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Dostupný z http://www.nusl.cz/ntk/nusl-36134
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Note: This is version 1.0 of the Primer, made in December 2006. A newer version may be download-
able from www.cs.cas.cz/hp.

1 The apparatus of Fuzzy Class Theory

Fuzzy Class Theory (FCT for short), introduced in [3], axiomatizes the notion of fuzzy set. Here we
give an informal exposition of the apparatus and an explanation as to how the results in FCT can be
interpreted from the point of view of traditional fuzzy mathematics.1 Before we proceed towards this
goal we need to recall what are the models of FCT.

1.1 Models of FCT

As said above, Fuzzy Class Theory is an axiomatic theory aimed to capture the notion of fuzzy set.
Therefore its models will be systems of traditional fuzzy sets.2 Let us be more specific: given some
crisp universe U , fuzzy sets of the first order are all functions from U to real unit interval [0,1]. Taking
the set of all fuzzy sets as a new universe we obtain fuzzy sets of the second order (fuzzy sets of fuzzy
sets); iterating this process we obtain fuzzy sets of any order. The collections of fuzzy sets of all
orders over a given universe U are the intended models of FCT; we call them Zadeh models, as they
correspond exactly to Zadeh’s [30] original notion of fuzzy set.

Notice two special features of Zadeh models: (i) they take the unit interval [0, 1] as the set of truth
values, and (ii) they contain all possible fuzzy sets and relations. General models of FCT can relax
both of these features: (i) the set of truth values can be any MTL4-chain (consult [12] or Appendix 4
for the definition of MTL4-chain), and (ii) they need not contain all fuzzy sets (but only those which
are definable in FCT, more details later). The models over [0,1] are called standard and those which
contain all fuzzy sets (of all orders) are called full. Thus, Zadeh models are full standard models.

FCT is sound w.r.t. all of its models, including Zadeh ones.3 Thus whatever we prove in FCT is
true about L-valued fuzzy sets, for any MTL4-chain L; in particular, it is true about the usual [0, 1]-
valued fuzzy sets. Since in general models of FCT some (undefinable) fuzzy subsets of the universe
may be missing, we call the objects of FCT fuzzy classes rather than fuzzy sets.4 Nevertheless, in
virtue of the soundness of FCT w.r.t. Zadeh models, the theorems of FCT are always valid for fuzzy
sets. Thus whenever we speak of classes, the reader can always safely substitute usual fuzzy sets for
our “classes”.

1.2 Variables and atomic expressions

The language of FCT contains:

• Variables for atomic objects from some crisp universe of discourse U (denoted by lowercase
letters x, y, . . . )

• Variables for fuzzy classes of atomic objects (denoted by uppercase letters A,B, . . . )

• Variables for fuzzy classes of fuzzy classes of objects, which are also called fuzzy classes of the
second order (denoted by calligraphic letters A,B, . . . )

• Variables for fuzzy classes of the third order, etc.

If necessary, the order can be explicitly superscribed to the variable: e.g., X(4) is a variable of the 4th
order, i.e., for a fuzzy class of fuzzy classes of fuzzy classes of objects.

1We adapt some parts of [4], [1], and [6] here.
2We regard n-ary fuzzy relations as a special kind of fuzzy sets, namely fuzzy sets of n-tuples of individuals.
3It is not a complete theory of Zadeh models, as it is not axiomatizable due to Gödel’s Incompleteness Theorem

(natural numbers are definable in Zadeh models over MTL4). Nevertheless, it seems sufficiently strong for all practical
purposes.

4By this we also follow the terminological tradition of set theory, in which collections of objects of some fixed universe
are called classes, while the word “set” has a more specific meaning (of a member of the cumulative hierarchy of sets).
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An important feature by which FCT differs from traditional fuzzy mathematics is screening off
direct references to truth values; this ensures that FCT renders fuzzy sets (classes) as a primitive
notion, rather than modelling them by membership functions. Thus there are no variables for truth
degrees in the language of FCT. The degree to which x belongs to A is expressed simply by the atomic
formula x ∈ A (which can alternatively be written in a more traditional way as Ax). The theory is
typed, so only such atomic formulae are well-formed which express the membership of an object of a
lesser order to an object of a higher order.5

The crisp identity of individuals is expressed by the predicate =. For atomic objects, x = y holds
in a model iff x, y are the same object in the universe U of the model. For fuzzy classes of arbitrary
orders, A = B iff the membership functions of A and B are identical.6 The identity of membership
degrees Ax and By is also expressible by a formula of FCT, namely the formula 4(Ax ↔ By).7

Identical individuals, classes, or membership degrees are freely intersubstitutable in formulae.8 Many
non-crisp equality notions are definable in FCT as well, as shown later in this Primer, but these do
not ensure free intersubstitutivity in formulae.

In order to express statements about fuzzy relations, FCT contains the usual apparatus for tuples
of atomic individuals or fuzzy classes (of any order). The n-tuple of elements x1, . . . , xk is denoted by
〈x1, . . . , xk〉, or shortly x1 . . . xk. As usual, the identity of tuples is component-wise (see Section 1.8).

1.3 Logical connectives

Membership degrees, expressed by atomic formulae, can be combined by means of logical connectives.
The logical connectives can come from any suitable fuzzy logic. Originally [3], FCT was formulated
over the fuzzy logic ÃLΠ, which contains as definable connectives all usual arithmetical operations as
well as a wide class of t-norms. In this Primer we use the logic MTL4, which is (roughly speaking) the
weakest fuzzy logic with good deductive properties for Fuzzy Class Theory. If the expressive means of
MTL4 are not sufficient for a particular purpose, a stronger logic (e.g., MTL∼ [16] or ÃLΠ [14]) can be
used instead of MTL4. Since MTL4 is weaker than these logics, all results obtained in MTL4 can be
reinterpreted in the stronger fuzzy logic and used without changes in the stronger apparatus. (Recall
that the results in MTL4 are valid in the standard models based on any left-continuous t-norm.
Consult Appendix 4 for more details on MTL4.)

Thus in the present Primer we shall assume that the formulae of FCT take truth values in an
arbitrary MTL4-chain L = (L, ∗,⇒,∧,∨, 0, 1,4), and logical connectives appearing in the formulae
are interpreted by operations of the MTL4-chain L:

strong conjunction & by the monoidal operation ∗ of L
implication → by its residuum ⇒
weak connectives ∧ and ∨ by the lattice operations of minimum resp. maximum, etc.

In particular, the connectives can be interpreted as operations on [0, 1] based on a left-continuous
t-norm T , where

strong conjunction & is interpreted as T

implication → as its residuum
−→
T

weak conjunction ∧ and disjunction ∨ as the minimum and the maximum, respectively
the Baaz 4 connective as the {0, 1}-projector 4x = 1− sgn(1− x)

Furthermore, ¬ϕ and ϕ ↔ ψ are defined as ϕ → 0 and (ϕ → ψ) ∧ (ψ → ϕ), respectively.

Example 1.3.1 The minimum of the membership degrees expressed by the formulae Ax and Bx is
expressed as usual, by the formula Ax ∧ Bx.

5I.e., X(n) ∈ A(m) is a well-formed formula iff n < m.
6The latter is ensured by the axiom of extensionality, see Section 1.8.
7See Section 1.3 for the meaning of propositional connectives in complex formulae.
8This is ensured by the rules of the logic MTL4, see Definition 4.2.4 in Appendix 4.
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Example 1.3.2 The truth degree

Ax ∗Ax ∗Bx ⇒ Ax ∗Bx

in an MTL4-chain L, as well as the truth degree

−→
T (T (Ax, T (Ax,Bx)), T (Ax, Bx))

on [0, 1], are both expressed by the formula

Ax & Ax & Bx → Ax & Bx

(the associativity of & in MTL4 and the precedence rules of Convention 4.1.1 are used to avoid
unnecessary brackets).

Example 1.3.3 The comparison of the truth values of formulae ϕ,ψ is expressible in MTL4 by the
formula 4(ϕ → ψ), since in MTL4-chain, the formula ϕ → ψ has the truth value 1 iff the truth value
of ϕ is less than or equal to the truth value of ψ.

