51)

As the values ρ(σ(ω), δi(η(ω))) are the same for both i = 1, 2, if ω ∈ Ω − A, the identity
χB

σ (δ1) = χB
σ (δ2) follows.

Having sketched, very briefly, the classical model of decision making under uncertainty with un-
certainty quantified and processed by the tools of the axiomatic (Kolmogorov) probability theory
leading to the notion and theory of statistical decision functions, we have submitted an attempt to
rewrite this model for the case when the underlying uncertainty is quantified and processed using a
lattice-valued possibilistic measure. The reasons for this approach read that, as a matter of fact, both
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the non-numerical nature of the lattice-valued degrees of uncertainty as well as the specific features
in which the axioms imposed on possibilistic measures differ from the probabilistic (and, in its nature
and origins, measure-theoretic) ones, emphasize rather the qualitative than the quantitative aspects
of the degrees of uncertainty under consideration. E.g., applying lattice-valued possibilistic measures
we are not forced to make any two degrees of uncertainty mutually comparable as far as their sizes
are concerned, what may be of use in numerous cases when there are not sufficient (or even any)
reasons at our disposal to make these uncertainty degrees comparable. Moreover, complete lattice is
perhaps the most specific mathematical structure still covering the two most often used structures for
quantification and processing of sizes: the unit interval [0, 1] of real numbers with their standard linear
ordering ≤, and the complete Boolean algebra with the corresponding partial ordering induced by the
supremum and infimum operations, as a matter of fact, this structure can be identified with that of
all subsets of a fixed nonempty set partially ordered by the relation of set inclusion. Let us recall
that it was just the qualitatively different ways in which the operations of complement (abstraction
1− . in [0, 1], set complement X −A in P(X)) are defined in both these structures what has brought
us to the idea of pseudo-complement definable as a secondary notion within the framework of each
complete lattice.

Still going on with the inspiration borrowed from the theory of statistical decision functions, we
have introduced the possibilistic modifications of the two classical criteria used in order to define and
measure the qualities of procedures for decision making under uncertainty, hence, in our case, the
qualities of possibilistic decision functions. Using the minimax (the worst-case) principle we have
proved that as least in the simple case when we have to identify the actual internal state of the
system under consideration, the maximum likelihood (in the possibilistic sense) principle optimizes
the resulting possibilistic decision function in the sense that the loss suffered in the worst (the least
favorable) case is minimized. For the possibilistic variant of the Bayes principle we have proved
that the expected (in the sense of Sugeno pssibilistic integral) loss suffered is robust with respect to
the apriori possibilistic distribution and to the loss function applied. Informally told, if two decision
functions are such that the differences in the resulting losses are ”small” and/or occuring only ”rarely”,
then also the global quality values of the two possibilistic decision function do not differ ”too much”.

Among the possible directions for further investigation let us mention explicitly just the following
ones.

(1) To apply the general model from above to a particular decision problem under uncertainty
so that the specific features of the domain under consideration would allow to choose an appropriate
particular loss function and/or apriori possibilistic distribution or measure.

(2) To consider richer and more powerful structures for the possibility degrees, in particular, to
choose either the unit interval of reals (i.e., the usual real-valued possibilistic measure), or Boolean
(in particular, set-valued) possibilistic measures, giving up the idea that our results should be general
enough to cover both these cases.

(3) The opposite, in a sense, way of reasoning could be to investigate, which of the constructions
realized, and results obtained, above would be realizable, and remained to be valid, also in structures
weaker than complete lattices (in lattices, lower or upper semilattices, partially ordered sets, . . . ).

(4) Among the more specific, but important and interesting problems closely related to possibilistic
decision functions let us mention this one: which would be the possibilistic modification (if it is possible
at all) of the well-known Laplace principle? Let us recall that this principle, if applied to the case of
statistical decision functions, suggests to take the uniform probability distribution on a finite set as the
”default” probability distribution if no arguments in favor of another apriori probability distribution
are known. Obviously, the possibilistic distribution ascribing the unit (i.e., maximum) value to every
element of the universe of discourse does not solve the problem, as no non-trivial results can be
achieved in this case.

For the reader’s convenience, the list of references from Part I is completely copied under Nos.
[1]–[46]. Thematically relevant author’s paper having appeared during the last year (2006) are listed
below as Nos. [47]–[51].
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