Thus we can define logical connectives that compare truth degrees:

ϕ ≤ ψ ≡df 4(ϕ → ψ)
ϕ = ψ ≡df 4(ϕ ↔ ψ)

and their combinations like ϕ < ψ ≡df (ϕ ≤ ψ) & ¬(ϕ = ψ). The truth constants 0 and 1 are defined
in MTL4, thus we can write the formulae like Ax = 1 or Bx > 0 with the obvious meaning.

1.4 Logical quantifiers

Infima and suprema of truth degrees are symbolized by the logical symbols ∀ and ∃, respectively. Thus,
for example, instead of infx Ax we write (∀x)Ax, and instead of supy(Ay∗By) we write (∃y)(Ay&By)
or, by Convention 1.6.1, (∃y ∈ A)(y ∈ B). It should be noticed that unless ϕ is crisp, the expressions
of the form (∀x)ϕ should not be read “for all x it holds that ϕ”, since the meaning of the formula is
a (possibly intermediate) truth degree, rather than a statement which either holds or not. Similarly,
(∃x)ϕ must be understood as the supremum of degrees to which there is an x such that ϕ (unless ϕ
is crisp, i.e., unless 4(ϕ ∨ ¬ϕ) is proved or assumed).

1.5 Comprehension terms

In virtue of the comprehension axioms of FCT (see Section 1.8), fuzzy classes (of any order n+1) can
be denoted by the comprehension terms {x | ϕ(x)}, where ϕ is any formula of FCT and x is a variable
of order n. The notation A = {x | ϕ(x)} means that Ax = ϕ(x) for all x. The usual abbreviations
can be used, e.g.:

{x ∈ B | ϕ(x)} abbreviates {x | x ∈ B & ϕ(x)}
{X ⊆ Y | ϕ(X)} ” {X | X ⊆ Y & ϕ(X)}
{xy | ϕ(x, y)} ” {z | (∃x, y)(z = 〈x, y〉 & ϕ(x, y))}, etc.

In a more traditional fuzzy notation, the fuzzy class A = {x ∈ B | ϕ(x)} would be denoted by
A =

∑
xi∈B ϕ(xi)/xi if A is finite, or A =

∫
B

ϕ(x)/x if A is infinite.
Again, unless the formula ϕ expresses a crisp condition, the term {x | ϕ(x)} should not be read

“the set of all those x for which ϕ holds”, but rather “the (fuzzy) class to which any object x belongs
to the same degree to which ϕ is true about the object x”.
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1.6 Abbreviations

Various abbreviations which are common in formal fuzzy logic, classical mathematics, or traditional
fuzzy set theory can be used in formulae of FCT. This makes many of them look quite similar to the
usual statements about fuzzy sets. Some of such abbreviations are listed in Convention 1.6.1:

Convention 1.6.1 Besides the abbreviations introduced earlier, we shall use the following ones:

• The formulae (∀x)(x ∈ A → ϕ) and (∃x)(x ∈ A & ϕ) are abbreviated by (∀x ∈ A)ϕ and
(∃x ∈ A)ϕ, respectively. Similar notation can be used for relativization by other binary predi-
cates as well, e.g., (∀X ⊆ A)ϕ.

• The formulae ϕ & . . . & ϕ (n times) are abbreviated ϕn; instead of (x ∈ A)n we can write
x ∈n A (and similarly for other predicates).

• x /∈ A is shorthand for ¬(x ∈ A), and similarly for other binary predicates.

• A chain of implications ϕ1 → ϕ2, ϕ2 → ϕ3, . . . , ϕn−1 → ϕn can be written as ϕ1 −→ ϕ2 −→
· · · −→ ϕn, and similarly for the equivalence connective.

1.7 Defined notions

It could be seen in the previous subsections that the primitive notions of FCT can express only the
most basic concepts of fuzzy set theory. Further notions can be introduced by means of defined
constants, predicates, and functors.9

Important class constants are the empty class ∅ and the universal class V, defined as follows:

Definition 1.7.1 In FCT, we define the following class constants:

∅ =df {x | 0} empty class
V =df {x | 1} universal class

Thus x ∈ ∅ has the truth degree 0 and Vx = 1, for any x (both classes are crisp).
Usual fuzzy class operations like unions and intersections can be defined in FCT by means of

simple comprehension terms, like in classical mathematics. For instance, we define the intersection of
two fuzzy sets as A ∩ B =df {x | x ∈ A & x ∈ B}. It can be seen that in a model, C = A ∩ B iff
Cx = Ax ∗Bx for all x as usual. For a list of defined class operations see Definition 1.7.2.

Definition 1.7.2 In FCT, we define the following elementary fuzzy class operations:

Ker(A) =df {x | 4(x ∈ A)} kernel
Supp(A) =df {x | ¬4¬(x ∈ A)} support

Aα =df {x | 4(α → x ∈ A)} α-cut
A=α =df {x | 4(α ↔ x ∈ A)} α-level
\A =df {x | ¬(x ∈ A)} complement

A ∩B =df {x | x ∈ A & x ∈ B} intersection
A uB =df {x | x ∈ A ∧ x ∈ B} min-intersection
A tB =df {x | x ∈ A ∨ x ∈ B} max-union
A \B =df {x | x ∈ A & x /∈ B} difference

In stronger logics where strong disjunction is available, we also define strong union as A ∪B =df {x |
x ∈ A ∨ x ∈ B}. Notice that unless we work in a logic with truth constants (like ÃLΠ1

2 ), the α in
the definitions of α-cuts and α-levels is a truth degree expressed by a formula (e.g., A(Bx&Cy)) rather
then a number (the 0.4-cut A0.4 is only meaningful in a given model, not in the syntax of FCT).

9For the theoretical foundation for introducing defined notions in formal theories over fuzzy logic see [21].
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Many usual properties of fuzzy classes are expressible by suitable formulae of FCT. For example,
the normality of A is expressed by the formula (∃x)4(x ∈ A). We can define that A is crisp iff
(∀x)(4Ax∨¬4Ax), and fuzzy iff it is not crisp. It can be noticed that these properties are themselves
crisp: any set either is, or is not normal (crisp, fuzzy). Besides crisp properties of fuzzy sets, traditional
fuzzy set theory also defines some functions that assign a truth degree to a fuzzy set. For example
the height of a fuzzy set is the supremum of membership degrees it hits. In FCT, these notions are
expressed by fuzzy properties of fuzzy classes: the height of a fuzzy class A is defined by the formula
(∃x)(x ∈ A). Again this is not to be read as “there is an x in A”, but interpreted as the supremum
of the truth degrees of Ax. We list some definable properties of fuzzy classes (both crisp and fuzzy
ones) in the following definition:

Definition 1.7.3 In FCT we define the following elementary properties of fuzzy sets:

Hgt(A) ≡df (∃x)(x ∈ A) height
Norm(A) ≡df (∃x)4(x ∈ A) normality
Crisp(A) ≡df (∀x)4(x ∈ A ∨ x /∈ A) crispness
Fuzzy(A) ≡df ¬Crisp(A) fuzziness
ExtE(A) ≡df (∀x, y)(Exy & x ∈ A → y ∈ A) E-extensionality

The usual relations between fuzzy classes (e.g., inclusion, disjointness, etc.) can be defined by
formulae of FCT as well:

Definition 1.7.4 We define in FCT the following elementary relations between fuzzy sets:

A ⊆ B ≡df (∀x)(x ∈ A → x ∈ B) inclusion
A u B ≡df (A ⊆ B) & (B ⊆ A) (strong) bi-inclusion
A ≈ B ≡df (∀x)(x ∈ A ↔ x ∈ B) weak bi-inclusion
A ‖ B ≡df (∃x)(x ∈ A & x ∈ B) compatibility

Usual relational notions are definable in FCT, too:

Definition 1.7.5 In FCT, we define the following relational operations:

A×B =df {〈x, y〉 | x ∈ A & y ∈ B} Cartesian product
Dom(R) =df {x | Rxy} domain
Rng(R) =df {y | Rxy} range
R → A =df {y | (∃x ∈ A)Rxy} image
R ← B =df {x | (∃y ∈ B)Rxy} pre-image
R ◦ S =df {〈x, y〉 | (∃z)(Rxz & Szy)} composition
R−1 =df {〈x, y〉 | Ryx} converse relation

Id =df {〈x, y〉 | x = y} identity relation

Definition 1.7.6 In FCT, we define the basic properties of relations as follows:

Refl(R) ≡df (∀x)Rxx reflexivity
Irrefl(R) ≡df (∀x)(¬Rxx) irreflexivity
Sym(R) ≡df (∀x, y)(Rxy → Ryx) symmetry

Trans(R) ≡df (∀x, y, z)(Rxy & Ryz → Rxz) transitivity
AntiSymE(R) ≡df (∀x, y)(Rxy & Ryx → Exy) E-antisymmetry

ASym(R) ≡df (∀x, y)¬(Rxy & Ryx) asymmetry

Besides the min-intersection and max-union of a pair of fuzzy classes, the inf-intersection and
sup-union of a fuzzy class of fuzzy classes is definable in FCT:

Definition 1.7.7 The union and intersection of a class of classes are defined in FCT as follows:
⋃
A =df {x | (∃A ∈ A)(x ∈ A)}

⋂
A =df {x | (∀A ∈ A)(x ∈ A)}

(Observe that the functions
⋃

,
⋂

assign a fuzzy class to a fuzzy class of fuzzy classes.)
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In virtue of comprehension axioms (see Section 1.8), all defined notions of FCT are themselves
certain fuzzy classes (and thus objects of the theory). E.g., the fuzzy property Hgt defines the fuzzy
class Hgt =df {A | Hgt(A)} of fuzzy classes, to which a fuzzy class A belongs to the degree of its
height.

1.8 Axioms of FCT

The axiomatic system of FCT is very simple: it contains the axioms of comprehension for all formulae
of any order, which express the fact that any fuzzy property defines a fuzzy class; and the axioms of
extensionality for fuzzy classes of all orders, which express the fact that fuzzy classes are determined
by their membership functions.10 We state the definition of the axioms formally:

Definition 1.8.1 Besides the logical axioms of multi-sorted first-order logic MTL4 with identity (for
which see Appendix 4), FCT contains the following axioms:

• The comprehension axioms: y ∈ {x | ϕ(x)} ↔ ϕ(y), for any formula ϕ and any variables x, y of
the same order. (Here the formula ϕ(x) can contain further variables of any orders besides x.)

• The extensionality axioms: (∀x)4(x ∈ A ↔ x ∈ B) → A = B, for variables A,B of each order.

For handling tuples of individuals, the usual axioms for the identity of tuples (component-wise) are
needed (for all orders):

• The tuple identity axioms: 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → x1 = y1 & . . . & xk = yk, for all k ≥ 0
and all orders of the variables.

Remark 1.8.2 The account of the axioms here is somewhat simplified for didactic purposes. When
defining the apparatus for tuples, one actually needs to distinguish sorts of variables for each arity of
tuples. However, these subtleties are only necessary in the formal introduction of the apparatus, as
in the actual use these sorts are always uniquely determined by the context. Thus the reader can rely
on the account provided here; full details can be found in [3].

Remark 1.8.3 The axioms listed in Definition 1.8.1 do not form a complete axiomatization of the
notion of fuzzy set in full models (cf. footnote 3). Nevertheless, it seems sufficient for most practical
purposes. Even though further axioms can be added to those of Definition 1.8.1, e.g., the axiom of
infinity or various versions of the axiom of choice, no need for the additional axioms has arisen in the
development of fuzzy mathematics within FCT so far.

Recall that the deduction of the theorems of FCT from the axioms must follow the rules of the
logic MTL4 (rather than classical Boolean logic), since we are dealing with fuzzy connectives and
quantifiers. Some methods for actual proofs are provided in Section 3.

The following observation justifies why we defined the notions in Section 1.7 only for the first-order
classes:

Observation 1.8.4 Since the language of FCT is the same at each order, defined symbols of any
order can be shifted to all higher orders as well. Since furthermore the axioms of FCT are the same
at each order, all theorems on FCT-definable notions are preserved by uniform upward order-shifts.

2 Features of FCT

2.1 Graded notions

A crucial feature of FCT is that not only the membership predicate ∈, but generally all defined
predicates are graded (unless they are defined as provably crisp).

10These axioms are analogous to the axioms for crisp classes in classical mathematics. From the point of view of
formal logic, FCT can also be characterized as (Henkin-style) higher-order fuzzy logic or simple type theory over fuzzy
logic (cf. [28]).
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Example 2.1.1 Define the inclusion of fuzzy classes by the same formula as in classical mathematics,
i.e.,

A ⊆ B ≡df (∀x)(x ∈ A → x ∈ B).

Then A ⊆ B is true to degree 1 in models iff the membership function of A is majorized by that of B
(which is the non-graded notion of subsethood). The graded formula A ⊆ B, however, gets a large
degree of truth also whenever A does not exceed B too much (where the exact meaning of “too much”
depends on the MTL4-chain used, or in standard models on the t-norm used). The graded notion of
subsethood thus conveys more information than non-graded crisp subsethood, which can be defined
as 4(A ⊆ B).

Example 2.1.2 Traditionally, the reflexivity of a fuzzy relation R is defined by the condition that
Rxx has the truth value 1 for all x. In FCT, the reflexivity of R can be defined by the formula
(∀x)Rxx. If the condition of the traditional definition is not satisfied, then the reflexivity of R simply
does not hold (its truth value is 0). The defining formula in FCT, however, can even in such a case
yield a meaningful non-zero truth value. For instance, if the truth value of Rxx is 0.999 for all x
in a standard model, then the truth value of (∀x)Rxx is 0.999. It is clear that such a relation is
“almost reflexive” (each pair 〈x, x〉 is almost fully in the relation R), even though it does not satisfy
the traditional definition. Since furthermore the formula (∀x)Rxx has the same form as the formula
which defines reflexivity in classical mathematics, it is quite natural to take its truth value for the
degree of graded reflexivity of R, and say that R is 0.999-reflexive. The graded reflexivity is 1-true in
a model iff the traditional condition of reflexivity holds; thus if we denote the graded reflexivity of R
by Refl(R), then the corresponding non-graded notion is expressed in FCT by 4Refl(R).

Some graded notions have already been studied in fuzzy mathematics. Graded properties of
fuzzy relations have been introduced in Gottwald’s paper [17] and systematically investigated in his
monograph [18]; more recently they have been elaborated in Gottwald’s [19, §18.6] and Bělohlávek’s
[7, §4.1]. Many graded notions are also investigated in fuzzy topology, see e.g. [24, 29] and others.

Graded notions are important for several reasons:

• Graded properties generalize the traditional (non-graded) ones. A traditional non-graded prop-
erty holds in a model iff the truth value of the corresponding graded property is exactly 1. In all
other cases, graded properties provide a fine-grained scale of the degrees of their validity, while
non-graded properties are then simply false.

• The graded approach allows to infer relevant information when the traditional conditions are
almost, but still not completely, fulfilled. E.g., in Example 2.1.2, R is 0.999-reflexive: if we prove
in FCT that the graded reflexivity of R implies some property ϕ, we shall know that ϕ holds at
least to the degree 0.999 (as follows from the semantics of provable implication in MTL4). On
the contrary, from the non-graded reflexivity of R we cannot infer anything as it is simply false.

• Graded properties can easily be handled in FCT: valid inferences about them can be proved by
the formal rules of first-order MTL4 (see Section 3). The semantics of MTL4 then translates
the formal theorems into the laws valid for real-valued fuzzy relations.

• Graded properties are “fuzzier” than their non-graded counterparts: if we take seriously the idea
of general fuzziness of concepts, there is no reason to presuppose that properties of fuzzy relations
should only be crisp (i.e., either true or false as in the non-graded traditional definitions).

The gradedness of all notions in FCT allows proving more general theorems which are not available
for non-graded notions in traditional fuzzy mathematics. A typical non-graded theorem of traditional
fuzzy mathematics has the following form:

If a (non-graded) assumption is true (i.e., fully true, since non-graded),
then a (non-graded) conclusion is (fully) true.

With graded notions we can formulate (and prove in FCT) a much stronger theorem of the following
form:

7



The more a (graded) assumption is true (even if partially),
the more a (graded) conclusion is true (i.e., at least as true as the assumption).

The latter can be expressed in FCT by means of implication ϕ → ψ, where ϕ is the formula which
expresses the assumption and ψ is the formula which expresses the conclusion. By the semantics of
implication, if ϕ → ψ is provable in FCT, than the truth value of ψ is at least as large as the truth
value of ϕ in any model of FCT. Provable implications thus express exactly the graded theorems
of the above form. Since the full truth of ϕ is expressed by 4ϕ, the former non-graded theorem of
traditional fuzzy mathematics is expressed in FCT by the formula 4ϕ → 4ψ. The graded theorem
ϕ → ψ is generally stronger than the non-graded theorem 4ϕ →4ψ, since the latter is an immediate
consequence of the former in MTL4 (by the rule of 4-necessitation and the axiom 45 of MTL4, see
Appendix 4), but not vice versa.

By the latter considerations, proving graded theorems amounts to proving formulae in the form of
implication in FCT. Some methods for making such proofs are described in Section 3.

Example 2.1.3 Recall from Definition 1.7.2 that Id = {〈x, y〉 | x = y}. Then:

• Traditional fuzzy mathematics proves that if a fuzzy relation R is reflexive (in the traditional
sense), then Id is a fuzzy subset of R; i.e., if Rxx = 1 for each x, then Id xy ≤ Rxy for each x, y.

• In FCT we can easily prove that the more a fuzzy relation R is reflexive (in the graded sense),
the more Id is a fuzzy subclass of R; in symbols, FCT proves Refl(R) → Id ⊆ R. Thus for any
left-continuous t-norm T we get inf

x
Rxx ≤ inf

x,y

−→
T (Idxy, Rxy).

Notice that the second result is indeed more general than the first one, as the first one follows
from the second one (but obviously not vice-versa): assume that Rxx = 1, then infx Rxx = 1 and so−→
T (Idxy,Rxy) = 1 for each x, y, which entails that Id xy ≤ Rxy. However, for R from Example 2.1.2,
the traditional theorem asserts nothing (as R is not reflexive in the traditional sense), while the graded
theorem of FCT ensures that Id is a fuzzy subclass of R at least to degree 0.999. (Much more complex
examples of this kind can be found in the paper [2]).

2.2 Embedding of crisp structures

Since FCT contains the classical theory of classes (for classes which are crisp), we can introduce
all concepts which are definable in classical class theory (i.e., in classical simple type theory, or
Boolean higher-order logic—cf. footnote 10). The only thing we need to do is adding new predicate
and functional symbols of the appropriate sorts add axioms saying that all predicates and functions
appearing in the theory are crisp. The following definition is the formalization of this approach for the
first-order theories (see Example 2.2.5 for an example of a higher order). For further generalizations
of this approach see [10].

Definition 2.2.1 Let Γ be a classical one-sorted predicate language and T a Γ-theory. We define the
language FCT(Γ) as the language of FCT restricted to symbols of order less than 2 and extended by
Γ. We define the theory FCT(T ) in the language FCT(Γ) as the theory with the following axioms:

• The axioms of FCT

• The axioms of T

• Crisp(Q̄) for each predicate symbol Q ∈ Γ

Lemma 2.2.2 Let Γ be a classical predicate language, T a Γ-theory, L an MTL4-algebra. If M
is an L-model of FCT(T ), then the classical model Mc in the language Γ with the domain M and
SMc = SM for each S ∈ Γ, is a model (in the sense of classical logic) of the theory T . Vice versa, for
each model M of T there is an L-model N of FCT(T ) such that Nc is isomorphic to M.

Therefore, T ` ϕ iff FCT(T ) ` ϕ, for any Γ-formula ϕ.
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Example 2.2.3 Let R be a binary first-order predicate symbol. Then in each L-model of the theory
Crisp(R), Refl(R), Trans(R), AntiSym(R), the symbol R is represented by a crisp ordering on the
universe of objects.

Example 2.2.4 If T is a classical theory of the real closed field, then in each L-model M of the
theory FCT(T ), the universe of objects with ≤M, +M,−M, ·M, 0M, 1M is a real closed field.

Example 2.2.5 Let τ be a constant11for a class of classes and T the theory with the axioms:

• Crisp(τ)

• X ∈ τ → Crisp(X)

• Crisp(X ) & X ⊆ τ → ⋃X ∈ τ

• X1 ∈ τ & X2 ∈ τ → X1 ∩X2 ∈ τ

Then in each L-model of the theory T , the constant τ is represented by a classical topology on the
universe of objects.

2.3 Natural fuzzification

It can be observed that the defining formulae of most notions in FCT are exactly the same as the
definitions of analogous properties of crisp relations in classical mathematics. This correlates with
the motivation of fuzzy logic as a generalization of classical logic to non-crisp predicates: classical
mathematical notions are fuzzified in a natural way just by reinterpreting the classical definitions in
fuzzy logic. This methodology has been foreshadowed in [22, §5] by Höhle, much later formalized in
[3, §7], and suggested as an important guideline for formal fuzzy mathematics in [5].

If we examine the definition in the above section, we see the crucial rôle of the predicate Crisp. If
we remove this predicate from the above definitions we get the “natural” fuzzification of the concepts
described by the theory. In order to illustrate the methodology of fuzzification, let us concentrate
on the concept of ordering. If we remove the predicate Crisp from the definition, then we get the
concept of fuzzy ordering, as it was introduced by Zadeh. However, some carefulness is due here not
to overlook some “hidden” crispness. There is crisp identity used in the antisymmetry axiom, and
also in the reflexivity axiom which can be written as (∀x, y)(x = y → Rxy). This concept of fuzzy
ordering was studied mainly by Bodenhoffer, see e.g., [8]. For more details about removing hidden
crispness see [1].

2.4 Split notions

Even though an important guideline, the method of natural fuzzification described in Section 2.3
cannot be applied mechanically, as some classically equivalent definitions may no longer be equivalent
in fuzzy logic. Then the classically equivalent definitions are concurrent candidates for the definition
of the fuzzy notion. Of these, in some cases one is behaving best and can be chosen as the fuzzy
counterpart of the crisp notion. In other cases, two or more variants of the definition are meaningful
and well-behaved in fuzzy logic: then the notion of classical mathematics splits into several notions in
FCT. This can be exemplified by the notion of equality of fuzzy classes. Besides the primitive crisp
identity = of fuzzy classes, at least two graded notions of natural fuzzy equality can be defined (see
Definition 1.7.4):

A ≈ B ≡df (∀x)[(Ax → Bx) & (Bx → Ax)], i.e., (∀x)(Ax ↔ Bx)
A u B ≡df (∀x)(Ax → Bx) & (∀x)(Bx → Ax), i.e., (A ⊆ B) & (B ⊆ A)

These notions are not equivalent in FCT, as shown by the following counter-example:
11Recall that any n-ary predicate R of order m can be identified with a constant symbol for a class of order m + 1 of

n-tuples.
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Example 2.4.1 Let A,B be interpreted in a model over the standard MV4-algebra (see Exam-
ple 4.1.5) by the following assignment of truth values: Ap = Bq = 1, Aq = Bp = 0.5, and 0 otherwise.
Then the truth value of A ≈ B is 0.5, while the truth value of A u B is 0.

In traditional non-graded fuzzy mathematics both notions coincide, since they are fully true under
the same conditions; however, under the graded approach they differ, since in graded fuzzy mathe-
matics we do not require them to be true to degree 1. It can be noticed that Gottwald [19] uses u
while Bělohlávek [7] uses ≈ as a graded equality of fuzzy sets. For the interrelation of both notions
see [6].

3 How to prove results in Fuzzy Class Theory

In this section we give some hints as to how to make valid proofs of graded theorems in FCT.

3.1 Derivations in fuzzy logic

As argued above, many formulae of FCT look very similar to those of classical set theory. This is made
possible by the design of the theory which hid the references to truth degrees into the atomic formulae
and their combinations. It is the meaning of connectives and quantifiers in which the formulae of FCT
differ from those of classical set theory: the connectives are interpreted by the rules of fuzzy logic
rather than classical Boolean logic. Consequently, formulae that express laws valid for fuzzy sets can
formally be deduced from the axioms of FCT, but the derivation must use the logic MTL4 instead
of classical Boolean logic.12

MTL4 is not much different from classical logic; many proof methods of classical logic therefore
work in MTL4 as well. E.g., by the transitivity of implication, one can prove in steps (i.e., in order
to establish ϕ → ψ one can prove the chain of implications ϕ −→ χ1 −→ · · · −→ χn −→ ψ). Provable
implications are therefore useful for transitions between these successive steps; some of them are listed
for reference at the end of this section. Since furthermore many theorems of FCT have exactly the
same form as in classical mathematics, classical proofs (or their slightly adapted variants that avoid
rules that are invalid in MTL4) often work for them.

The main difference between MTL4 and classical logic as regards proof methods is that some of
classically valid implications and equivalences are invalid in MTL4. These must be avoided in proofs
in FCT; only the laws that are provable in MTL4 can be used in FCT proofs. A list of rules that are
provable in MTL4 can be found in Section 3.2. There are two main groups of classically valid, but
MTL4-invalid logical laws which must be avoided:

1. Most intuitionistically invalid laws are also invalid in MTL4, since MTL4 lacks the law of double
negation (MTL4 can actually be characterized as intuitionistic logic with globalization, minus
the rule of contraction, plus the rule of prelinearity). These rules are recovered in extensions of
MTL4 that enjoy the double negation law, e.g., IMTL4 or ÃLukasiewicz logic.

2. The rule of contraction ϕ ↔ ϕ & ϕ is in general invalid in MTL4. Consequently, multiple
occurrences of the same formula among the premises cannot be cancelled and must all appear in
the theorem. By the rules of MTL4 for implication (see Lemma 3.2.2(3) and comments below
it), if a premise is used n times in an implicational proof (i.e., a proof that does not use 4-
necessitation), it has to appear n times among the premises of the theorem. Only crisp formulae
can be contracted and handled by classically valid inference rules in MTL4.

12In using fuzzy logic for proving theorems Fuzzy Class Theory differs radically from mainstream (traditional) fuzzy
mathematics. Traditional fuzzy mathematics models fuzzy sets by membership functions which themselves are crisp,
therefore it can use classical logic for proving its theorems. FCT, on the other hand, takes fuzzy sets as a primitive
fuzzy notion; since fuzzy logic is designed as the logic for reasoning about fuzzy notions, it is the latter which must be
used for proofs in FCT rather than classical logic.

10



3.2 Proof methods in MTL4 and FCT

Like in classical mathematics, proofs in FCT can either be formal or informal. Formal proofs are always
primary, in that the validity of a theorem of FCT is founded on a formal proof in first-order MTL4
from the axioms of FCT. Informal proofs are descriptions (in symbols or even natural language) of a
formal proof or hints that can lead the reader to the reconstruction of a formal proof, if such a formal
proof is requested. Since formal proofs (i.e., sequences of formulae) are hard to read, informal proofs
are often much more preferable for human readers.

Each step in an informal proof is based on some formal law derivable in first-order MTL4. Rea-
soning by rules based on the laws of MTL4 is sound w.r.t. derivability in MTL4, and the conclusions
of such reasoning are therefore valid theorems of FCT. Some laws of MTL4 which are useful for
making informal (or even formal) proofs in FCT are listed below (the list is by no means exhaustive).
Most of them are restatements or easy corollaries of theorems proved in [20] and [12].

Lemma 3.2.1 The following are theorems of MTL4:
(T1) ϕ → (ψ → ϕ)
(T2) (ϕ → (ψ → χ)) → (ψ → (ϕ → χ))
(T3) ϕ → ϕ

(T4a) (ϕ → ψ) → (ϕ & χ → ψ & χ))
(T4b) (ϕ → ψ) → (ϕ ∧ χ → ψ ∧ χ))
(T4c) (ϕ → ψ) → (ϕ ∨ χ → ψ ∨ χ))
(T5) (ϕ → (ψ → ϕ & ψ)

(T6) ϕ & ψ → ϕ ∧ ψ
(T7) ϕ ∧ ψ → ψ
(T8) ((χ → ϕ) ∧ (χ → ψ)) → (χ → ϕ ∧ ψ)
(T8′) ((χ → ϕ) & (χ → ψ)) → (χ → ϕ ∧ ψ)
(T9a) (ϕ → ψ) → (ϕ ↔ ϕ ∧ ψ)
(T9b) (ϕ → ψ) ↔ (ϕ → ϕ ∧ ψ)
(T9c) ϕ → (ϕ ∧ ψ ↔ ψ)

(T10) ϕ → ϕ ∨ ψ
(T11) ((ϕ → χ) ∧ (ψ → χ)) → (ϕ ∨ ψ → χ)
(T11′) ((ϕ → χ) & (ψ → χ)) → (ϕ ∨ ψ → χ)
(T12) (ϕ → ψ) ∨ (ψ → ϕ)
(T13) (ϕ → ψ)n ∨ (ψ → ϕ)n

(T14a) (ϕ → ψ) → (ψ ↔ ϕ ∨ ψ)
(T14b) (ϕ → ψ) ↔ (ϕ ∨ ψ → ψ)

(T15) ϕ → ¬¬ϕ
(T16) ¬ϕ → (ϕ → ψ)
(T17) (ϕ → ψ) → (¬ψ → ¬ϕ)
(T17′) (ϕ ↔ ψ) → (¬ψ ↔ ¬ϕ)
(T18a) ¬(ϕ ∧ ψ) ↔ (¬ϕ ∨ ¬ψ)
(T18b) ¬(ϕ ∨ ψ) ↔ (¬ϕ ∧ ¬ψ)

(T19) ϕ & 1 ↔ ϕ
(T20) (1 → ϕ) ↔ ϕ

(T21) (ϕ ↔ ψ) → ((ϕ & χ) ↔ (ψ & χ))
(T21′) (ϕ ↔ ψ) & (χ ↔ δ) → ((ϕ & χ) ↔ (ψ & δ))
(T22) (ϕ ↔ ψ) → ((ϕ → χ) ↔ (ψ → χ))
(T23) (ϕ ↔ ψ) → ((χ → ϕ) ↔ (χ → ψ))
(T23′) (ϕ ↔ ψ) & (χ ↔ δ) → ((ϕ → χ) ↔ (ψ → δ))
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(T24a) ϕ & (ψ ∧ χ) ↔ (ϕ & ψ) ∧ (ϕ & χ)
(T24b) ϕ & (ψ ∨ χ) ↔ (ϕ & ψ) ∨ (ϕ & χ)
(T25a) ϕ ∨ (ψ ∧ χ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)
(T25b) ϕ ∧ (ψ ∨ χ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)
(T26a) (ϕ ∧ ψ) & (ϕ ∧ ψ) ↔ (ϕ & ϕ) ∧ (ψ & ψ)
(T26b) (ϕ ∨ ψ) & (ϕ ∨ ψ) ↔ (ϕ & ϕ) ∨ (ψ & ψ)
(T27) (ϕ & ψ) & χ ↔ ϕ & (ψ & χ)
(T28) (ϕ → ψ) & (χ → δ) → ((ψ → χ) → (ϕ → δ))
(T29) (ϕ → ψ) & (χ → δ) → ((ϕ & χ) → (ψ & δ))

(T41) 4ϕ ↔4(ϕ & ϕ)
(T42) 4ϕ ↔4ϕ &4ϕ
(T43) 4(ϕ & ψ) ↔ (4ϕ &4ψ)
(T44) (4ϕ ∧4ψ) ↔ (4ϕ &4ψ)
(T45) 4(ϕ ∧ ψ) ↔ (4ϕ ∧4ψ)

Let I and J be finite sets. Then the following are theorems of MTL4:

(S1)
∧
i∈I

ϕi &
∧

j∈J

ψj ↔
∧

i∈I,j∈J

(ϕi & ψj)

(S2)
∨
i∈I

ϕi &
∨

j∈J

ψj ↔
∨

i∈I,j∈J

(ϕi & ψj)

(S3) (
∨
i∈I

ϕi →
∧

j∈J

ψj) ↔
∧

i∈I,j∈J

(ϕi → ψj)

(S4) (
∧
i∈I

ϕi →
∨

j∈J

ψj) ↔
∨

i∈I,j∈J

(ϕi → ψj)

(S5)
∧
i∈I

ϕi ∨
∧

j∈J

ψj ↔
∧

i∈I,j∈J

(ϕi ∨ ψj)

(S6)
∨
i∈I

ϕi ∧
∨

j∈J

ψj ↔
∨

i∈I,j∈J

(ϕi ∧ ψj)

The following lemmata justify certain proof methods in MTL4; they are often used without explicit
mention in informal proofs. Besides giving the lemmata we shall also comment on how they can be
employed in both formal and informal proofs in FCT.

Lemma 3.2.2 The theorems of the following forms are provable in the propositional logic MTL4:

1. [ϕ → (ψ → χ)] ←→ [ϕ & ψ → χ] ←→ [ψ & ϕ → χ] ←→ [ψ → (ϕ → χ)]

2. 4(ϕ ∨ ψ) & (ϕ → χ) & (ψ → χ) → χ

3. [(ϕ1 → ψ1) & (ϕ2 → ψ2)] → (ϕ1 & ϕ2 → ψ1 & ψ2)

4. [(ϕ1 → ψ1) ∧ (ϕ2 → ψ2)] → (ϕ1 ∧ ϕ2 → ψ1 ∧ ψ2)

5. [(ϕ1 → (ψ1 → ψ2)) ∧ (ϕ2 → (ψ2 → ψ1))] → (ϕ1 ∧ ϕ2 → (ψ1 ↔ ψ2))

6. 4(ϕ ∨ ¬ϕ) → [(ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))]

7. 4(ϕ ∨ ¬ϕ) → [(ϕ & (ψ → χ)) → (ϕ & ψ → ϕ & χ)]

By Lemma 3.2.2(1), one can arbitrarily reorder the premises in proofs. Lemma 3.2.2(2) justifies
proofs by cases (one must be, however, careful not to take cases on ϕ and ¬ϕ, as ϕ ∨ ¬ϕ is generally not
provable in MTL4 unless ϕ is crisp). Lemma 3.2.2(3) shows that a strong conjunction can be proved
by proving each conjunct separately. Similarly Lemma 3.2.2(4) shows that to prove a min-conjunction
it is enough to take min-conjunction of the premisses. Lemma 3.2.2(5) demonstrates that equivalence
is implied by a min-conjunction of premises needed to prove both implications. Lemma 3.2.2(6) and
(7) allow certain distributions for crisp formulae.
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Lemma 3.2.2(3) and Lemma 3.2.2(4) demonstrate an important feature of formal fuzzy mathe-
matics: counting the premisses. They justify two important proof methods: if we can prove

ϕi1
1 & ϕi2

2 & . . . & ϕin
n → ψ and ϕj1

1 & ϕj2
2 & . . . & ϕjn

n → χ

then we can also prove
ϕi1+j1

1 & ϕi2+j2
2 & . . . & ϕin+jn

n → ψ & χ

as well as
ϕ

max(i1,j1)
1 & ϕ

max(i2,j2)
2 & . . . & ϕmax(in,jn)

n → ψ ∧ χ

(Notice two different ways of “counting” based on whether we prove conjunction or min-conjunction
of conclusions.)

Lemma 3.2.3 together with the transitivity of implication makes it possible to prove theorems by
successive transformations of the formula using provably equivalent substitutes of subformulae:

Lemma 3.2.3 If ϕ ↔ ψ is provable in the first-order logic MTL4, then so is χ[ϕ/ψ] ↔ χ, where
χ[ϕ/ψ] is the result of replacing an occurrence of the subformula ϕ by ψ in χ.

Proof: By induction on the complexity of χ, using the fact that all connectives and quantifiers of
first-order MTL4 are congruent w.r.t. provable equivalence. QED

Now we list several important theorem of first-order MTL4. These theorems are either proven in
[12] or are simple consequences of theorems listed there.

Lemma 3.2.4 For arbitrary formulae ϕ,ψ, ν where ν does not contain x freely, the following are
theorems of first-order MTL4:
(T∀1) (∀x)(ν → ϕ) ↔ (ν → (∀x)ϕ)
(T∀2) (∀x)(ϕ → ν) ↔ ((∃x)ϕ → ν)
(T∀3) (∃x)(ν → ϕ) → (ν → (∃x)ϕ)
(T∀4) (∃x)(ϕ → ν) → ((∀x)ϕ → ν)
(T∀5) (∀x)(ϕ → ψ) → ((∀x)ϕ → (∀x)ψ)
(T∀6) (∀x)(ϕ → ψ) → ((∃x)ϕ → (∃x)ψ)
(T∀7) (∀x)ϕ & (∃x)ψ → (∃x)(ϕ & ψ)
(T∀8) (∀x)ϕ(x) ↔ (∀y)ϕ(y)
(T∀8′) (∃x)ϕ(x) ↔ (∃y)ϕ(y)
(T∀9) (∃x)(ϕ & ν) ↔ ((∃x)ϕ & ν)
(T∀10) (∃x)ϕn ↔ ((∃x)ϕ)n

(T∀11) (∃x)ϕ → ¬(∀y)¬ϕ
(T∀12) ¬(∃x)ϕ ↔ (∀y)¬ϕ
(T∀13) (∃x)(ν ∧ ϕ) ↔ (ν ∧ (∃x)ϕ)
(T∀14) (∃x)(ν ∨ ϕ) ↔ (ν ∨ (∃x)ϕ)
(T∀15) (∀x)(ν ∧ ϕ) ↔ (ν ∧ (∀x)ϕ)
(T∀16) (∃x)(ϕ ∨ ψ) ↔ ((∃x)ϕ ∨ (∃x)ϕ)
(T∀17) (∀x)(ϕ ∧ ψ) ↔ ((∀x)ϕ ∧ (∀x)ψ)
(T∀18) (∃x)(ϕ ∧ ψ) → ((∃x)ϕ ∧ (∃x)ϕ)
(T∀19) ((∀x)ϕ ∨ (∀x)ψ) → (∀x)(ϕ ∨ ψ)
(T∀20) (∀x)(ϕ → (∀y)(ψ → χ)) ↔ (∀y)(ψ → (∀x)(ϕ → χ))
(T∀21) (∃x)(ϕ & (∀y)(ψ & χ)) ↔ (∀y)(ψ & (∀x)(ϕ & χ))

3.3 Proof methods in FCT

Besides proof methods described above, which are suitable for any theory in first-order logic MTL4,
there are methods specially tailored for FCT. First notice that theorems (T∀20) and (T∀21) justify
exchanging relativized quantifiers of the same kind, e.g., (∀x ∈ A)(∀y ∈ B)ϕ ↔ (∀y ∈ B)(∀x ∈ A)ϕ
or (∃A ⊆ B)(∃C ∈ D)ϕ ↔ (∃C ∈ D)(∃A ⊆ B)ϕ, etc. Let us continue by few simple examples:

Lemma 3.3.1 Formulae of the following forms are provable in FCT:
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1.
⋃{B | ϕ(B)} ⊆ A ↔ (∀B)(ϕ(B) → B ⊆ A)

2. A ⊆ ⋂{B | ϕ(B)} ↔ (∀B)(ϕ(B) → A ⊆ B)

3. ϕ(C) → ⋂{B | ϕ(B)} ⊆ C

4. ϕ(C) → C ⊆ ⋃{B | ϕ(B)}
5. CrispA → [(∀x ∈ A)(ϕ → ψ) → [(∀x ∈ A)ϕ → (∀x ∈ A)ψ]]

Now we present a method a reducing some proof to the propositional case as shown in [3]. Before
we start we give a few general definitions from [3].

Convention 3.3.2 Let ϕ(p1, . . . , pn) be a propositional formula with p1, . . . , pn its only propositional
variables, and let ψ1, . . . , ψn be any formulae. By ϕ(ψ1, . . . , ψn) we denote the formula ϕ in which all
occurrences of pi are replaced by ψi (for all i ≤ n).

Furthermore, if n is known from the context, we shall sometimes write just ~X for X1, . . . , Xn.

Definition 3.3.3 Let ϕ(p1, . . . , pn) be a propositional formula. We define the n-ary class operation
induced by ϕ as

Opϕ(X1, . . . , Xn) =df {x | ϕ(x ∈ X1, . . . , x ∈ Xn)}.
Furthermore we define two relations between X1, . . . , Xn induced by ϕ:

Rel∀ϕ(X1, . . . , Xn) ≡df (∀x)ϕ(x ∈ X1, . . . , x ∈ Xn)

Rel∃ϕ(X1, . . . , Xn) ≡df (∃x)ϕ(x ∈ X1, . . . , x ∈ Xn)

Example 3.3.4

Rel∀p→q(X,Y ) ≡df (∀x)(x ∈ X → x ∈ Y ), i.e., X ⊆ Y

Opp&q(X,Y ) ≡df {x | x ∈ X & x ∈ Y }, i.e., X ∩ Y

The following metatheorems show that a large part of elementary fuzzy set theory can be reduced
to fuzzy propositional calculus.

Theorem 3.3.5 Let ϕ,ψ1, . . . , ψn be propositional formulae.
Then MTL4 proves ϕ(ψ1, . . . , ψn)

iff FCT proves Rel∀ϕ(Opψ1
(X1,1, . . . , X1,k1), . . . , Opψn

(Xn,1, . . . , Xn,kn)) (3.1)

iff FCT proves Rel∃ϕ(Opψ1
(X1,1, . . . , X1,k1), . . . , Opψn

(Xn,1, . . . , Xn,kn)) (3.2)

Corollary 3.3.6 Let ϕ and ψ be propositional formulae.
If MTL4 proves ϕ → ψ then FCT proves Opϕ(X1, . . . , Xn) ⊆ Opψ(X1, . . . , Xn).
If MTL4 proves ϕ ↔ ψ then FCT proves Opϕ(X1, . . . , Xn) = Opψ(X1, . . . , Xn).
If MTL4 proves ϕ ∨ ¬ϕ then FCT proves Crisp(Opϕ(X1, . . . , Xn)).

By virtue of Theorem 3.3.5, the properties of propositional connectives directly translate to the
properties of class relations and operations. For example:

Provability in MTL4 of: Proves in FCT:
4p → p Ker(X) ⊆ X

p → p ∨ q X ⊆ X ∪ Y
p → p ∨ q Norm(X) → Norm(X ∪ Y )

0 → p ∅ ⊆ X
p & q → p ∧ q X ∩ Y ⊆ X u Y
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In order to translate monotonicity and congruence properties of propositional connectives to the
same properties of class operations, we need another theorem:

Theorem 3.3.7 Let ϕi, ϕ
′
i, ψi,j , ψ

′
i,j be propositional formulae. Then MTL4 proves

k

&
i=1

ϕi(ψi,1, . . . , ψi,ni) →
k′∧

i=1

ϕ′i(ψ
′
i,1, . . . , ψ

′
i,n′i

) (3.3)

iff FCT proves

k

&
i=1

Rel∀ϕi

(
Opψi,1

( ~X), . . . , Opψi,ni
( ~X)

)
→

k′∧

i=1

Rel∀ϕ′i

(
Opψ′i,1

( ~X), . . . , Opψ′
i,n′

i

( ~X)
)

Examples of direct corollaries of the theorem:

Provability in MTL4 of Proves in FCT
(p → q) → ((p & r) → (q & r)) X ⊆ Y → X ∩ Z ⊆ Y ∩ Z
(p → q) → (p → (p ∧ q)) X ⊆ Y → X ⊆ X u Y
[(p → q) & (q → p)] → (p ↔ q) (X ⊆ Y & Y ⊆ X) → X ≈ Y
(p ↔ q) → [(p → q) ∧ (q → p)] X ≈ Y → (X ⊆ Y ∧ Y ⊆ X)
[(p → r) & (q → r)] → (p ∨ q → r) (X ⊆ Z & Y ⊆ Z) → X ∪ Y ⊆ Z
4(p → q) → [4(α → p) →4(α → q)] 4(X ⊆ Y ) → Xα ⊆ Yα

transitivity of →,↔ transitivity of ⊆,≈, etc.

To derive theorems about Rel∃, we slightly modify Theorem 3.3.7:

Theorem 3.3.8 Let ϕi, ϕ
′
i, ψi,j , ψ

′
i,j be propositional formulae. Then MTL4 proves

k

&
i=1

ϕi(ψi,1, . . . , ψi,ni) →
k′∨

i=1

ϕ′i(ψ
′
i,1, . . . , ψ

′
i,n′i

) (3.4)

iff FCT proves

k−1

&
i=1

Rel∀ϕi

(
Opψi,1

( ~X), . . . , Opψi,ni
( ~X)

)
& Rel∃ϕk

(
Opψk,1

( ~X), . . . , Opψk,nk
( ~X

)
→

→
k′∨

i=1

Rel∃ϕ′i

(
Opψ′i,1

( ~X), . . . , Opψ′
i,n′

i

( ~X)
)

(3.5)

Examples of direct corollaries:

Provability in MTL4 of Proves in FCT
((p → q) & p) → q ((X ⊆ Y ) & Hgt(X)) → Hgt(Y )
4(p ∨ q) →4p ∨4q Norm(X t Y ) → Norm(X) ∨Norm(Y )
(p → r) & (p & q) → (q & r) X ⊆ Z & X ‖ Y → Y ‖ Z, etc.

4 Appendix: Logic MTL4
Monoidal t-norm based logic (MTL for short) was introduced by Esteva and Godo in [12] as an
extension of Höhle’s monoidal logic [23] by the axiom of prelinearity (i.e., the axiom (A6) below). In
this appendix we recall some of the basic properties of MTL and its expansion by the connective 4,
first propositional and then first-order.
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4.1 Propositional logics MTL and MTL4
The formulae of propositional logic MTL are composed from a countable set of propositional atoms
by using three basic binary connectives →, ∧, and &, and a nullary connective 0. Further connectives
can be defined as:

ϕ ∨ ψ is ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
¬ϕ is ϕ → 0,

ϕ ↔ ψ is (ϕ → ψ) ∧ (ψ → ϕ),
1 is ¬0.

Convention 4.1.1 In order to avoid unnecessary parentheses, we stipulate that unary connectives
take precedence over ∧, ∨, and &, which in turn bind more closely than → and ↔.

The deduction rule of MTL is Modus Ponens (from ϕ and ϕ → ψ infer ψ) and the following
formulae are axioms of MTL:
(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) ϕ & ψ → ϕ
(A3) ϕ & ψ → ψ & ϕ
(A4a) ϕ & (ϕ → ψ) → ϕ ∧ ψ
(A4b) ϕ ∧ ψ → ϕ
(A4c) ϕ ∧ ψ → ψ ∧ ϕ
(A5a) (ϕ → (ψ → χ)) → (ϕ & ψ → χ)
(A5b) (ϕ & ψ → χ) → (ϕ → (ψ → χ))
(A6) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A7) 0 → ϕ

The logic MTL4 was introduced in [12] as an expansion of the logic MTL by a new unary connective
4, the deduction rule of necessitation (from ϕ infer 4ϕ), and the following axioms:
(A41) 4ϕ ∨ ¬4ϕ,
(A42) 4(ϕ ∨ ψ) → (4ϕ ∨4ψ),
(A43) 4ϕ → ϕ,
(A44) 4ϕ →44ϕ,
(A45) 4(ϕ → ψ) → (4ϕ →4ψ).

Formulae derived from these axioms by means of the mentioned deduction rules are called theorems
of MTL4.

Remark 4.1.2 The following logics known from the literature are among the expansions of MTL: BL,
SMTL, IMTL, ΠMTL, NM, WNM, SBL, ÃLukasiewicz logic, product logic, and Gödel logic (for their
definitions see [12, 20]); the logic PÃL (extension of ÃLukasiewicz logic by an additional conjunction—see
[25]) and extensions of these logics by truth constants (see [15, 11]).

The following logics known from the literature are among the expansions of MTL4: the expansions
of all fuzzy logics mentioned above by the connective 4, fuzzy logics with strict negation and an extra
involutive negation (SBL∼, Π∼, G∼, see [13] for more details); and two expressively very rich fuzzy
logic ÃLΠ and ÃLΠ1

2 (for details see [9, 14]).

Definition 4.1.3 An MTL-algebra is a structure L = (L, ∗,⇒,∧,∨, 0, 1), where
(1) (L,∧,∨, 0, 1) is a bounded lattice,
(2) (L, ∗, 1) is a commutative monoid,
(3) z ≤ (x ⇒ y) iff x ∗ z ≤ y for all x, y, z, (residuation)
(4) (x ⇒ y) ∨ (y ⇒ x) = 1. (prelinearity)

Definition 4.1.4 An MTL4-algebra is a structure L = (L, ∗,⇒,∧,∨, 0, 1,4) such that
(0) (L, ∗,⇒,∧,∨, 0, 1) is an MTL-algebra,
(1) 4x ∨ (4x ⇒ 0) = 1,
(2) 4(x ∨ y) ≤ (4x ∨4y),
(3) 4x ≤ x,
(4) 4x ≤ 44x,
(5) 4(x ⇒ y) ≤ 4x ⇒4y,
(6) 41 = 1.
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If the lattice order of L is linear, we say that L is an MTL4-chain. If the lattice reduct of L is
the real unit interval with the usual order, we say that L is a standard MTL4-chain. It can easily be
shown that in each MTL4-chain the following holds:

4x =

{
1 if x = 1,

0 otherwise.

The structure ([0, 1], ∗,⇒,min, max, 0, 1,4) is a standard MTL4-chain iff ∗ is a left continuous t-norm
and ⇒ its residuum.

Example 4.1.5 Let ∗ÃL be a ÃLukasiewicz t-norm (x ∗ÃL y = max(0, x + y − 1)) and ⇒ÃL its residuum
(x ⇒ÃL y = min(1, 1 − x + y)). Then the MTL4-chain ([0, 1], ∗ÃL,⇒ÃL, min,max, 0, 1,4) is called the
standard MV4-algebra (see e.g., [20]).

Given an MTL4-algebra, we can evaluate formulae of MTL4 by assigning elements of L to propo-
sitional atoms and computing values of compound formulae using the operations of L. A formula is
a tautology of a given MTL4-algebra if always evaluated to 1.

The completeness theorem for MTL and MTL4 w.r.t. standard algebras (a formula is a theorem
iff it is a tautology of each standard MTL4-algebra) was proven in [26].

4.2 First-order logics MTL and MTL4
Definition 4.2.1 A predicate language Γ is a tuple (S,P,F,a), where S is a non-empty set of sorts
of variables; P is a non-empty set of predicate symbols; F is a set of function symbols; and a is an
arity function, which assigns a sequence of sorts (s1, . . . , sk) to each predicate symbol and a sequence
of sorts (s1, . . . , sk, sk+1) to each function symbol (k ≥ 0 in both cases). Functions with arity (s1) are
called object constants of sort (s1). The set P is supposed to contain a symbol = of arity (s, s) for
each sort s. For each sort s there are countably many variables xs

1, x
s
2, . . . .

Now we define several syntactical notions; notice that they are determined by a predicate language.
In order to simplify the definitions let us take a fixed predicate language Γ in this whole section.
Analogously, the semantical notions we are going to define are determined by an MTL4-chain, so let
us consider a fixed MTL4-chain L from now on.

Definition 4.2.2 Any variable xs of sort s is a term of sort s. If F ∈ F is a function symbol of
arity (s1, . . . , sk, sk+1), then for any terms t1, . . . , tk of the respective sorts s1, . . . , sk, the expression
F (t1, . . . , tk) is a term of sort sk+1.

Atomic formulae have the form P (t1, . . . , tk), where t1, . . . , tk are terms of respective sorts s1, . . . , sk

and P ∈ P is a predicate symbol of arity (s1, . . . , sk). (We usually use infix notation for binary
predicate symbols.)

Formulae are built from atomic formulae by using the connectives of MTL4 and the quantifiers
∀, ∃ (for a formula ϕ and an object variable x, both (∀x)ϕ and (∃x)ϕ are formulae).

Definition 4.2.3 An occurrence of a variable x in a formula ϕ is bound if it is in the scope of a
quantifier over x; otherwise it is called free. A formula ϕ is called a sentence if all occurrences of
variables in ϕ are bound.

A term t is substitutable for the object variable x in a formula ϕ(x) iff t is of the same sort as x
and no variable occurring in t becomes bound in ϕ(t).

Definition 4.2.4 The first-order logic MTL4 (with crisp identity) has the following axioms:
(P) The axioms resulting from the axioms of MTL4 by the substitution of Γ-formulae for

propositional variables,
(∀1) (∀x)ϕ(x) → ϕ(t), where t is substitutable for x in ϕ,
(∃1) ϕ(t) → (∃x)ϕ(x), where t is substitutable for x in ϕ,
(∀2) (∀x)(χ → ϕ) → (χ → (∀x)ϕ), where x is not free in χ,
(∃2) (∀x)(ϕ → χ) → ((∃x)ϕ → χ), where x is not free in χ,
(∀3) (∀x)(χ ∨ ϕ) → χ ∨ (∀x)ϕ, where x is not free in χ.
(=1) x = x
(=2) x = y → (ϕ(x) → ϕ(y)), where y is substitutable for x in ϕ.
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The deduction rules are those of MTL4 and generalization: from ϕ infer (∀x)ϕ.

We define the notion of theorem in the same way as in the propositional case. We can also define
a more general notion:

Definition 4.2.5 A theory is a set of sentences. A formula is provable in a theory T if it is derivable
by the deduction rules from the axioms of first-order MTL4 and sentences belonging to T . We denote
this fact by T ` ϕ.

Definition 4.2.6 An L-structure M has the form: M = ((Ms)s∈S, (PM)P∈P, (FM)f∈F), where each
Ms is a non-empty set; each PM is a k-ary fuzzy relation PM :

∏k
i=1 Msi

→ L for each predicate symbol
P ∈ P of arity (s1, . . . , sk); and fM is a k-ary function FM :

∏k
i=1 Msi

→ Msk+1 for each function
symbol F ∈ F of arity (s1, . . . , sk, sk+1). Furthermore, =M is the crisp identity of the elements of Ms

for each s ∈ S.

In words: an L-structure consists of (i) domains for all sorts of variables, (ii) an interpretation of
all predicate symbols by L-fuzzy relations defined on appropriate domains, and (iii) an interpretation
of all function symbols by functions between appropriate domains.

Definition 4.2.7 Let M be an L-structure. An M-evaluation is a mapping v which assigns to each
object variable x of sort s an element from Ms. For an M-evaluation v , a variable x of sort s, and
a ∈ Ms we define the M-evaluation v [x 7→ a] as

v [x 7→ a](y) =

{
a if y = x

v(y) otherwise

Definition 4.2.8 Let M be an L-structure and v an M-evaluation. We define values of the terms
and truth values of the formulae in M for an M-evaluation v as:

‖x‖LM,v = v(x)
‖F (t1, . . . , tn)‖LM,v = FM(‖t1‖LM,v , . . . , ‖tn‖LM,v ) for each F ∈ F
‖P (t1, . . . , tn)‖LM,v = PM(‖t1‖LM,v , . . . , ‖tn‖LM,v ) for each P ∈ P
‖c(ϕ1, . . . , ϕn)‖LM,v = cL(‖ϕ1‖LM,v , . . . , ‖ϕn‖LM,v ) for each connective c

‖(∀x)ϕ‖LM,v = inf
a∈M

‖ϕ‖LM,v [x→a]

‖(∃x)ϕ‖LM,v = sup
a∈M

‖ϕ‖LM,v [x→a]

If the infimum or supremum does not exist, we take its value as undefined. We say that a structure
M safe iff ‖ϕ‖LM,v is defined for each formula ϕ and each M-evaluation v . Notice that in a standard
MTL4-algebra (or more generally in any MTL4-algebra whose lattice reduct is a complete lattice)
the safeness of a structure is a void condition, as the suprema and infima of all sets exist.

Definition 4.2.9 Formula ϕ is valid in a structure M (denoted as M |= ϕ) if ‖ϕ‖LM,v = 1 for each
M-evaluation v . A structure M is a model of a theory T if M |= ϕ for each ϕ in T .

Finally we present the (strong) completeness theorem which relates syntactical and semantical
aspects of the first-order MTL4 logic (see [27, 12] for the proof). Recall that the direction from
syntax to semantics is usually called soundness whereas the reverse one is called completeness.

Theorem 4.2.10 Let Γ be a predicate language, T a theory, and ϕ a formula. Then the following
are equivalent:

1. T ` ϕ.

2. M |= ϕ for each MTL-chain L and each safe L-model M of T .

3. M |= ϕ for each standard MTL-chain L and each L-model M of T .

Thus by (1)⇒(2) we get that if a formula is provable in a given theory T , then it is valid in all
models of T over all MTL4-chains. Conversely, by (3)⇒(1) we get that if a formula is valid in all
models of T over all all standard MTL4-chains, then it is provable in T .
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